Research article

Bifurcations in a discontinuous Leslie-Gower model with harvesting and alternative food for predators and constant prey refuge at low density


  • Received: 01 August 2022 Revised: 08 September 2022 Accepted: 12 September 2022 Published: 22 September 2022
  • Since environmental studies have shown that a constant quantity of prey become refuges from the predator at low densities and become accessible again for consumption when they reach a higher density, in this work we propose a discontinuous mathematical model, Lesli-Gower type, which describes the dynamics between prey and predators, interacting under the same environment, and whose predator functional response, of linear type, is altered by a refuge constant in the prey when below a critical value. Assuming that predators can be captured and have alternative food, the qualitative analysis of the proposed discontinuous model is performed by analyzing each of the vector fields that compose it, which serves as the basis for the calculation of the bifurcation curves of the discontinuous model, with respect to the threshold value of the prey and the harvest rate of predators. It is concluded that the perturbations of the parameters of the model leads either to the extinction of the predators or to a stabilization in the growth of both species, regardless of their initial conditions.

    Citation: Christian Cortés García. Bifurcations in a discontinuous Leslie-Gower model with harvesting and alternative food for predators and constant prey refuge at low density[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 14029-14055. doi: 10.3934/mbe.2022653

    Related Papers:

  • Since environmental studies have shown that a constant quantity of prey become refuges from the predator at low densities and become accessible again for consumption when they reach a higher density, in this work we propose a discontinuous mathematical model, Lesli-Gower type, which describes the dynamics between prey and predators, interacting under the same environment, and whose predator functional response, of linear type, is altered by a refuge constant in the prey when below a critical value. Assuming that predators can be captured and have alternative food, the qualitative analysis of the proposed discontinuous model is performed by analyzing each of the vector fields that compose it, which serves as the basis for the calculation of the bifurcation curves of the discontinuous model, with respect to the threshold value of the prey and the harvest rate of predators. It is concluded that the perturbations of the parameters of the model leads either to the extinction of the predators or to a stabilization in the growth of both species, regardless of their initial conditions.



    加载中


    [1] Y. A. Kuznetsov, Elements of applied bifurcation theory, Springer Press, New York, NY, USA, 2013. https://doi.org/10.1007/978-1-4757-3978-7
    [2] P. H. Leslie, J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrica, 47 (1960), 219–234. https://doi.org/10.2307/2333294 doi: 10.2307/2333294
    [3] N. Zhang, F. Chen, Q. Su, T. Wu, Dynamic behaviors of a harvesting Leslie-Gower predator-prey model, Discrete Dyn. Nat. Soc., 2011 (2011), 473949. https://doi.org/10.1155/2011/473949 doi: 10.1155/2011/473949
    [4] E. González-Olivares, C. Arancibia-Ibarra, A. Rojas, B. González-Yañez, Dynamics of a modified Leslie-Gower predation model considering a generalist predator and the hyperbolic functional response, Math. Biosci. Eng., 16 (2019), 7995–8024. https://doi.org/10.3934/mbe.2019403 doi: 10.3934/mbe.2019403
    [5] Q. Lin, C. Liu, X. Xie, Y. Xue, Global attractivity of Leslie-Gower predator-prey model incorporating prey cannibalism, Adv. Differ. Equations, 2020 (2020), 1–15. https://doi.org/10.1186/s13662-020-02609-w doi: 10.1186/s13662-020-02609-w
    [6] E. Rahmi, I. Darti, A. Suryanto, A sodified Leslie-Gower model incorporating Beddington-DeAngelis functional response, double Allee effect and memory effect, Fractal and Fractional, 5 (2021), 84. https://doi.org/10.3390/fractalfract5030084 doi: 10.3390/fractalfract5030084
    [7] A. Arsie, C. Kottegoda, C. Shan, A predator-prey system with generalized Holling type Ⅳ functional response and Allee effects in prey, J. Differ. Equations, 309 (2022), 704–740. https://doi.org/10.1016/j.jde.2021.11.041 doi: 10.1016/j.jde.2021.11.041
    [8] C. Arancibia-Ibarra, The basins of attraction in a modified May-Holling-Tanner predator-prey model with Allee affect, Nonlinear Anal., 185 (2019), 15–28. https://doi.org/10.1016/j.na.2019.03.004 doi: 10.1016/j.na.2019.03.004
    [9] F. Chen, L. Chen, X. Xie, On a Leslie-Gower predator-prey model incorporating a prey refuge, Nonlinear Anal. Real World Appl., 10 (2009), 2905–2908. https://doi.org/10.1016/j.nonrwa.2008.09.009 doi: 10.1016/j.nonrwa.2008.09.009
    [10] Q. Yue, Dynamics of a modified Leslie-Gower predator-prey model with Holling-type Ⅱ schemes and a prey refuge, SpringerPlus, 5 (2016), 1–12. https://doi.org/10.1186/s40064-016-2087-7 doi: 10.1186/s40064-016-2087-7
    [11] S. Chen, W. Li, Z. Ma, Analysis on a modified Leslie-Gower and holling-type Ⅱ predator-prey system incorporating a prey refuge and time delay, Dyn. Syst. Appl., 27 (2018), 397–421. https://doi.org/10.12732/dsa.v27i2.12 doi: 10.12732/dsa.v27i2.12
    [12] U. Das, T. K. Kar, U. K. Pahari, Global dynamics of an exploited prey-predator model with constant prey refuge, Int. Scholarly Res. Not., 2013 (2013), 637640. https://doi.org/10.1155/2013/637640 doi: 10.1155/2013/637640
    [13] G. Tang, S. Tang, R. Cheke, Global analysis of a Holling type Ⅱ predator-prey model with a constant prey refuge, Nonlinear Dyn., 76 (2014), 635–647. https://doi.org/10.1007/s11071-013-1157-4 doi: 10.1007/s11071-013-1157-4
    [14] E. González-Olivares, R. Ramos-Jiliberto, Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecol. Modell., 166 (2003), 135–146. https://doi.org/10.1016/S0304-3800(03)00131-5 doi: 10.1016/S0304-3800(03)00131-5
    [15] Y. Kuznetsov, S. Rinaldi, A. Gragnani, One-parameter bifurcations in planar Filippov systems, Int. J. Bifurcation Chaos, 13, (2003), 2157–2188. https://doi.org/10.1142/S0218127403007874 doi: 10.1142/S0218127403007874
    [16] M. Guardia, T. M. Seara, M. A. Teixeira, Generic bifurcations of low codimension of planar Filippov Systems, J. Differ. Equations, 250 (2010), 1967–2023. https://doi.org/10.1016/j.jde.2010.11.016 doi: 10.1016/j.jde.2010.11.016
    [17] J. Delcourt, P. Poncin, Shoals and schools: back to the heuristic definitions and quantitative references, Rev. Fish Biol. Fish., 22 (2012), 595–619. https://doi.org/10.1007/s11160-012-9260-z doi: 10.1007/s11160-012-9260-z
    [18] V. V. Isaeva, Self-organization in biological systems, Biol. Bull., 39 (2012), 110–118. https://doi.org/10.1134/S1062359012020069 doi: 10.1134/S1062359012020069
    [19] V. Křivan, A. Sikder, Optimal foraging and predator-prey dynamics, Ⅱ, Theor. Popul Biol., 55 (1999), 111–126. https://doi.org/10.1006/tpbi.1998.1399 doi: 10.1006/tpbi.1998.1399
    [20] B. O. Ma, P. A. Abrams, C. E. Brassil, Dynamic versus instantaneous models of diet choice, Am. Nat., 162 (2003), 668–684. https://doi.org/10.1086/378783 doi: 10.1086/378783
    [21] V. Křivan, Behavioral refuges and predator-prey coexistence, J. Theor. Biol., 339 (2013), 112–121. https://doi.org/10.1016/j.jtbi.2012.12.016 doi: 10.1016/j.jtbi.2012.12.016
    [22] T. K. Kar, Stability analysis of a prey-predator model incorporating a prey refuge, Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 681–691. https://doi.org/10.1016/j.cnsns.2003.08.006 doi: 10.1016/j.cnsns.2003.08.006
    [23] D. Jana, Stabilizing effect of prey refuge and predator's interference on the dynamics of prey with delayed growth and generalist predator with delayed gestation, Int. J. Ecol., 2014 (2014), 429086. https://doi.org/10.1155/2014/429086 doi: 10.1155/2014/429086
    [24] D. Jana, R. Agrawal, R. K. Upadhyay, Dynamics of generalist predator in a stochastic environment: effect of delayed growth and prey refuge, Appl. Math. Comput., 268 (2015), 1072–1094. https://doi.org/10.1016/j.amc.2015.06.098 doi: 10.1016/j.amc.2015.06.098
    [25] J. Yang, S. Tang, R. A. Cheke, Global stability and sliding bifurcations of a non-smooth Gause predator-prey system, Appl. Math. Comput., 224 (2013), 9–20. https://doi.org/10.1016/j.amc.2013.08.024 doi: 10.1016/j.amc.2013.08.024
    [26] C. Cortés García, Bifurcaciones en Modelo Gause Depredador-Presa con discontinuidad, Rev. Mat, 28 (2021), 183–208. https://doi.org/10.15517/rmta.v28i2.36084 doi: 10.15517/rmta.v28i2.36084
    [27] A. A. Arafa, S. A. Hamdallah, S. Tang, Y. Xu, G. M. Mahmoud, Dynamics analysis of a Filippov pest control model with time delay, Commun. Nonlinear Sci. Numer. Simul., 101 (2021), 105865. https://doi.org/10.1016/j.cnsns.2021.105865 doi: 10.1016/j.cnsns.2021.105865
    [28] C. C. García, Bifurcations in discontinuous mathematical models with control strategy for a species, Math. Biosci. Eng., 19 (2021), 1536–1558. https://doi.org/10.3934/mbe.2022071 doi: 10.3934/mbe.2022071
    [29] C. C. García, Bifurcations on a discontinuous Leslie-Grower model with harvesting and alternative food for predators and Holling Ⅱ functional response, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106800. https://doi.org/10.1016/j.cnsns.2022.106800 doi: 10.1016/j.cnsns.2022.106800
    [30] R. P. Dunn, K. A. Hovel, Predator type influences the frequency of functional responses to prey in marine habitats, Biol. Lett., 16 (2020), 20190758. https://doi.org/10.1098/rsbl.2019.0758 doi: 10.1098/rsbl.2019.0758
    [31] J. Sotomayor, Lições de equações diferenciais ordinárias, IMPA Press, Rio de Janeiro, 1979.
    [32] D. Jana, S. Ray, Impact of physical and behavioral prey refuge on the stability and bifurcation of Gause type Filippov prey-predator system, Model. Earth Syst. Environ., 2 (2016), 24. https://doi.org/10.1007/s40808-016-0077 doi: 10.1007/s40808-016-0077
    [33] W. Li, J. Ji, L. Huang, J. Wang, Bifurcations and dynamics of a plant disease system under non-smooth control strategy, Nonlinear Dyn., 99 (2020), 3351–3371. https://doi.org/10.1007/s11071-020-05464-2 doi: 10.1007/s11071-020-05464-2
    [34] W. Li, J. Ji, L. Huang, Dynamics of a controlled discontinuous computer worm system, in Proceedings of the American Mathematical Society, AMS, 148 (2020), 4389–4403. https://doi.org/10.1090/proc/15095
    [35] A. A. Shaikh, H. Das, N. Ali, Study of a predator-prey model with modified Leslie-Gower and Holling type Ⅲ schemes, Model. Earth Syst. Environ., 4 (2018), 527–533. https://doi.org/10.1007/s40808-018-0441-1 doi: 10.1007/s40808-018-0441-1
    [36] E. González-Olivares, P. C. Tintinago-Ruiz, A. Rojas-Palma, A Leslie-Gower-type predator-prey model with sigmoid functional response, Int. J. Comput. Math., 92 (2015), 1895–1909. https://doi.org/10.1080/00207160.2014.889818 doi: 10.1080/00207160.2014.889818
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1509) PDF downloads(122) Cited by(2)

Article outline

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog