Research article Special Issues

Dynamics of a harvested cyanobacteria-fish model with modified Holling type Ⅳ functional response


  • Received: 17 February 2023 Revised: 12 April 2023 Accepted: 09 May 2023 Published: 26 May 2023
  • In this paper, considering the aggregation effect and Allee effect of cyanobacteria populations and the harvesting of both cyanobacteria and fish by human beings, a new cyanobacteria-fish model with two harvesting terms and a modified Holling type Ⅳ functional response function is proposed. The main purpose of this paper is to further elucidate the influence of harvesting terms on the dynamic behavior of a cyanobacteria-fish model. Critical conditions for the existence and stability of several interior equilibria are given. The economic equilibria and the maximum sustainable total yield problem are also studied. The model exhibits several bifurcations, such as transcritical bifurcation, saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation. It is concluded from a biological perspective that the survival mode of cyanobacteria and fish can be determined by the harvesting terms. Finally, concrete examples of our model are given through numerical simulations to verify and enrich the theoretical results.

    Citation: Shengyu Huang, Hengguo Yu, Chuanjun Dai, Zengling Ma, Qi Wang, Min Zhao. Dynamics of a harvested cyanobacteria-fish model with modified Holling type Ⅳ functional response[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 12599-12624. doi: 10.3934/mbe.2023561

    Related Papers:

  • In this paper, considering the aggregation effect and Allee effect of cyanobacteria populations and the harvesting of both cyanobacteria and fish by human beings, a new cyanobacteria-fish model with two harvesting terms and a modified Holling type Ⅳ functional response function is proposed. The main purpose of this paper is to further elucidate the influence of harvesting terms on the dynamic behavior of a cyanobacteria-fish model. Critical conditions for the existence and stability of several interior equilibria are given. The economic equilibria and the maximum sustainable total yield problem are also studied. The model exhibits several bifurcations, such as transcritical bifurcation, saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation. It is concluded from a biological perspective that the survival mode of cyanobacteria and fish can be determined by the harvesting terms. Finally, concrete examples of our model are given through numerical simulations to verify and enrich the theoretical results.



    加载中


    [1] H. W. Paerl, T. G. Otten, Harmful cyanobacterial blooms: Causes, consequences, and controls, Microb. Ecol., 65 (2013), 995–1010. https://doi.org/10.1007/s00248-012-0159-y doi: 10.1007/s00248-012-0159-y
    [2] A. Serrà, L. Philippe, F. Perreault, S. Garcia-Segura, Photocatalytic treatment of natural waters. reality or hype? the case of cyanotoxins remediation, Water Res., 188 (2021), 116543. https://doi.org/10.1016/j.watres.2020.116543 doi: 10.1016/j.watres.2020.116543
    [3] A. Włodarczyk, T. T. Selão, B. Norling, P. J. Nixon, Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production, Commun. Biol., 3 (2020), 215. https://doi.org/10.1038/s42003-020-0910-8 doi: 10.1038/s42003-020-0910-8
    [4] A. Shahid, M. Usman, Z. Atta, S. G. Musharraf, S. Malik, A. Elkamel, et al., Impact of wastewater cultivation on pollutant removal, biomass production, metabolite biosynthesis, and carbon dioxide fixation of newly isolated cyanobacteria in a multiproduct biorefinery paradigm, Bioresour. Technol., 333 (2021), 125194. https://doi.org/10.1016/j.biortech.2021.125194 doi: 10.1016/j.biortech.2021.125194
    [5] K. Chandrasekhar, T. Raj, S. V. Ramanaiah, G. Kumar, J. R. Banu, S. Varjani, et al., Algae biorefinery: A promising approach to promote microalgae industry and waste utilization, J. Biotechnol., 345 (2022), 1–16. https://doi.org/10.1016/j.jbiotec.2021.12.008 doi: 10.1016/j.jbiotec.2021.12.008
    [6] B. Öğlü, U. Bhele, A. Järvalt, L. Tuvikene, H. Timm, S. Seller, et al., Is fish biomass controlled by abiotic or biotic factors? results of long-term monitoring in a large eutrophic lake, J. Great Lakes Res., 46 (2020), 881–890. https://doi.org/10.1016/j.jglr.2019.08.004 doi: 10.1016/j.jglr.2019.08.004
    [7] R. J. Shen, X. H. Gu, H. H. Chen, Z. G. Mao, Q. F. Zeng, E. Jeppesen, Combining bivalve (Corbicula fluminea) and filter-feeding fish (Aristichthys nobilis) enhances the bioremediation effect of algae: An outdoor mesocosm study, Sci. Total Environ., 727 (2020), 138692. https://doi.org/10.1016/j.scitotenv.2020.138692 doi: 10.1016/j.scitotenv.2020.138692
    [8] C. Arancibia-Ibarra, P. Aguirre, J. Flores, P. V. Heijster, Bifurcation analysis of a predator-prey model with predator intraspecific interactions and ratio-dependent functional response, Appl. Math. Comput., 402 (2021), 126152. https://doi.org/10.1016/j.amc.2021.126152 doi: 10.1016/j.amc.2021.126152
    [9] X. L. Zou, Q. W. Li, J. L. Lv, Stochastic bifurcations, a necessary and sufficient condition for a stochastic Beddington-DeAngelis predator-prey model, Appl. Math. Lett., 117 (2021), 107069. https://doi.org/10.1016/j.aml.2021.107069 doi: 10.1016/j.aml.2021.107069
    [10] F. Souna, A. Lakmeche, S. Djilali, Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting, Chaos Solitons Fractals, 140 (2020), 110180. https://doi.org/10.1016/j.chaos.2020.110180 doi: 10.1016/j.chaos.2020.110180
    [11] T. T. Liu, L. J. Chen, F. D. Chen, Z. Li, Dynamics of a Leslie–Gower model with weak Allee effect on prey and fear effect on predator, Int. J. Bifurcat. Chaos, 33 (2023), 2350008. https://doi.org/10.1142/S0218127423500086 doi: 10.1142/S0218127423500086
    [12] X. B. Zhang, H. Y. Zhao, Bifurcation and optimal harvesting of a diffusive predator-prey system with delays and interval biological parameters, J. Theor. Biol., 363 (2014), 390–403. https://doi.org/10.1016/j.jtbi.2014.08.031 doi: 10.1016/j.jtbi.2014.08.031
    [13] T. K. Ang, H. M. Safuan, Dynamical behaviors and optimal harvesting of an intraguild prey-predator fishery model with Michaelis-Menten type predator harvesting, Biosystems, 202 (2021), 104357. https://doi.org/10.1016/j.biosystems.2021.104357 doi: 10.1016/j.biosystems.2021.104357
    [14] M. El-Shahed, A. M. Al-Dububan, Deterministic and stochastic fractional-order Hastings-Powell food chain model, CMC, 70 (2022), 2277–2296. https://doi.org/10.32604/cmc.2022.019314 doi: 10.32604/cmc.2022.019314
    [15] M. G. Mortuja, M. K. Chaube, S. Kumar, Dynamic analysis of a predator-prey system with nonlinear prey harvesting and square root functional response, Chaos Solitons Fractals, 148 (2021), 111071. https://doi.org/10.1016/j.chaos.2021.111071 doi: 10.1016/j.chaos.2021.111071
    [16] E. Bellier, B. E. Sæther, S. Engen, Sustainable strategies for harvesting predators and prey in a fluctuating environment, Ecol. Model., 440 (2021), 109350. https://doi.org/10.1016/j.ecolmodel.2020.109350 doi: 10.1016/j.ecolmodel.2020.109350
    [17] A. Mezouaghi, S. Djilali, S. Bentout, K. Biroud, Bifurcation analysis of a diffusive predator-prey model with prey social behavior and predator harvesting, Math. Method Appl. Sci., 45 (2022), 718–731. https://doi.org/10.1002/mma.7807 doi: 10.1002/mma.7807
    [18] J. Al-Omari, G. Gumah, S. Al-Omari, Dynamics of a harvested stage-structured predator-prey model with distributed maturation delay, Math. Method Appl. Sci., 45 (2022), 761–769. https://doi.org/10.1002/mma.7810 doi: 10.1002/mma.7810
    [19] B. F. Xie, Z. C. Zhang, N. Zhang, Influence of the fear effect on a Holling type Ⅱ prey-predator system with a Michaelis-Menten type harvesting, Int. J. Bifurcat. Chaos, 31 (2021), 2150216. https://doi.org/10.1142/S0218127421502163 doi: 10.1142/S0218127421502163
    [20] D. Y. Wu, H. Y. Zhao, Y. Yuan, Complex dynamics of a diffusive predator-prey model with strong Allee effect and threshold harvesting, J. Math. Anal. Appl., 469 (2019), 982–1014. https://doi.org/10.1016/j.jmaa.2018.09.047 doi: 10.1016/j.jmaa.2018.09.047
    [21] S. Li, S. L. Yuan, Z. Jin, H. Wang, Bifurcation analysis in a diffusive predator-prey model with spatial memory of prey, Allee effect and maturation delay of predator, Int. J. Differ. Equation, 357 (2023), 32–63. https://doi.org/10.1016/j.jde.2023.02.009 doi: 10.1016/j.jde.2023.02.009
    [22] Y. Y. Lv, L. J. Chen, F. D. Chen, Z. Li, Stability and bifurcation in an SI epidemic model with additive Allee effect and time delay, Int. J. Bifurcat. Chaos, 31 (2021), 2150060. https://doi.org/10.1142/S0218127421500607 doi: 10.1142/S0218127421500607
    [23] D. Y. Wu, H. Y. Zhao, Spatiotemporal dynamics of a diffusive predator-prey system with Allee effect and threshold hunting, Int. J. Nonlinear. Sci, 30 (2020), 1015–1054. https://doi.org/10.1007/s00332-019-09600-0 doi: 10.1007/s00332-019-09600-0
    [24] W. X. Wang, Y. B. Zhang, C. Z. Liu, Analysis of a discrete-time predator-prey system with Allee effect, Ecol. Complex., 8 (2011), 81–85. https://doi.org/10.1016/j.ecocom.2010.04.005 doi: 10.1016/j.ecocom.2010.04.005
    [25] D. Sen, S. Ghorai, M. Banerjee, Allee effect in prey versus hunting cooperation on predator-enhancement of stable coexistence, Int. J. Bifurcat. Chaos, 29 (2019), 1950081. https://doi.org/10.1142/S0218127419500810 doi: 10.1142/S0218127419500810
    [26] H. Molla, S. Sarwardi, S. R. Smith, M. Haque, Dynamics of adding variable prey refuge and an Allee effect to a predator-prey model, Alex. Eng. J., 61 (2022), 4175–4188. https://doi.org/10.1016/j.aej.2021.09.039 doi: 10.1016/j.aej.2021.09.039
    [27] D. Barman, J. Roy, H. Alrabaiah, P. Panja, S. P. Mondal, S. Alam, Impact of predator incited fear and prey refuge in a fractional order prey predator model, Chaos Solitons Fractals, 142 (2021), 110420. https://doi.org/10.1016/j.chaos.2020.110420 doi: 10.1016/j.chaos.2020.110420
    [28] W. Q. Yin, Z. Li, F. D. Chen, M. X. He, Modeling Allee effect in the Leslie-Gower predator-prey system incorporating a prey refuge, Int. J. Bifurcat. Chaos, 32 (2022), 2250086. https://doi.org/10.1142/S0218127422500869 doi: 10.1142/S0218127422500869
    [29] S. Y. Huang, H. G. Yu, C. J. Dai, Z. L. Ma, Q. Wang, M. Zhao, Dynamic analysis of a modified algae and fish model with aggregation and Allee effect, Math. Biosci. Eng., 19 (2022), 3673–3700. https://doi.org/10.3934/mbe.2022169 doi: 10.3934/mbe.2022169
    [30] G. Bapan, T. Kar, T. Legovic, Sustainability of exploited ecologically interdependent species., Popul. Ecol., 56 (2014), 527–537. https://doi.org/10.1007/s10144-014-0436-3 doi: 10.1007/s10144-014-0436-3
    [31] P. Paul, T. K. Kar, Impacts of invasive species on the sustainable use of native exploited species, Ecol. Model., 340 (2016), 106–115. https://doi.org/10.1016/j.ecolmodel.2016.09.002 doi: 10.1016/j.ecolmodel.2016.09.002
    [32] X. X. Liu, Q. D. Huang, Analysis of optimal harvesting of a predator-prey model with Holling type Ⅳ functional response, Ecol. Complex., 42 (2020), 100816. https://doi.org/10.1016/j.ecocom.2020.100816 doi: 10.1016/j.ecocom.2020.100816
    [33] Z. C. Shang, Y. H. Qiao, L. J. Duan, J. Miao, Bifurcation analysis in a predator-prey system with an increasing functional response and constant-yield prey harvesting, Math. Comput. Simulat., 190 (2021), 976–1002. https://doi.org/10.1016/j.matcom.2021.06.024 doi: 10.1016/j.matcom.2021.06.024
    [34] D. P. Hu, H. J. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal. Real World Appl., 33 (2017), 58–82. https://doi.org/10.1016/j.nonrwa.2016.05.010 doi: 10.1016/j.nonrwa.2016.05.010
    [35] J. C. Huang, S. G. Ruan, J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, J. Differ. Equations, 257 (2014), 1721–1752. https://doi.org/10.1016/j.jde.2014.04.024 doi: 10.1016/j.jde.2014.04.024
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1301) PDF downloads(70) Cited by(0)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog