Most of heterogeneous epidemic models assume exponentially distributed sojourn times in infectious states, which may not be practical in reality and could affect the dynamics of the epidemic. This paper investigates the potential discrepancies between exponential and non-exponential distribution models in analyzing the transmission patterns of infectious diseases and evaluating control measures. Two SEIHR models with multiple subgroups based on different assumptions for latency are established: Model Ⅰ assumes an exponential distribution of latency, while Model Ⅱ assumes a gamma distribution. To overcome the challenges associated with the high dimensionality of GDM, we derive the basic reproduction number ($ R_{0} $) of the model theoretically, and apply numerical simulations to evaluate the effect of different interventions on EDM and GDM. Our results show that considering a more realistic gamma distribution of latency can change the peak numbers of infected and the timescales of an epidemic, and GDM may underestimate the infection eradication time and overestimate the peak value compared to EDM. Additionally, the two models can produce inconsistent predictions in estimating the time to reach the peak. Our study contributes to a more accurate understanding of disease transmission patterns, which is crucial for effective disease control and prevention.
Citation: Huiping Zang, Shengqiang Liu, Yi Lin. Evaluations of heterogeneous epidemic models with exponential and non-exponential distributions for latent period: the Case of COVID-19[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 12579-12598. doi: 10.3934/mbe.2023560
Most of heterogeneous epidemic models assume exponentially distributed sojourn times in infectious states, which may not be practical in reality and could affect the dynamics of the epidemic. This paper investigates the potential discrepancies between exponential and non-exponential distribution models in analyzing the transmission patterns of infectious diseases and evaluating control measures. Two SEIHR models with multiple subgroups based on different assumptions for latency are established: Model Ⅰ assumes an exponential distribution of latency, while Model Ⅱ assumes a gamma distribution. To overcome the challenges associated with the high dimensionality of GDM, we derive the basic reproduction number ($ R_{0} $) of the model theoretically, and apply numerical simulations to evaluate the effect of different interventions on EDM and GDM. Our results show that considering a more realistic gamma distribution of latency can change the peak numbers of infected and the timescales of an epidemic, and GDM may underestimate the infection eradication time and overestimate the peak value compared to EDM. Additionally, the two models can produce inconsistent predictions in estimating the time to reach the peak. Our study contributes to a more accurate understanding of disease transmission patterns, which is crucial for effective disease control and prevention.
[1] | P. M. Martin, E. Martin-Granel, 2500-year evolution of the term epidemic, Emerging Infect. Dis., 12 (2006), 976–980. https://doi.org/10.3201/eid1206.051263 doi: 10.3201/eid1206.051263 |
[2] | F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, 2012. |
[3] | X. Wang, S. Wang, J. Wang, L. Rong, A multiscale model of COVID-19 dynamics, Bull. Math. Biol., 84 (2022), 1–41. https://doi.org/10.1007/s11538-022-01058-8 doi: 10.1007/s11538-022-01058-8 |
[4] | J. Cui, Y. Wu, S. Guo, Effect of non-homogeneous mixing and asymptomatic individuals on final epidemic size and basic reproduction number in a meta-population model, Bull. Math. Biol., 84 (2022), 1–22. https://doi.org/10.1007/s11538-022-00996-7 doi: 10.1007/s11538-022-00996-7 |
[5] | Z. Ma, Y. Zhou, J. Wu, Mathematical Modeling and Research on the Dynamics of Infectious Diseases, Science Press, 2004. |
[6] | J. Cui, Y. Zhang, Z. Feng, Influence of non-homogeneous mixing on final epidemic size in a meta-population model, J. Biol. Dyn., 13 (2019), 31–46. https://doi.org/10.1080/17513758.2018.1484186 doi: 10.1080/17513758.2018.1484186 |
[7] | A. Lajmanovich, J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28 (1976), 221–236. https://doi.org/10.1016/0025-5564(76)90125-5 doi: 10.1016/0025-5564(76)90125-5 |
[8] | A. Nold, Heterogeneity in disease-transmission modeling, Math. Biosci., 52 (1980), 227–240. https://doi.org/10.1016/0025-5564(80)90069-3 doi: 10.1016/0025-5564(80)90069-3 |
[9] | G. Wang, S. Zhang, J. Yang, X. Xu, Study of coupling the age-structured contact patterns to the COVID-19 pandemic transmission, Acta Phys. Sin., 70 (2021), 210–220. https://doi.org/10.7498/aps.70.20201371 doi: 10.7498/aps.70.20201371 |
[10] | G. Dimarco, B. Perthame, G. Toscani, M. Zanella, Kinetic models for epidemic dynamics with social heterogeneity, J. Math. Biol., 81 (2021), 4. https://doi.org/10.1007/s00285-021-01630-1 doi: 10.1007/s00285-021-01630-1 |
[11] | J. F. David, Epidemic models with heterogeneous mixing and indirect transmission, J. Biol. Dyn., 12 (2018), 375–399. https://doi.org/10.1080/17513758.2018.1467506 doi: 10.1080/17513758.2018.1467506 |
[12] | Z. Feng, A. N. Hill, A. T. Curns, J. W. Glasser, Evaluating targeted interventions via meta-population models with multi-level mixing, Math. Biosci., 287 (2017), 93–104. https://doi.org/10.1016/j.mbs.2016.09.013 doi: 10.1016/j.mbs.2016.09.013 |
[13] | J. W. Glasser, Z. Feng, S. B. Omer, P. J. Smith, L. E. Rodewald, The effect of heterogeneity in uptake of the measles, mumps, and rubella vaccine on the potential for outbreaks of measles: a modelling study, Lancet Infect. Dis., 16 (2016), 599–605. https://doi.org/10.1016/S1473-3099(16)00004-9 doi: 10.1016/S1473-3099(16)00004-9 |
[14] | D. J. Rodríguez, L. Torres-Sorando, Models of infectious diseases in spatially heterogeneous environments, Bull. Math. Biol., 63 (2001), 547–571. https://doi.org/10.1006/bulm.2001.0231 doi: 10.1006/bulm.2001.0231 |
[15] | L. Sattenspiel, K. Dietz, A structured epidemic model incorporating geographic mobility among regions, Math. Biosci., 128 (1995), 71–91. https://doi.org/10.1016/0025-5564(94)00068-B doi: 10.1016/0025-5564(94)00068-B |
[16] | M. Zanella, C. Bardelli, G. Dimarco, S. Deandrea, P. Perotti, M. Azzi, et al., A data-driven epidemic model with social structure for understanding the COVID-19 infection on a heavily affected Italian Province, Math. Models Methods Appl. Sci., 31 (2021), 2533–2570. https://doi.org/10.1142/S021820252150055X doi: 10.1142/S021820252150055X |
[17] | H. J. Wearing, P. Rohani, M. J. Keeling, Appropriate models for the management of infectious diseases, PLoS Med., 2 (2005), e174. https://doi.org/10.1371/journal.pmed.0020174 doi: 10.1371/journal.pmed.0020174 |
[18] | Z. Feng, X. Wang, Y. Shi, J. Cui, Evaluations of interventions using mathematical models with exponential and non-exponential distributions for disease stages: the case of Ebola, Bull. Math. Biol., 79 (2017), 2149–2173. https://doi.org/10.1007/s11538-017-0324-z doi: 10.1007/s11538-017-0324-z |
[19] | Y. Deng, C. You, Y. Liu, J. Qin, X. Zhou, Estimation of incubation period and generation time based on observed length-biased epidemic cohort with censoring for COVID-19 outbreak in China, Biometrics, 77 (2021), 929–941. https://doi.org/10.1111/biom.13325 doi: 10.1111/biom.13325 |
[20] | S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, et al., The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application, Ann. Intern. Med., 172 (2020), 577–582. https://doi.org/10.7326/M20-0504 doi: 10.7326/M20-0504 |
[21] | X. Pan, Y. Chen, A. Wang, J. Wang, L. Ye, S. Gu, et al., Study on transmission dynamic of 15 clusters of COVID-2019 cases in Ningbo, Chin. J. Epidemiol., 41 (2020), 2010–2014. http://dx.doi.org/10.3760/cma.j.cn112338-20200330-00466 doi: 10.3760/cma.j.cn112338-20200330-00466 |
[22] | L. C. Tindale, J. E. Stockdale, M. Coombe, E. S. Garlock, W. Y. V. Lau, M. Saraswat, et al., Evidence for transmission of COVID-19 prior to symptom onset, eLife, 9 (2020), e57149. https://doi.org/10.7554/eLife.57149 doi: 10.7554/eLife.57149 |
[23] | Z. Du, J. Gu, J. Li, X. Lin, Y. Wang, L. Chen, et al., Estimating the distribution of COVID-19 incubation period by interval-censored data estimation method, Chin. J. Epidemiol., 41 (2020), 1000–1003. http://dx.doi.org/10.3760/cma.j.cn112338-20200313-00331 doi: 10.3760/cma.j.cn112338-20200313-00331 |
[24] | Z. Feng, D. Xu, H. Zhao, Epidemiological models with non-exponentially distributed disease stages and applications to disease control, Bull. Math. Biol., 69 (2007), 1511–1536. https://doi.org/10.1007/s11538-006-9174-9 doi: 10.1007/s11538-006-9174-9 |
[25] | Z. Feng, Y. Zheng, N. Hernandez-Ceron, H. Zhao, J. W. Glasser, A. N. Hill, Mathematical models of Ebola-Consequences of underlying assumptions, Math. Biosci., 277 (2016), 89–107. https://doi.org/10.1016/j.mbs.2016.04.002 doi: 10.1016/j.mbs.2016.04.002 |
[26] | M. A. Capistran, A. Capella, J. A. Christen, Forecasting hospital demand in metropolitan areas during the current COVID-19 pandemic and estimates of lockdown-induced 2nd waves, PLoS One, 16 (2021), e0245669. https://doi.org/10.1371/journal.pone.0245669 doi: 10.1371/journal.pone.0245669 |
[27] | K. B. Blyuss, Y. N. Kyrychko, Effects of latency and age structure on the dynamics and containment of COVID-19, J. Theor. Biol., 513 (2021), 110587. https://doi.org/10.1016/j.jtbi.2021.110587 doi: 10.1016/j.jtbi.2021.110587 |
[28] | Y. Chen, H. Song, S. Liu, Evaluations of COVID-19 epidemic models with multiple susceptible compartments using exponential and non-exponential distribution for disease, Inf. Dis. Modell., 7 (2022), 795–810. https://doi.org/10.1016/j.idm.2022.11.004 doi: 10.1016/j.idm.2022.11.004 |
[29] | P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6 |
[30] | L. Bolzoni, R. Della Marca, M. Groppi, On the optimal control of SIR model with Erlang-distributed infectious period: isolation strategies, J. Math. Biol., 83 (2021), 1–21. https://doi.org/10.1007/s00285-021-01668-1 doi: 10.1007/s00285-021-01668-1 |
[31] | S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011 doi: 10.1016/j.jtbi.2008.04.011 |
[32] | H. Song, L. Guo, Z. Jin, S. Liu, Modelling and stability analysis of ASFV with swill and the virus in the environment, Math. Biosci. Eng., 19 (2022), 13028–13049. https://doi.org/10.3934/mbe.2022608 doi: 10.3934/mbe.2022608 |
[33] | J. Franceschi, A. Medaglia, M. Zanella, On the optimal control of kinetic epidemic models with uncertain social features, preprint, arXiv: 2210.09201. |
[34] | G. Albi, L. Pareschi, M. Zanella, Control with uncertain data of socially structured compartmental epidemic models, J. Math. Biol., 82 (2021), 1–41. https://doi.org/10.1007/s00285-021-01630-1 doi: 10.1007/s00285-021-01630-1 |
[35] | L. Bolzonia, E. Bonacinib, R. Della Marcab, M. Groppi, Optimal control of epidemic size and duration with limited resources, Math. Biosci., 315 (2019), 108232. https://doi.org/10.1016/j.mbs.2019.108232 doi: 10.1016/j.mbs.2019.108232 |
[36] | S. J. Schreiber, S. Huang, J. Jiang, H. Wang, Extinction and quasi-stationarity for discrete-time, endemic SIS and SIR models, SIAM J. Appl. Math., 81 (2021), 2195–2217. https://doi.org/10.1137/20M1339015 doi: 10.1137/20M1339015 |
[37] | L. Masandawa, S. S. Mirau, I. S. Mbalawata, J. N. Paul, K. Kreppel, O. M. Msamba, Modeling nosocomial infection of COVID-19 transmission dynamics, Results Phys., 37 (2022), 105503. https://doi.org/10.1016/j.rinp.2022.105503 doi: 10.1016/j.rinp.2022.105503 |
[38] | S. Wan, J. Liu, M. Liu, Progress on the incubation period of COVID-19, Chin. Sci. Bull., 66 (2021), 802–1811. https://doi.org/10.1360/TB-2020-0698 doi: 10.1360/TB-2020-0698 |