We incorporate the fear effect and the maturation period of predators into a diffusive predator-prey model. Local and global asymptotic stability for constant steady states as well as uniform persistence of the solution are obtained. Under some conditions, we also exclude the existence of spatially nonhomogeneous steady states and the steady state bifurcation bifurcating from the positive constant steady state. Hopf bifurcation analysis is carried out by using the maturation period of predators as a bifurcation parameter, and we show that global Hopf branches are bounded. Finally, we conduct numerical simulations to explore interesting spatial-temporal patterns.
Citation: Wanxiao Xu, Ping Jiang, Hongying Shu, Shanshan Tong. Modeling the fear effect in the predator-prey dynamics with an age structure in the predators[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 12625-12648. doi: 10.3934/mbe.2023562
We incorporate the fear effect and the maturation period of predators into a diffusive predator-prey model. Local and global asymptotic stability for constant steady states as well as uniform persistence of the solution are obtained. Under some conditions, we also exclude the existence of spatially nonhomogeneous steady states and the steady state bifurcation bifurcating from the positive constant steady state. Hopf bifurcation analysis is carried out by using the maturation period of predators as a bifurcation parameter, and we show that global Hopf branches are bounded. Finally, we conduct numerical simulations to explore interesting spatial-temporal patterns.
[1] | S. Chen, J. Wei, J. Shi, Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey system, Int. J. Bifurcation Chaos, 22 (2012), 1250061. https://doi.org/10.1142/S0218127412500617 doi: 10.1142/S0218127412500617 |
[2] | J. Wang, J. Wei, J. Shi, Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems, J. Differ. Equations, 260 (2016) 3495–3523. https://doi.org/10.1016/j.jde.2015.10.036 doi: 10.1016/j.jde.2015.10.036 |
[3] | W. Xu, H. Shu, Z. Tang, H. Wang, Complex dynamics in a general diffusive predator-prey model with predator maturation delay, J. Dyn. Differ. Equations, 2022 (2022). https://doi.org/10.1007/s10884-022-10176-9 doi: 10.1007/s10884-022-10176-9 |
[4] | F. Yi, J. Wei, J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator prey system, J. Differ. Equations, 246 (2009), 1944–1977. https://doi.org/10.1016/j.jde.2008.10.024 doi: 10.1016/j.jde.2008.10.024 |
[5] | W. B. Cannon, Bodily Changes in Pain, Hunger, Fear and Rage (ed.2), Appleton & Company, New York, 1915. https://doi.org/10.1037/10013-000 |
[6] | L. Y. Zanette, A. F. White, M. C. Allen, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334 (2011), 1398–1401. https://doi.org/10.1126/science.1210908 doi: 10.1126/science.1210908 |
[7] | X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1 |
[8] | X. Wang, X. Zou, Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators, Bull. Math. Biol., 79 (2017), 1325–1359. https://doi.org/10.1007/s11538-017-0287-0 doi: 10.1007/s11538-017-0287-0 |
[9] | Y. Wang, X. Zou, On a predator-prey system with digestion delay and anti-predation strategy, J. Nonlinear Sci., 30 (2020), 1579–1605. https://doi.org/10.1007/s00332-020-09618-9 doi: 10.1007/s00332-020-09618-9 |
[10] | C. Wang, S. Yuan, H. Wang, Spatiotemporal patterns of a diffusive prey-predator model with spatial memory and pregnancy period in an intimidatory environment, J. Math. Biol., 84 (2022), 12–47. https://doi.org/10.1007/s00285-022-01716-4 doi: 10.1007/s00285-022-01716-4 |
[11] | X. Wang, X. Zou, Pattern formation of a predator-prey model with the cost of anti-predator behaviors, Math. Biosci. Eng., 15 (2018), 775–805. https://doi.org/10.3934/mbe.2018035 doi: 10.3934/mbe.2018035 |
[12] | X. Zhang, H. Zhao, Y. Yuan, Impact of discontinuous harvesting on a diffusive predator-prey model with fear and Allee effect, Z. Angew. Math. Phys., 73 (2022), 168. https://doi.org/10.1007/s00033-022-01807-8 doi: 10.1007/s00033-022-01807-8 |
[13] | B. Dai, G. Sun, Turing-Hopf bifurcation of a delayed diffusive predator-prey system with chemotaxis and fear effect, Appl. Math. Lett., 111 (2021), 106644. https://doi.org/10.1016/j.aml.2020.106644 doi: 10.1016/j.aml.2020.106644 |
[14] | R. H. Martin, H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Am. Math. Soc., 321 (1990), 1–44. https://doi.org/10.1090/S0002-9947-1990-0967316-X doi: 10.1090/S0002-9947-1990-0967316-X |
[15] | C. V. Pao, Coupled nonlinear parabolic systems with time delays, J. Math. Anal. Appl., 196 (1995), 237–265. https://doi.org/10.1006/jmaa.1995.1408 doi: 10.1006/jmaa.1995.1408 |
[16] | H. Shu, Z. Ma, X. S. Wang, Threshold dynamics of a nonlocal and delayed cholera model in a spatially heterogeneous environment, J. Math. Biol., 83 (2021), 41–73. https://doi.org/10.1007/s00285-021-01672-5 doi: 10.1007/s00285-021-01672-5 |
[17] | M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. https://doi.org/10.1007/978-1-4612-5282-5 |
[18] | H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188–211. https://doi.org/10.1137/080732870 doi: 10.1137/080732870 |
[19] | H. Shu, W. Xu, X. S. Wang, J. Wu, Complex dynamics in a delay differential equation with two delays in tick growth with diapause, J. Differ. Equations, 269 (2020), 10937–10963. https://doi.org/10.1016/j.jde.2020.07.029 doi: 10.1016/j.jde.2020.07.029 |
[20] | T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delay, Trans. Am. Math. Soc., 352 (2000), 2217–2238. https://doi.org/10.1090/S0002-9947-00-02280-7 doi: 10.1090/S0002-9947-00-02280-7 |
[21] | J. K. Hale, S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. https://doi.org/10.1007/978-1-4612-4342-7 |
[22] | L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, Berlin, Heidelberg, 1991. https://doi.org/10.1007/978-1-4613-0003-8 |
[23] | J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, 1988. https://doi.org/10.1090/surv/025 |
[24] | J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996. https://doi.org/10.1007/978-1-4612-4050-1 |
[25] | H. L. Smith, X. Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal. Theory Methods Appl., 47 (2001), 6169–6179. https://doi.org/10.1016/S0362-546X(01)00678-2 doi: 10.1016/S0362-546X(01)00678-2 |
[26] | R. Peng, J. Shi, M. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 21 (2008), 1471–1488. https://doi.org/10.1088/0951-7715/21/7/006 doi: 10.1088/0951-7715/21/7/006 |
[27] | E. Beretta, Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144–1165. https://doi.org/10.1137/S0036141000376086 doi: 10.1137/S0036141000376086 |
[28] | J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Am. Math. Soc., 350 (1998), 4799–4838. https://doi.org/10.1090/S0002-9947-98-02083-2 doi: 10.1090/S0002-9947-98-02083-2 |
[29] | H. Shu, W. Xu, X. S. Wang, J. Wu, Spatiotemporal patterns of a structured spruce budworm diffusive model, J. Differ. Equations, 336 (2022), 427–455. https://doi.org/10.1016/j.jde.2022.07.014 doi: 10.1016/j.jde.2022.07.014 |
[30] | X. Pan, H. Shu, L. Wang, X. S. Wang, Dirichlet problem for a delayed diffusive hematopoiesis model, Nonlinear Anal. Real World Appl., 48 (2019), 493–516. https://doi.org/10.1016/j.nonrwa.2019.01.008 doi: 10.1016/j.nonrwa.2019.01.008 |