Processing math: 41%
Research article Special Issues

Acceptance sampling plans for the three-parameter inverted Topp–Leone model


  • The quadratic rank transmutation map is used in this article to suggest a novel extension of the power inverted Topp–Leone distribution. The newly generated distribution is known as the transmuted power inverted Topp–Leone (TPITL) distribution. The power inverted Topp–Leone and the inverted Topp–Leone are included in the recommended distribution as specific models. Aspects of the offered model, including the quantile function, moments and incomplete moments, stochastic ordering, and various uncertainty measures, are all discussed. Plans for acceptance sampling are created for the TPITL model with the assumption that the life test will end at a specific time. The median lifetime of the TPITL distribution with the chosen variables is the truncation time. The smallest sample size is required to obtain the stated life test under a certain consumer's risk. Five conventional estimation techniques, including maximum likelihood, least squares, weighted least squares, maximum product of spacing, and Cramer-von Mises, are used to assess the characteristics of TPITL distribution. A rigorous Monte Carlo simulation study is used to evaluate the effectiveness of these estimators. To determine how well the most recent model handled data modeling, we tested it on a range of datasets. The simulation results demonstrated that, in most cases, the maximum likelihood estimates had the smallest mean squared errors among all other estimates. In some cases, the Cramer-von Mises estimates performed better than others. Finally, we observed that precision measures decrease for all estimation techniques when the sample size increases, indicating that all estimation approaches are consistent. Through two real data analyses, the suggested model's validity and adaptability are contrasted with those of other models, including the power inverted Topp–Leone, log-normal, Weibull, generalized exponential, generalized inverse exponential, inverse Weibull, inverse gamma, and extended inverse exponential distributions.

    Citation: Said G. Nassr, Amal S. Hassan, Rehab Alsultan, Ahmed R. El-Saeed. Acceptance sampling plans for the three-parameter inverted Topp–Leone model[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13628-13659. doi: 10.3934/mbe.2022636

    Related Papers:

    [1] Ibrahim Alkhairy . Classical and Bayesian inference for the discrete Poisson Ramos-Louzada distribution with application to COVID-19 data. Mathematical Biosciences and Engineering, 2023, 20(8): 14061-14080. doi: 10.3934/mbe.2023628
    [2] Sue Wang, Chaohong Zhou, Saleem Riaz, Xuanchen Guo, Haider Zaman, Alsharef Mohammad, Ahmad Aziz Al-Ahmadi, Yasser Mohammed Alharbi, NasimUllah . Adaptive fuzzy-based stability control and series impedance correction for the grid-tied inverter. Mathematical Biosciences and Engineering, 2023, 20(2): 1599-1616. doi: 10.3934/mbe.2023073
    [3] Ghadah Alomani, Amer I. Al-Omari . Single acceptance sampling plans based on truncated lifetime tests for two-parameter Xgamma distribution with real data application. Mathematical Biosciences and Engineering, 2022, 19(12): 13321-13336. doi: 10.3934/mbe.2022624
    [4] Manal M. Yousef, Rehab Alsultan, Said G. Nassr . Parametric inference on partially accelerated life testing for the inverted Kumaraswamy distribution based on Type-II progressive censoring data. Mathematical Biosciences and Engineering, 2023, 20(2): 1674-1694. doi: 10.3934/mbe.2023076
    [5] Erin N. Bodine, Connor Cook, Mikayla Shorten . The potential impact of a prophylactic vaccine for Ebola in Sierra Leone. Mathematical Biosciences and Engineering, 2018, 15(2): 337-359. doi: 10.3934/mbe.2018015
    [6] Kaiwei Jia, Lujun Li . The moderate level of digital transformation: from the perspective of green total factor productivity. Mathematical Biosciences and Engineering, 2024, 21(2): 2254-2281. doi: 10.3934/mbe.2024099
    [7] Amal S. Hassan, Najwan Alsadat, Christophe Chesneau, Ahmed W. Shawki . A novel weighted family of probability distributions with applications to world natural gas, oil, and gold reserves. Mathematical Biosciences and Engineering, 2023, 20(11): 19871-19911. doi: 10.3934/mbe.2023880
    [8] Katarzyna Pichór, Ryszard Rudnicki . Stochastic models of population growth. Mathematical Biosciences and Engineering, 2025, 22(1): 1-22. doi: 10.3934/mbe.2025001
    [9] Mondal Hasan Zahid, Christopher M. Kribs . Ebola: Impact of hospital's admission policy in an overwhelmed scenario. Mathematical Biosciences and Engineering, 2018, 15(6): 1387-1399. doi: 10.3934/mbe.2018063
    [10] An Ma, Shuting Lyu, Qimin Zhang . Stationary distribution and optimal control of a stochastic population model in a polluted environment. Mathematical Biosciences and Engineering, 2022, 19(11): 11260-11280. doi: 10.3934/mbe.2022525
  • The quadratic rank transmutation map is used in this article to suggest a novel extension of the power inverted Topp–Leone distribution. The newly generated distribution is known as the transmuted power inverted Topp–Leone (TPITL) distribution. The power inverted Topp–Leone and the inverted Topp–Leone are included in the recommended distribution as specific models. Aspects of the offered model, including the quantile function, moments and incomplete moments, stochastic ordering, and various uncertainty measures, are all discussed. Plans for acceptance sampling are created for the TPITL model with the assumption that the life test will end at a specific time. The median lifetime of the TPITL distribution with the chosen variables is the truncation time. The smallest sample size is required to obtain the stated life test under a certain consumer's risk. Five conventional estimation techniques, including maximum likelihood, least squares, weighted least squares, maximum product of spacing, and Cramer-von Mises, are used to assess the characteristics of TPITL distribution. A rigorous Monte Carlo simulation study is used to evaluate the effectiveness of these estimators. To determine how well the most recent model handled data modeling, we tested it on a range of datasets. The simulation results demonstrated that, in most cases, the maximum likelihood estimates had the smallest mean squared errors among all other estimates. In some cases, the Cramer-von Mises estimates performed better than others. Finally, we observed that precision measures decrease for all estimation techniques when the sample size increases, indicating that all estimation approaches are consistent. Through two real data analyses, the suggested model's validity and adaptability are contrasted with those of other models, including the power inverted Topp–Leone, log-normal, Weibull, generalized exponential, generalized inverse exponential, inverse Weibull, inverse gamma, and extended inverse exponential distributions.



    Symbols: h(t;Θ) : PDF; H(t;Θ) : CDF; S(t;Θ) : SF; λ(t;Θ) : HRF; ψ(τ) : AE; γ(τ) : H-CE; M(τ) : RE; ρ(τ) : Ts; L(p) : AP; Q(u) : QF; GM(Θ) : GM; 2logL : –2log likelihood ;p : Consumer's risk

    Abbreviations: AIC: Akaike information criterion; ASP: Acceptance sampling plan; AE: Arimoto entropy; AP: Acceptance probability of the lot as function of the failure probability; BIC: Bayesian information criterion; EIE: Extended inverse exponential; Ge-Ex: Generalized exponential; GIE: Generalized inverse exponential; in-Ga: inverse gamma; in-We: Inverse Weibull; K–S: Kolmogorov–Smirnov; CAIC: Corrected AIC; CvMEs: Cramer-von Mises estimators; CDF: Cumulative distribution function; HRF: Hazard rate function; H-CE: Havrda and Charvat entropy; ITL: Inverted Topp–Leone; Ku: Kurtosis; ; LSEs: Least squares estimators; MPSEs: Maximum product spacing estimators; PITL: Power ITL; PDF: Probability density function; PP: Probability-probability; QF: Quantile function; QRTM: Quadratic rank transmutation map; RE: Rényi entropy; Sw: Skewness; SE: Standard error; MSE: Mean squared error; med: Median lifetime; SO: Stochastic ordering

    The validity of statistical investigations of real-world occurrences is determined by the appropriateness of the distributions used as models. Although well-known distribution families are frequently employed to simulate many events, their modeling capabilities may not always meet expectations. To address this issue, several scholars have presented new distribution families for ideally representing real-world events by employing generalizations of existing families or novel distribution generating procedures in the last two decades. In addition, several strategies for creating a new distribution have been described in the literature. For example, reference [1] devised a mechanism called the quadratic rank transmutation map (QRTM). This technique generates a transmuted distribution, as the name implies. In addition to having the same characteristics as baseline distributions, transmuted distributions are always more flexible.

    Reference [1] defined the transmuted class with the following cumulative distribution function (CDF) and probability density function (PDF):

    FTC(t)=G(t)[1+υυG(t)],|υ|1,tR, (1)
    fTC(t)=g(t)[1+υ2υG(t)], (2)

    where υ is a transmuted parameter known as the transmutation parameter. The transmuted density (2) is a mixture of the baseline density and the exponentiated-G density with power parameter equal two for υ=0, the transmuted CDF FTC(t) and the baseline CDF, G(t) are identical. For more information about the generalization of the probability distributions via the QRTM method, the reader can refer to references [2,3,4,5,6,7,8]. Other generalization methods can be found in [9,10,11,12,13,14,15].

    Reference [16] recently presented the inverted Topp–Leone (ITL) distribution as a probability distribution with only one shape parameter. The PDF and CDF of the ITL distribution are defined as follows:

    G(t)=1(1+2t)ϑ(1+t)2ϑ;t,ϑ>0,
    g(t)=2ϑt(1+t)2ϑ1(1+2t)ϑ1;t,ϑ>0.

    Many researchers have investigated the ITL distribution extensions and generalizations to increase flexibility in modeling a wide range of data. Reference [17] presented an "alpha power ITL distribution, " a new form of ITL model with an extra parameter based on the alpha power-G family. Reference [18] created a three-parameter ITL distribution for a particular case from the Kumaraswamy-G family. Reference [19] presented the two-parameter half-logistic ITL distribution, and parameter estimators were investigated under ranked samples. Reference [20] investigated parameter estimators using various estimating methods for the modified Kies ITL distribution. Reference [21] proposed a new two-parameter ITL model via the odd Weibull–G family. Our focus here is on a power ITL (PITL) distribution prepared in [22] with an extra shape parameter. The PDF and CDF of the PITL distribution are defined as follows:

    G1(t)=1(1+2tδ)ϑ(1+tδ)2ϑ;t,ϑ,δ>0, (3)
    g1(t)=2ϑδt2δ1(1+tδ)2ϑ1(1+2tδ)ϑ1;t,ϑ,δ>0.

    Acceptance sampling is used by industries worldwide to ensure the quality of incoming and outgoing goods, using statistical principles to create a plan for accepting or rejecting these goods. This process is called an acceptance sampling plan (ASP). It is one of the oldest quality assurance procedures, and it involves inspecting and deciding on quantities of goods to be accepted. An example of ASP in action is shown below:

    ● Required: A corporation gets a product shipment from a vendor. This product is frequently a component or raw material utilized during manufacturing.

    ● Sampling: A sample of the lot is obtained, and the relevant quality characteristics of the units in the sample are examined.

    ● Decision: Based on the information provided by the presented sample, a decision is made about whether to accept or reject the lot.

    1) For accepted samples: Accepted lots are placed into production.

    2) For rejected samples: Rejected lots may be transferred from the seller or subjected to further lot disposition actions.

    Parameter estimation is essential to the study of any probability distribution. Maximum likelihood (ML) estimation is frequently used to estimate any model's parameters due to its desirable qualities. ML estimators are asymptotically consistent, unbiased, and impartial [23]. Over time, other methods for estimating distributions have emerged, including least squares (LS) and weighted LS (WLS) [24], maximum product of spacing (MPS) [25], and Cramer-von Mises (CvM) [26].

    In this study, we established a new generalization method of PITL distribution to enhance the overall flexibility of the PITL model by employing QRTM. The newly created distribution is termed "transmuted PITL (TPITL) distribution". We are motivated to introduce the TPITL distribution due to the following reasons:

    (i) This modification significantly impacts important distributional features, such as skewness, kurtosis, mean, and variance.

    (ii) The related density and hazard rate functions have a large panel of monotonic and nonmonotonic forms, making them appropriate for data fitting and other applications.

    (iii) It includes the PITL and ITL distributions as sub-models.

    (iv) Important aspects of the presented model are explored, including quantile function, moments and incomplete moments, stochastic ordering, and some uncertainty measures.

    (v) We created a sampling strategy, extracted its operational characteristic function, and gave it a decision rule.

    (vi) The TPITL distribution parameters are evaluated using five traditional estimation methodologies.

    (vii) An inclusive simulation study was conducted to determine if estimators based on accuracy criteria were successful.

    (viii) The proposed model's validity and flexibility are compared with those of existing models, including the PITL, log-normal, Weibull, generalized inverse exponential, inverse Weibull, inverse gamma, generalized exponential, and extended inverse exponential distributions via two real data analyses.

    The remaining paper is laid out as follows: Section 2 describes the CDF, survival function, and hazard rate function (HRF) of the TPITL distribution. In Section 3, the statistical features of the TPITL distribution are examined, and various helpful representations, measurements, and functions are derived. Section 4 discusses the suggested ASP's design under a truncated life test. In Section 5, the parametric estimate of the TPITL distribution is examined using some classical techniques. A simulation analysis ensuring its numerical performance is presented in Section 6. Section 7 discusses two real-world datasets to demonstrate how beneficial the TPITL model may be. Lastly, Section 8 contains a few findings.

    We constructed the TPITL distribution using the CDF (3) of the PITL model as a baseline distribution in (1). The CDF of the TPITL distribution is given by:

    H(t;Θ)=[1{(1+2tδ)ϑ(1+tδ)2ϑ}][1+υ{(1+2tδ)ϑ(1+tδ)2ϑ}],|υ|1,t>0, (4)

    where ϑ>0 and δ>0 are two shape parameters, υ is the transmuted parameter, and Θ(υ,ϑ,δ) is the set of parameters. A random variable with CDF (4) will be denoted by T TPITL(Θ). The PDF associated with (4) is given as follows:

    h(t;Θ)=2ϑδt2δ1(1+tδ)2ϑ1(1+2tδ)ϑ1[1υ+2υ{(1+2tδ)ϑ(1+tδ)2ϑ}],t>0. (5)

    For υ=0, the PDF (5) reduces to PITL distribution (Abushal et al. [22]).

    For υ=0, ϑ=1, the PDF (5) gives the ITL distribution (Hassen et al. [16]).

    The form of the TPITL distribution is controlled by two shape parameters υ, and ϑ, similar to the PITL distribution. The parameter υ adds to the distribution's flexibility in addition to its role in influencing the behavior of the distribution. The survival function and HRF of the TPITL distribution are derived, respectively, as follows:

    S(t;Θ)=1{1K(δ,ϑ)}[1+υ{K(δ,ϑ)}],
    λ(t;Θ)=2ϑδt2δ1(1+tδ)2ϑ1(1+2tδ)ϑ1[1υ+2υ{K(δ,ϑ)}]1{1K(δ,ϑ)}[1+υ{K(δ,ϑ)}],

    where K(δ,ϑ)=(1+2tδ)ϑ(1+tδ)2ϑ. For the given parameter values, the PDF and HRF plots are illustrated in Figures 1 and 2, respectively.

    Figure 1.  The PDF plots for the TPITL distribution.
    Figure 2.  The HRF plots for the TPITL distribution.

    Reversed J-shaped, unimodal, nearly symmetrical, and positively skewed are all possible shapes for the PDF of the TPITL model. Additionally, the HRF of the TPITL model has a growing, decreasing, inverted J-shaped, upside-down form. These figures indicate the flexibility of the TPITL distribution to model right-skewed data as well as data with decreasing and upside-down bathtub shapes.

    Furthermore, for estimation and simulation, quantiles are necessary. Inverting Equation (4) yields the quantile function, say, Q(u)=H1(u), where u(0,1), as follows:

    Q(u)={1+(1A)1/ϑ+(1(1A)1/ϑ)21+(1A)1/ϑ}1/δ,A=((1+υ)(1+υ)24uυ2υ). (6)

    Setting u=0.5 in (6), we obtain the median.

    Herein, we present ordinary and incomplete moments, stochastic ordering (SO), and some uncertainty measures of the TPITL distribution.

    Here, we obtain the mth moment, incomplete moments of the TPITL distribution. The mth moment for the TPITL model is derived as follows:

    ´μm=02ϑδtm+2δ1(1+tδ)2ϑ1(1+2tδ)ϑ1[1υ+2υ{(1+2tδ)ϑ(1+tδ)2ϑ}]dt=(1υ)I1+υI2,

    where

    I1=02ϑδtm+2δ1(1+tδ)2ϑ1(1+2tδ)ϑ1dt,
    I2=04ϑδtm+2δ1(1+tδ)4ϑ1(1+2tδ)2ϑ1dt.

    Using the following generalized binomial expansion, for ϑ>0 is a real non-integer and |z|<1,

    (1+z)ϑ1=j=0(ϑ1j)zj,

    in I1 and I2, then, we have

    I1=j=02ϑ(ϑ1j)B(mδ+j+2,ϑmδ),I2=i=04ϑ(2ϑ1i)B(mδ+i+2,2ϑmδ).

    where B(.,.) is the beta function. Hence, the mth moment of the TPITL distribution can be written as follows:

    ´μm=(1υ)j=02ϑ(ϑ1j)B(mδ+j+2,ϑmδ)+υi=04ϑ(2ϑ1i)B(mδ+i+2,2ϑmδ). (7)

    The first four moments about zero are obtained after putting m=1,2,3, and 4 in (7). The mth central moment (μm) of the TPITL distribution is given by:

    μm=E(T´μ1)m=mu=0(1)u(mu)(´μ1)u´μmu.

    Numerical values of the first four moments, variance (σ2), skewness (Sw), and kurtosis (Ku) of the TPITL distribution for ϑ=0.5, and at some choice values of parameters are displayed in Table 1.

    Table 1.  Moments measures for selected parameters values.
    ´μm δ=7
    υ=0.3
    δ=7
    υ=0.3
    δ=9
    υ=0.5
    δ=9
    υ=0.5
    δ=7
    υ=0.5
    δ=7
    υ=0.5
    ´μ1 1.567 1.389 1.236 1.439 1.626 1.33
    ´μ2 3.056 2.327 1.657 2.318 3.299 2.084
    ´μ3 11.183 6.932 2.603 4.584 12.6 5.515
    ´μ4 392.029 212.752 6.807 16.324 451.896 152.346
    σ2 0.601 0.397 0.131 0.247 0.655 0.315
    Sw 9.669 10.388 4.904 4.377 9.618 10.8
    Ku 964.521 1206 124.816 22.875 934.164 1371

     | Show Table
    DownLoad: CSV

    According to Table 1, all moments' values, variance, and skewness measures of the TPITL model are less for negative values of transmuted parameters than for positive ones. While the TPITL's kurtosis values was the highest for positive values of υ. The TPITL distribution is right-skewed according to the values of the skewness measure (Figure 1). The TPITL distribution is leptokurtic according to the values of the kurtosis measure (Figure 2).

    Moreover, the mth incomplete moment, say ζm(z) of the TPITL distribution, is obtained as follows:

    ζm(z)=2ϑδ(1υ)z0tm+2δ1(1+tδ)2ϑ1(1+2tδ)ϑ1dt+4υϑδz0tm+2δ1(1+tδ)4ϑ1(1+2tδ)2ϑ1dt.

    After simplification, the mth incomplete moment of the TPITL distribution is obtained as:

    ζm(z)=2ϑ(1υ)j=0(ϑ1j)B(mδ+j+2,ϑmδ,zδ1+zδ)+4ϑυi=0(2ϑ1i)B(mδ+i+2,2ϑmδ,zδ1+zδ),

    where B(.,.,x) is the incomplete beta function. Inequality measures, including the Bonferroni and Lorenz curves, are commonly utilized in various fields. These are the first incomplete moments' principal applications. The Lorenz and Bonferroni curves are formed, respectively, as follows:

    Q=(1υ)j=0(ϑ1j)B(1δ+j+2,ϑ1δ)+2υi=0(2ϑ1i)B(1δ+i+2,2ϑ1δ)(1υ)j=0(ϑ1j)B(1δ+j+2,ϑ1δ,zδ1+zδ)+2υi=0(2ϑ1i)B(1δ+i+2,2ϑ1δ,zδ1+zδ),
    C=Q{[1((1+2zδ)ϑ(1+zδ)2ϑ)][1+υ((1+2zδ)ϑ(1+zδ)2ϑ)]}1.

    In reliability theory and other fields, SO is a well-studied notion in probability distributions, and it is used to assess the performance of random variables. Let Ti has the TPITL distribution with parameters Θi=(ϑi,δi,υi)i=1,2. Let Hi(t;Θi) indicates Ti 's CDF and hi(t;Θi) represents Ti 's PDF.

    If h1(t;Θ1)/h2(t;Θ2), is a decreasing function t, then T1 is said to be stochastically less than T2 (represented by T1srT2) in terms of likelihood ratio order.

    Let T1 TPITL(ϑ1,δ1,υ1) and T2 ITL(ϑ2,δ2,υ2) then the likelihood ratio ordering is

    h1(t;Θ1)h2(t;Θ2)=ϑ1δ1t2δ11(1+tδ1)2ϑ11(1+2tδ1)ϑ11[1υ1+2υ1K(δ1,ϑ1)]ϑ2δ2t2δ21(1+tδ2)2ϑ21(1+2tδ2)ϑ21[1υ2+2υ2K(δ2,ϑ2)],
    ddtlogh1(t;Θ1)h2(t;Θ2)=2δ12δ2t(2ϑ1+1)δ1tδ111+tδ1+(2ϑ2+1)δ2tδ211+tδ2+2(ϑ11)δ1tδ111+2tδ1
    2(ϑ21)δ2tδ211+2tδ2+2υ1[dK(δ1,ϑ1)/dt][1υ1+2υ1K(δ1,ϑ1)]2υ2[dK(δ2,ϑ2)/dt][1υ2+2υ2K(δ2,ϑ2)],

    where, K(δi,ϑi)=(1+2tδi)ϑi(1+tδi)2ϑi, i=1,2 dK(δi,ϑi)dt=2δiϑit2δi1(1+2tδi)ϑi1(1+tδi)2ϑi+1, i=1,2

    At ϑ1<ϑ2, δ1<δ2, υ1<υ2, we get d/dt[logh1(t;Θ1)logh2(t;Θ2)]<0, for all t0, hence, h1(t;Θ1)h2(t;Θ2) is decreasing in t, and hence, T1lrT2. Moreover, T1 is said to be smaller than T2 in other different orderings, such as SO (denoted by T1stT2), hazard rate order (denoted by T1hrT2), and reversed hazard rate order (denoted by T1rhrT2).

    The entropy of a random variable with PDF (5) is a measure of the uncertainty's fluctuation. A high entropy number indicates that the data is more unpredictable. The Rényi entropy (RE) [27] is defined by:

    M(τ)=(1τ)1log((h(t))τdt),τ1,τ>0. (8)

    To obtain M(τ) of the TPITL model, we must obtain (h(t;Θ))τ, as follows:

    (h(t;Θ))τ=Ξ1Ξ2,

    where, Ξ1=(1υ)τ(2ϑδ)τtτ(2δ1)(1+tδ)τ(2ϑ+1)(1+2tδ)τ(ϑ1) and Ξ2=[1+2υ1υK(δ,ϑ)]τ.

    Using the binomial expansion, then Ξ1 and Ξ2 noticing that [2υ1υK(δ,ϑ)]<1, we have

    Ξ1=j=0(1υ)τ(τ(ϑ1)j)(2ϑδ)τtτ(2δ1)+δj(1+tδ)τϑ2τj,
    Ξ2=i=0(τi)(2υ1υ)i(1+tδ)ϑi(1+tδ1+tδ)ϑi=i,k=0(τi)(ϑik)(2υ1υ)itδk(1+tδ)ϑik.

    Hence, (h(t;Θ))τ, is formed as

    (h(t;Θ))τ=[Υjξi,ktτ(2δ1)+δj+δk(1+tδ)τϑ2τjϑik], (9)
    Υj=j=0(1υ)τ(τ(ϑ1)j)(2ϑδ)τ,ξi,k=i,k=0(τi)(ϑik)(2υ1υ)i.

    Insert (9) in (8), then, we get the RE of the TPITL distribution as follows:

    M(τ)=(1τ)1log{[ξi,kΥjδB(2ττδ+j+k+1δ,τϑ+ϑi+τδ1δ)]}.

    The Tsallis entropy (TE) measure [28] is defined by:

    ρ(τ)=1τ1[1(h(t))τdt],τ1,τ>0.

    The TE of the TPITL distribution is obtained as follows:

    ρ(τ)=1τ1[1{[ξi,kΥjδB(2ττδ+j+k+1δ,τϑ+ϑi+τδ1δ)]}].

    The Arimoto entropy (AE) measure ([29]) is given by:

    ψ(τ)=τ1τ[((h(t))τdt)1τ1],τ1,τ>0.

    Hence, the AE of the TPITL distribution is given by:

    ψ(τ)=τ1τ{[ξi,kΥjδB(2ττδ+j+k+1δ,τϑ+ϑi+τδ1δ)]1τ1}.

    The Havrda and Charvat entropy (H–CE) measure ([30]) is defined by:

    γ(τ)=121τ1[(hτ(t)dt)1τ1],τ1,τ>0.

    Hence, the H–CE of the TPITL distribution is given by:

    γ(τ)=121τ1{[ξi,kΥjδB(2ττδ+j+k+1δ,τϑ+ϑi+τδ1δ)]1τ1}.

    Table 2 shows the numerical entropy values for some of the elected parameter values.

    Table 2.  Entropy values for the TPITL model.
    τ (ϑ,δ,υ) RE TE AE H-CE
    0.5 (0.5, 3, 0.3) 3.28 8.308 25.563 61.716
    (1, 3, 0.3) 1.535 2.308 3.64 8.789
    (1.5, 3, 0.3) 1.028 1.345 1.797 4.337
    (2, 3, 0.3) 0.76 0.924 1.138 2.746
    (0.5, 5, –0.3) 1.944 3.286 5.985 14.448
    (1, 5, –0.3) 0.876 1.1 1.402 3.384
    (1.5, 5, –0.3) 0.483 0.546 0.62 1.497
    (2, 5, –0.3) 0.263 0.281 0.301 0.726
    2 (0.5, 3, 0.3) 1.163 0.687 0.882 0.882
    (1, 3, 0.3) 0.615 0.46 0.53 0.53
    (1.5, 3, 0.3) 0.353 0.297 0.323 0.323
    (2, 3, 0.3) 0.188 0.172 0.18 0.18
    (0.5, 5, –0.3) 1.504 0.778 1.057 1.057
    (1, 5, –0.3) 0.834 0.566 0.682 0.682
    (1.5, 5, –0.3) 0.517 0.404 0.456 0.456
    (2, 5, –0.3) 0.32 0.274 0.296 0.296

     | Show Table
    DownLoad: CSV

    From Table 2, we observe the following:

    ● For a small value of τ, the H–CE measure takes the largest values for all values of (ϑ,δ,υ), compared to other entropy measures, which leads to less information.

    ● The RE measure provides more information due to its small values compared with other measures at τ=0.5 for all values of (ϑ,δ,υ).

    ● As the value of τ increases, the values of all entropy measures decrease.

    ● The TS entropy gets the smallest values for all values of (ϑ,δ,υ), at a large value of τ, which leads to less variability.

    We assume that the lifetime of a product follows the TPITL distribution with parameters (Θ) defined by (4) and that the specified median lifetime (med) of the units claimed by a producer is med0. Our interest is to make an inference about the acceptance or rejection of the proposed lot based on the criterion that the actual med of the units is larger than the prescribed lifetime med0. A common practice in life testing is to terminate the life test at a predetermined time t0 and note the number of failures. Now to observe med, the experiment is run for a t0=a med0 units of time, multiple of claimed med with any positive constant a. The idea of accepting the proposed lot based on the evidence that med med0, given probability of at least p (consumer's risk) using a single ASP is as follows [31]: Draw a random sample of n number of units from the proposed lot and conduct an experiment for t0 units of time. If during the experiment, c or less number of units (acceptance number) fail, then accept the whole lot; otherwise, reject the lot. Observe the probability of accepting a lot, and consider sufficiently large-sized lots so that the binomial distribution can be applied under the proposed sampling plan given by:

    L(p)=ci=0(ni)pi(1p)ni,i=1,,n,

    where p=H(t0;ϑ), defined by (4). The function L(p) is the operating characteristic function of the sampling plan, i.e., the acceptance probability of the lot as a function of the failure probability. Further, using t0=am0, p0 can be written as follows:

    p0=[1{(1+2(ma0)δ)ϑ(1+(ma0)δ)2ϑ}][1+υ{(1+2(ma0)δ)ϑ(1+(ma0)δ)2ϑ}]. (10)

    Now, the problem is to determine for the given values of p(0<p<1), t0, and c, the smallest positive integer n such that

    L(p0)=ci=0(ni)pi0(1p0)ni1p, (11)

    where p0 is given by (10). The minimum values of n satisfying the inequality (11) and its corresponding operating characteristic probability are obtained and displayed in Tables 38 for the assumed parameters as follows: p= 0.2, 0.4, 0.6, 0.99, c= 0.2 (0.2) 1 when a=1, thus, t0=  med0 = 0.5 for all parameter values. The assumed parameter values of TPITL distribution are:

    Table 3.  Single sampling plan for TPITL distribution at υ=0.5,δ=0.5,ϑ=0.5.
    p c a=0.2 a=0.4 a=0.6 a=0.8 a=1
    n L(p0) n L(p0) n L(p0) n L(p0) n L(p0)
    0.2 0 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000
    2 6 0.8346 5 0.8354 4 0.9162 4 0.8941 4 0.8750
    4 11 0.8468 9 0.8457 8 0.8627 8 0.8152 7 0.8906
    10 29 0.8030 23 0.8085 20 0.8438 19 0.8256 18 0.8338
    0.4 0 2 0.6983 2 0.6130 1 1.0000 1 1.0000 1 1.0000
    2 8 0.6432 6 0.7047 6 0.6158 5 0.7268 5 0.6875
    4 14 0.6491 11 0.6652 10 0.6504 9 0.6939 9 0.6367
    10 33 0.6359 26 0.6373 23 0.6486 21 0.6797 20 0.6762
    0.6 0 3 0.4876 2 0.6130 2 0.5624 2 0.5270 2 0.5000
    2 10 0.4582 8 0.4484 7 0.4667 6 0.5504 6 0.5000
    4 17 0.4439 13 0.4753 12 0.4300 11 0.4448 10 0.5000
    10 38 0.4151 29 0.4539 26 0.4330 24 0.4387 23 0.4159
    0.8 0 5 0.2377 4 0.2303 3 0.3163 3 0.2777 3 0.2500
    2 13 0.2487 10 0.2570 9 0.2419 8 0.2731 8 0.2266
    4 21 0.2324 16 0.2487 14 0.2562 13 0.2501 12 0.2744
    10 44 0.2077 34 0.2099 30 0.2071 27 0.2408 26 0.2122
    0.99 0 13 0.0134 10 0.0122 9 0.0100 8 0.0113 7 0.0156
    2 25 0.0114 19 0.0109 16 0.0136 15 0.0111 14 0.0112
    4 35 0.0110 26 0.0132 23 0.0113 21 0.0113 19 0.0154
    10 62 0.0107 47 0.0114 41 0.0113 37 0.0135 35 0.0122

     | Show Table
    DownLoad: CSV
    Table 4.  Single sampling plan for TPITL distribution at υ=0.5,δ=0.5,ϑ=1.5.
    p c a=0.2 a=0.4 a=0.6 a=0.8 a=1
    n L(p0) n L(p0) n L(p0) n L(p0) n L(p0)
    0.2 0 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000
    2 8 0.8058 5 0.8890 5 0.8148 4 0.9037 4 0.8750
    4 15 0.8099 10 0.8553 9 0.8183 8 0.8360 7 0.8906
    10 38 0.8055 26 0.8223 22 0.8127 19 0.8563 18 0.8338
    0.4 0 3 0.6001 2 0.6668 1 1.0000 1 1.0000 1 1.0000
    2 11 0.6005 7 0.6806 6 0.6737 5 0.7473 5 0.6875
    4 19 0.6174 13 0.6318 11 0.6202 10 0.6016 9 0.6367
    10 44 0.6278 30 0.6362 25 0.6308 22 0.6507 20 0.6762
    0.6 0 4 0.4649 3 0.4446 2 0.5949 2 0.5417 2 0.5000
    2 14 0.4118 9 0.4685 8 0.4088 7 0.4248 6 0.5000
    4 23 0.4261 16 0.4044 13 0.4237 11 0.4828 10 0.5000
    10 51 0.4092 34 0.4354 28 0.4368 25 0.4214 23 0.4159
    0.8 0 7 0.2161 4 0.2964 4 0.2105 3 0.2934 3 0.2500
    2 18 0.2274 12 0.2343 10 0.2223 9 0.2062 8 0.2266
    4 29 0.2108 19 0.2314 16 0.2056 14 0.2100 12 0.2744
    10 59 0.2126 39 0.2313 32 0.2275 28 0.2357 26 0.2122
    0.99 0 19 0.0101 12 0.0116 9 0.0157 8 0.0137 7 0.0156
    2 34 0.0121 22 0.0129 18 0.0111 15 0.0146 14 0.0112
    4 48 0.0109 31 0.0123 25 0.0118 22 0.0104 19 0.0154
    10 85 0.0101 55 0.0124 45 0.0104 39 0.0109 35 0.0122

     | Show Table
    DownLoad: CSV
    Table 5.  Single sampling plan for TPITL distribution at υ=0.5,δ=1.5,ϑ=0.5.
    p* c a=0.2 a=0.4 a=0.6 a=0.8 a=1
    n L(p0) n L(p0) n L(p0) n L(p0) n L(p0)
    0.2 0 5 0.8277 2 0.8220 1 1.0000 1 1.0000 1 1.0000
    2 34 0.8059 9 0.8432 6 0.8221 4 0.9270 4 0.8750
    4 68 0.8032 18 0.8285 11 0.8303 8 0.8854 7 0.8906
    10 178 0.8031 47 0.8163 28 0.8108 21 0.8344 18 0.8339
    0.4 0 11 0.6234 3 0.6757 2 0.6890 1 1.0000 1 1.0000
    2 50 0.6045 13 0.6370 8 0.6221 6 0.6512 5 0.6875
    4 90 0.6072 24 0.6093 14 0.6210 10 0.6950 9 0.6367
    10 214 0.6045 56 0.6126 32 0.6386 24 0.6498 20 0.6762
    0.6 0 20 0.4074 5 0.4566 3 0.4748 2 0.5821 2 0.5000
    2 67 0.4073 17 0.4386 10 0.4339 7 0.5073 6 0.5000
    4 113 0.4064 29 0.4263 17 0.4121 12 0.4836 10 0.5000
    10 249 0.4037 64 0.4207 37 0.4098 27 0.4468 23 0.4159
    0.8 0 35 0.2005 9 0.2085 5 0.2254 3 0.3389 3 0.2500
    2 92 0.2033 23 0.2225 13 0.2274 9 0.2792 8 0.2266
    4 145 0.2011 37 0.2072 21 0.2062 15 0.2352 12 0.2744
    10 294 0.2030 75 0.2118 42 0.2269 31 0.2271 26 0.2122
    0.99 0 98 0.0102 24 0.0110 13 0.0115 9 0.0132 7 0.0156
    2 179 0.0103 44 0.0115 24 0.0120 17 0.0129 14 0.0112
    4 248 0.0102 62 0.0104 34 0.0107 24 0.0124 19 0.0154
    10 432 0.0101 108 0.0110 60 0.0107 43 0.0119 35 0.0122

     | Show Table
    DownLoad: CSV
    Table 6.  Single sampling plan for TPITL distribution at υ=1.5,δ=0.5,ϑ=0.5.
    p c a=0.2 a=0.4 a=0.6 a=0.8 a=1
    n L(p0) n L(p0) n L(p0) n n L(p0) n
    0.2 0 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000
    2 7 0.8405 5 0.8776 5 0.8063 4 0.9018 4 0.8750
    4 14 0.8097 10 0.8354 9 0.8067 8 0.8317 7 0.8906
    10 35 0.8142 25 0.8284 21 0.8469 19 0.8502 18 0.8338
    0.4 0 2 0.7564 2 0.6543 1 1.0000 1 1.0000 1 1.0000
    2 10 0.6185 7 0.6557 6 0.6610 5 0.7430 5 0.6875
    4 17 0.6530 12 0.6795 11 0.6019 9 0.7174 9 0.6367
    10 41 0.6205 29 0.6344 25 0.6030 22 0.6399 20 0.6762
    0.6 0 4 0.4327 3 0.4281 2 0.5877 2 0.5386 2 0.5000
    2 13 0.4107 9 0.4381 7 0.5188 7 0.4186 6 0.5000
    4 21 0.4409 15 0.4361 13 0.4036 11 0.4747 10 0.5000
    10 47 0.4152 33 0.4246 28 0.4068 25 0.4093 23 0.4159
    0.8 0 6 0.2476 4 0.2801 4 0.2030 3 0.2901 3 0.2500
    2 17 0.2135 12 0.2085 10 0.2093 9 0.2011 8 0.2266
    4 27 0.2046 18 0.2463 15 0.2484 14 0.2035 12 0.2744
    10 55 0.2022 38 0.2163 32 0.2037 28 0.2258 26 0.2122
    0.99 0 17 0.0115 11 0.0144 9 0.0142 8 0.0131 7 0.0156
    2 32 0.0103 21 0.0134 17 0.0144 15 0.0138 14 0.0112
    4 44 0.0113 30 0.0114 24 0.0142 21 0.0147 19 0.0154
    10 78 0.0105 53 0.0119 44 0.0107 38 0.0138 35 0.0122

     | Show Table
    DownLoad: CSV
    Table 7.  Single sampling plan for TPITL distribution at υ=1.5,δ=0.5,ϑ=1.5.
    p c a=0.2 a=0.4 a=0.6 a=0.8 a=1
    n L(p0) n L(p0) n L(p0) n L(p0) n L(p0)
    0.2 0 2 0.8116 1 1.0000 1 1.0000 1 1.0000 1 1.0000
    2 9 0.8220 6 0.8359 5 0.8398 4 0.9104 4 0.8750
    4 17 0.8319 11 0.8484 9 0.8515 8 0.8504 7 0.8906
    10 45 0.8064 29 0.8062 23 0.8192 20 0.8219 18 0.8338
    0.4 0 3 0.6588 2 0.6992 2 0.6170 1 1.0000 1 1.0000
    2 12 0.6560 8 0.6453 6 0.7115 5 0.7619 5 0.6875
    4 22 0.6392 14 0.6520 11 0.6751 10 0.6275 9 0.6367
    10 53 0.6120 33 0.6404 26 0.6530 23 0.6131 20 0.6762
    0.6 0 5 0.4340 3 0.4889 2 0.6170 2 0.5526 2 0.5000
    2 16 0.4429 10 0.4608 8 0.4574 7 0.4467 6 0.5000
    4 28 0.4058 17 0.4472 14 0.4014 12 0.4039 10 0.5000
    10 61 0.4084 38 0.4200 30 0.4142 25 0.4640 23 0.4159
    0.8 0 8 0.2320 5 0.2390 4 0.2349 3 0.3053 3 0.2500
    2 22 0.2147 14 0.2008 10 0.2651 9 0.2245 8 0.2266
    4 35 0.2059 21 0.2352 17 0.2035 14 0.2337 12 0.2744
    10 71 0.2089 44 0.2116 34 0.2239 29 0.2215 26 0.2122
    0.99 0 23 0.0101 13 0.0137 10 0.0130 8 0.0157 7 0.0156
    2 42 0.0105 25 0.0116 19 0.0119 16 0.0112 14 0.0112
    4 58 0.0110 35 0.0114 27 0.0105 22 0.0134 19 0.0154
    10 102 0.0108 62 0.0111 48 0.0101 40 0.0112 35 0.0122

     | Show Table
    DownLoad: CSV
    Table 8.  Single sampling plan for TPITL distribution at υ=1.5,δ=1.5,ϑ=1.5.
    p c a=0.2 a=0.4 a=0.6 a=0.8 a=1
    n L(p0) n L(p0) n L(p0) n L(p0) n L(p0)
    0.2 0 19 0.8043 3 0.8513 2 0.8010 1 1.0000 1 1.0000
    2 128 0.8027 21 0.8019 8 0.8536 5 0.8740 4 0.8750
    4 258 0.8008 41 0.8058 17 0.8012 10 0.8291 7 0.8906
    10 680 0.8003 107 0.8034 42 0.8220 25 0.8180 18 0.8338
    0.4 0 43 0.6016 7 0.6169 3 0.6416 2 0.6505 1 1.0000
    2 190 0.6028 30 0.6086 12 0.6206 7 0.6481 5 0.6875
    4 345 0.6020 54 0.6087 21 0.6339 12 0.6696 9 0.6367
    10 821 0.6006 128 0.6061 50 0.6182 29 0.6182 20 0.6762
    0.6 0 76 0.4036 12 0.4125 5 0.4116 3 0.4231 2 0.5000
    2 258 0.4018 40 0.4103 16 0.4017 9 0.4290 6 0.5000
    4 435 0.4017 68 0.4010 26 0.4255 15 0.4243 10 0.5000
    10 957 0.4012 149 0.4010 58 0.4019 33 0.4070 23 0.4159
    0.8 0 134 0.2001 20 0.2166 8 0.2115 4 0.2752 3 0.2500
    2 355 0.2011 55 0.2017 21 0.2091 12 0.2011 8 0.2266
    4 558 0.2007 86 0.2043 33 0.2082 18 0.2361 12 0.2744
    10 1134 0.2003 175 0.2037 67 0.2113 38 0.2025 26 0.2122
    0.99 0 381 0.0101 58 0.0102 21 0.0118 11 0.0136 7 0.0156
    2 696 0.0101 106 0.0103 39 0.0117 21 0.0123 14 0.0112
    4 962 0.0100 147 0.0101 55 0.0105 30 0.0103 19 0.0154
    10 1671 0.0100 256 0.0101 96 0.0112 53 0.0103 35 0.0122

     | Show Table
    DownLoad: CSV

    (i) (υ,δ,ϑ)=(0.5,0.5,0.5), (ii) (υ,δ,ϑ)=(0.5,0.5,1.5), (iii) (υ,δ,ϑ)=(0.5,1.5,0.5), (iv) (υ,δ,ϑ)=(1.5,0.5,0.5), (v) (υ,δ,ϑ)=(1.5,0.5,1.5), and (vi) (υ,δ,ϑ)=(1.5,1.5,1.5). We provide the R codes of numerical value in Appendix A. From the results obtained in Tables 38, one can notice that:

    ● Regarding the ASP parameters, when p and c are increasing, the required sample sizes n and L(p0) are also increasing.

    ● As the value of a increases, the required sample sizes n and L(p0) decrease.

    ● Regarding the TPITL distribution parameters, the desired sample size n increases while L(p0) decreases with an increased value of ϑ for fixed υ and δ

    ● The required sample size n increases while L(p0) decreases as the value of δ increases for fixed values of υ and ϑ.

    ● The required sample size n increases while L(p0) decreases with increasing values of δ and fixed values of υ and ϑ.

    ● As the value of υ increases for fixed values of ϑ, and δ, the required sample size n increases, while L(p0) decreases.

    ● For all results, we have obtained and verified that L(p0)1p. Also, when a=1, we have p0=0.5 as t0=m0; hence, all results (n,L(p0)) for any vector of parameters (υ,δ,ϑ) are similar.

    In this section, the parameter estimation of the TPITL distribution is discussed using classical methods, including ML, MPS, LS, WLS, and CvM.

    Let T1,T2,Tn be the TPITL distribution's observed random sample. Then, the TPITL distribution's log-likelihood function, denoted by  ln l, for parameters, based on a complete sample, is given by

     ln l=n ln (2ϑδ)+(2δ1)ni=1 ln ti(2ϑ+1)ni=1 ln Wi+(ϑ1)ni=1 ln Si+ni=1 ln [1υ+2υ(SϑiW2ϑi)].

    where, Wi=Wi(δ)=(1+tδi) and Si=Si(δ)=(1+2tδi). The partial derivatives of  ln l with respect to υ,δ and ϑ are given by:

     ln lυ=ni=1[2(1SϑiW2ϑi)1][1υ+2υ(SϑiW2ϑi)]1,
     ln lδ=nδ+2ni=1 ln ti(2ϑ+1)ni=1tδi ln tiW1i+2(ϑ1)ni=1tδi ln tiS1i
    +4ϑυni=1{tδi ln ti[W2ϑiSϑ1iSϑiW2ϑ1i]}[1υ+2υ(SϑiW2ϑi)]1,
     ln lϑ=nϑ2ni=1 ln Wi+ni=1 ln Si+2υni=1SϑiW2ϑi( ln Si2 ln Wi)[1υ+2υ(SϑiW2ϑi)]1.

    To obtain the ML estimators of υ,δ and ϑ, say ˆυ,ˆδ and ˆϑ we use the nonlinear equations,  ln l/υ=0,  ln l/δ=0 and  ln l/ϑ=0 to solve them using an iterative approach.

    Reference [25] proposed the MPS estimation of population parameters. The notion of discrepancies between the CDF values at consecutive data points may be used to create this approach. Assume that T(1), T(2), …, T(n), are the ordered observations of TPITL distribution. Then, the uniform spacings may be determined based on a random sample of size n from the TPITL distribution, as follows:

    Di(Θ)=H(t(i)|Θ)H(t(i1)|Θ),i=1,2,,n+1,H(t(0)|Θ)=0,H(t(n+1)|Θ)=1,n+1i=1Di(Θ)=1.

    For simplicity of notation, we write ti=t(i), hence, the MPS estimates obtained by ˆυMPS,ˆδMPS and ˆϑMPS can be obtained by maximizing the geometric mean of the spacings

    GM(Θ)=1n+1n+1i=1log{[(1SϑiW2ϑi)(1+υυ(1SϑiW2ϑi))][(1Sϑi1W2ϑi1)(1+υυ(1Sϑi1W2ϑi1))]},

    with respect to υ,δ and ϑ, or by solving the following equations:

    GM(Θ)υ=1n+1n+1i=1ω1(ti|Θ)ω1(ti1|Θ)Di(Θ),GM(Θ)ϑ=1n+1n+1i=1ω2(ti|Θ)ω2(ti1|Θ)Di(Θ),
    GM(Θ)δ=1n+1n+1i=1ω3(ti|Θ)ω3(ti1|Θ)Di(Θ).
    ω1(ti|Θ)=(1SϑiW2ϑi)(SϑiW2ϑi), (12)
    ω2(ti|Θ)=SϑiW2ϑi{(1SϑiW2ϑi)υ[ ln Si2 ln Wi]+(1+υSϑiW2ϑi)[2 ln Wi ln Si]}, (13)
    ω3(ti|Θ)=2ϑtδi ln tiSϑiW2ϑi[W1iS1i][υ(S1iW1i)]. (14)

    Let T(1),T(2),.T(n) be the observed ordered sample and T1,T2,.Tn a TPITL-generated random sample of size n. Then, the LS estimates (LSEs) and WLS estimates (WLSEs) of υ,δ and ϑ can be obtained by minimizing the following function with respect to υ,δ and ϑ :

    Λ(Θ)=ni=1ui{[(1SϑiW2ϑi)(1+υSϑiW2ϑi)]in+1}2.

    where ti=t(i), we can get the LSEs designated by ˆυLS,ˆδLS and ˆϑLS by setting ui=1, whereas we can get the WLSEs denoted by ˆυWLS,ˆδWLS and ˆϑWLS by setting ui=(n+1)2(n+2)i(ni+1). These estimates can also be obtained by solving the equations stated below:

    Λ(Θ)υ=ni=12ui{[(1SϑiW2ϑi)(1+υSϑiW2ϑi)]in+1}ω1(ti|Θ),
    Λ(Θ)ϑ=ni=12ui{[(1SϑiW2ϑi)(1+υSϑiW2ϑi)]in+1}ω2(ti|Θ),

    and

    Λ(Θ)δ=ni=12ui{[(1SϑiW2ϑi)(1+υSϑiW2ϑi)]in+1}ω3(ti|Θ).

    ω1(ti|Θ), ω2(ti|Θ) and ω3(ti|Θ) are defined in (12)–(14).

    The CvM estimates (CvMEs) denoted by ˆυCME,ˆδCME and ˆϑCME of υ,δ and ϑ can be obtained by minimizing the following function with respect to υ,δ and ϑ :

    CvM(Θ)=112n+ni=1{[(1SϑiW2ϑi)(1+υSϑiW2ϑi)]2i12n}2,

    where ti=t(i). These estimates can also be obtained by solving the following equations:

    CvM(Θ)υ=ni=12{[(1SϑiW2ϑi)(1+υSϑiW2ϑi)]2i12n}ω1(ti|Θ),
    CvM(Θ)ϑ=ni=12{[(1SϑiW2ϑi)(1+υSϑiW2ϑi)]2i12n}ω2(ti|Θ),

    and

    CvM(Θ)δ=ni=12{[(1SϑiW2ϑi)(1+υSϑiW2ϑi)]2i12n}ω3(ti|Θ).

    where ω1(ti|Θ), ω2(ti|Θ) and ω3(ti|Θ) are defined in (12)–(14).

    As mentioned in the previous section, expressions for the derived estimators are hard to obtain. Therefore, we designed a simulation study to clarify the theoretical results. The behavior of estimates was examined in terms of their mean squared error (MSE) and standard error (SE). We performed the following steps:

    Step 1: Random samples (10,000) of sizes 20, 30, 50, 75 and 150 were generated from the TPITL distribution. The chosen parameter values are as follows:

    (δ=0.75,ϑ=0.25,υ=0.25), (δ=1.5,ϑ=0.5,υ=0.25), (δ=0.75,ϑ=0.25,υ=0.75), and (δ=1.5,ϑ=0.5,υ=0.75).

    Step 2: ML estimate (MLE), MPSE, LSE, WLSE, and CvMEs of the parameters were obtained.

    Step 3: We computed MSEs and SEs of all estimates, and the results are listed in Tables 912. We noticed the following about the performance of estimates:

    Table 9.  The MSE and SE for different estimates of the TPITL distribution.
    n Parameters MLE LSE WLSE MPSE CvME
    MSE SE MSE SE MSE SE MSE SE MSE SE
    20 δ=0.75 0.0634 0.0512 0.0462 0.0471 0.0321 0.0392 0.0318 0.0385 0.0457 0.0476
    ϑ=0.25 4.2070* 0.0104 5.9938* 0.0168 3.7685* 0.0135 1.8682* 9.6702* 5.7922* 0.0166
    υ=0.25 0.0563 3.5521* 0.1807 0.0249 0.1933 0.0222 0.2111 0.0204 0.2275 0.0281
    30 δ=0.75 0.0316 0.0295 0.0327 0.0309 0.0242 0.0270 0.0193 0.0248 0.0328 0.0321
    ϑ=0.25 3.5439* 7.0577* 3.0803* 9.8808* 2.7990* 9.6063* 1.0694* 5.5847* 4.3042* 0.0118
    υ=0.25 0.0558 2.0435* 0.1807 0.0176 0.1915 0.0147 0.1973 0.0116 0.2110 0.0199
    50 δ=0.75 0.0317 0.0213 0.0162 0.0174 0.0101 0.0140 0.0157 0.0165 0.0162 0.0178
    ϑ=0.25 3.8108* 4.7838* 1.1283* 4.7452* 0.5372* 3.0750* 1.1926* 3.7336* 1.1844* 4.8565*
    υ=0.25 0.0561 1.3275* 0.1649 8.5725* 0.1800 5.9981* 0.1874 5.1355* 0.1824 8.9142*
    75 \delta =0.75 0.0400 0.0202 0.0101 0.0104 6.1135* 8.6267* 0.0106 0.0112 8.3405* 9.6595*
    \vartheta =0.25 3.6780* 3.5785* 0.4110* 2.3153* 0.3427* 1.8551* 1.0702* 2.6413* 0.3617* 2.1469*
    \upsilon =-0.25 0.0555 1.4264* 0.1659 5.9550* 0.1788 3.7775* 0.1838 3.2474* 0.1763 5.9837*
    100 \delta =0.75 0.0194 0.0113 7.9590* 7.7147* 5.3663* 6.9967* 8.3169* 8.5896* 7.3736* 7.4625*
    \vartheta =0.25 3.1715* 2.4667* 0.4031* 1.9978* 0.3735* 1.7288* 0.9853* 2.0216* 0.3708* 1.9209*
    \upsilon =-0.25 0.0558 0.7247* 0.1641 4.0990* 0.1780 2.5736* 0.1811 2.2216* 0.1713 4.2937*
    150 \delta =0.75 0.0174 8.6607* 4.7108* 4.4809* 3.5370* 4.4433* 4.2869* 5.3664* 4.3355* 4.4987*
    \vartheta =0.25 3.0945* 1.8702* 0.2082* 1.1216* 0.2407* 0.8882* 0.6736* 1.4636* 0.2130* 1.1105*
    \upsilon =-0.25 0.0557 0.4741* 0.1543 3.4320* 0.1758 1.6379* 0.1533 1.7328* 0.1703 3.1378*

     | Show Table
    DownLoad: CSV
    Table 10.  The MSE and SE for different estimates of the TPITL distribution.
    n Parameters MLE LSE WLSE MPSE CvME
    MSE SE MSE SE MSE SE MSE SE MSE SE
    20 \delta =1.5 0.5272 0.1158 0.2419 0.0810 0.2248 0.0707 0.4151 0.1004 0.3123 0.0825
    \vartheta =0.5 0.0346 0.0142 0.0184 6.5972* 0.0190 5.5531* 0.0256 0.0107 0.0205 6.0177*
    \upsilon =-0.25 0.0375 9.2001* 0.4592 0.0446 0.4543 0.0345 0.3840 0.0235 0.5443 0.0447
    30 \delta =1.5 0.4394 0.0833 0.1267 0.0477 0.1531 0.0502 0.2508 0.0594 0.1548 0.0482
    \vartheta =0.5 0.0334 0.0100 0.0138 6.2299* 0.0146 5.9041* 0.0205 8.3477* 0.0144 5.2513*
    \upsilon =-0.25 0.0336 0.0101 0.4306 0.0254 0.4516 0.0219 0.4126 0.0164 0.4962 0.0278
    50 \delta =1.5 0.4512 0.0672 0.1199 0.0348 0.1158 0.0321 0.1586 0.0376 0.1261 0.0324
    \vartheta =0.5 0.0356 8.5213* 0.0144 4.0590* 0.0142 3.7567* 0.0190 4.9860* 0.0146 3.3391*
    \upsilon =-0.25 0.0353 6.0854* 0.4172 0.0154 0.4337 0.0122 0.3878 9.5065* 0.4603 0.0164
    75 \delta =1.5 0.4150 0.0512 0.1116 0.0226 0.1003 0.0193 0.1555 0.0300 0.1234 0.0216
    \vartheta =0.5 0.0351 6.0012* 0.0140 2.7917* 0.0135 2.6442* 0.0201 4.4084* 0.0146 2.4824*
    \upsilon =-0.25 0.0358 4.3681* 0.4250 0.0103 0.4419 8.0752* 0.3809 6.4523* 0.4510 0.0106
    100 \delta =1.5 0.4328 0.0426 0.1056 0.0171 0.0920 0.0172 0.1647 0.0282 0.1011 0.0153
    \vartheta =0.5 0.0363 5.5815* 0.0136 2.3123* 0.0121 2.7129* 0.0189 4.3207* 0.0131 1.8163*
    \upsilon =-0.25 0.0339 3.6981* 0.4570 7.3339* 0.4564 5.6197* 0.3973 5.2128* 0.4761 7.1705*
    150 \delta =1.5 0.3750 0.0254 0.0874 6.4564* 0.0663 6.6803* 0.1223 0.0146 0.0980 7.1989*
    \vartheta =0.5 0.0333 3.0071* 0.0134 1.1206* 0.0121 1.2057* 0.0189 3.0867* 0.0135 1.1276*
    \upsilon =-0.25 0.0336 1.9440* 0.4335 2.6577* 0.4322 1.7794* 0.3768 2.8150* 0.4433 2.4982*

     | Show Table
    DownLoad: CSV
    Table 11.  The MSE and SE for different estimates of the TPITL distribution.
    n Parameters MLE LSE WLSE MPSE CvME
    MSE SE MSE SE MSE SE MSE SE MSE SE
    20 \delta =0.75 0.0276 0.0320 0.0650 0.0400 0.0521 0.0350 0.0312 0.0370 0.0656 0.0420
    \vartheta =0.25 2.9819* 9.6410* 8.3113* 0.0200 6.9943* 0.0180 2.1731* 0.0100 0.0109 0.0220
    \upsilon =-0.75 0.5469 1.3110* 0.9473 0.0340 0.9252 0.0260 0.8917 0.0210 1.0580 0.0370
    30 \delta =0.75 0.0240 0.0250 0.0523 0.0240 0.0435 0.0250 0.0217 0.0250 0.0539 0.0260
    \vartheta =0.25 3.4648* 7.9550* 5.8641* 0.0140 5.8410* 0.0140 2.2441* 6.4740* 6.4372* 0.0140
    \upsilon =-0.75 0.5458 1.4640* 0.9186 0.0210 0.9199 0.0190 0.8715 0.0150 0.9848 0.0230
    50 \delta =0.75 0.0173 0.0170 0.0441 0.0170 0.0377 0.0170 0.0129 0.0140 0.0452 0.0180
    \vartheta =0.25 3.8093* 5.0600* 3.6101* 8.5390* 4.1827* 9.1340* 2.3664* 3.4760* 3.8059* 8.7550*
    \upsilon =-0.75 0.5438 0.9780* 0.8972 0.0110 0.8821 8.3640* 0.8377 6.2060* 0.9392 0.0110
    75 \delta =0.75 0.0238 0.0157 0.0410 0.0140 0.0307 0.0130 9.5963* 9.3015* 0.0413 0.0148
    \vartheta =0.25 2.9710* 4.3074* 3.6810* 7.0170* 3.2999* 6.5592* 1.9662* 2.2798* 4.7127* 7.9185*
    \upsilon =-0.75 0.5459 0.6425* 0.9595 8.5172* 0.8979 5.5828* 0.8356 3.6097* 0.9863 8.7994*
    100 \delta =0.75 0.0227 0.0134 0.0298 0.0100 0.0137 7.9828* 4.3208* 5.2667* 0.0297 9.1020*
    \vartheta =0.25 2.3568* 4.0206* 2.8294* 5.5969* 1.5028* 2.2740* 1.5569* 1.4654* 2.5345* 5.3057*
    \upsilon =-0.75 0.5416 0.6058* 0.9242 5.0194* 0.8670 2.3480* 0.8194 3.1607* 0.9360 5.1240*
    150 \delta =0.75 9.1118* 2.7224* 0.0249 5.3565* 8.5464* 7.9564* 4.1972* 4.5636* 0.0241 5.8262*
    \vartheta =0.25 1.7642* 0.9286* 1.5173* 1.8264* 0.8638* 0.4991* 1.0472* 0.9626* 1.0430* 2.3932*
    \upsilon =-0.75 0.5329 1.0329* 0.9163 5.0756* 0.8485 1.7051* 0.7717 1.7450* 0.9272 4.3014*

     | Show Table
    DownLoad: CSV
    Table 12.  The MSE and SE for different estimates of the TPITL distribution.
    n Parameters MLE LSE WLSE MPSE CvME
    MSE SE MSE SE MSE SE MSE SE MSE SE
    20 \delta =1.5 0.3166 0.1074 0.0752 0.0611 0.0688 0.0584 0.1069 0.0688 0.0855 0.0628
    \vartheta =0.5 0.0371 0.0136 0.0161 7.9040* 0.0156 8.2771* 0.0170 0.0104 0.0172 7.9114*
    \upsilon =-0.75 0.4460 0.0347 1.4360 0.0421 1.4374 0.0389 1.3799 0.0355 1.6197 0.0471
    30 \delta =1.5 0.2908 0.0852 0.0450 0.0385 0.0401 0.0359 0.0525 0.0419 0.0446 0.0385
    \vartheta =0.5 0.0361 0.0105 0.0136 5.8095* 0.0121 5.5192* 0.0125 7.1990* 0.0141 5.2089*
    \upsilon =-0.75 0.4180 0.0143 1.4336 0.0260 1.4175 0.0237 1.3529 0.0213 1.5567 0.0286
    50 \delta =1.5 0.2901 0.0662 0.0281 0.0235 0.0269 0.0219 0.0337 0.0256 0.0273 0.0234
    \vartheta =0.5 0.0352 7.9137* 0.0134 3.6008* 0.0111 3.5586* 0.0121 5.2926* 0.0138 3.4227*
    \upsilon =-0.75 0.4176 0.0131 1.4264 0.0148 1.3670 0.0112 1.2780 0.0106 1.4927 0.0155
    75 \delta =1.5 0.1622 0.0418 0.0195 0.0158 0.0229 0.0153 0.0315 0.0192 0.0185 0.0157
    \vartheta =0.5 0.0301 5.3795* 0.0131 2.5415* 0.0103 2.9067* 0.0112 3.9476* 0.0134 2.4295*
    \upsilon =-0.75 0.4141 9.7076* 1.4082 0.0101 1.3617 6.9812* 1.2608 6.7749* 1.4829 0.0101
    100 \delta =1.5 0.2589 0.0436 0.0151 0.0122 0.0181 0.0107 0.0204 0.0132 0.0159 0.0126
    \vartheta =0.5 0.0357 5.4308* 0.0129 2.0247* 9.3446* 2.0512* 0.0106 3.7361* 0.0132 2.0816*
    \upsilon =-0.75 0.4123 6.1602* 1.3819 7.3598* 1.3518 5.2508* 1.2430 5.0394* 1.4739 7.9705*
    150 \delta =1.5 0.1303 0.0258 0.0113 8.2565* 0.0176 0.0105 0.0189 7.0110* 0.0134 9.3264*
    \vartheta =0.5 0.0312 4.0948* 0.0124 1.4042* 7.8324* 2.2745* 8.8525* 2.0483* 0.0128 1.6189*
    \upsilon =-0.75 0.4096 4.3745* 1.3245 5.5974* 1.3308 3.0557* 1.2360 2.7320* 1.4591 5.2175*
    *Note: * Indicate that the value multiply {10}^{-3} in Tables 912.

     | Show Table
    DownLoad: CSV

    ■ For all estimating methods, it was evident that MSEs and SEs reduced with n .

    ■ The MSE and SE for \widehat{\upsilon } performed better than the other estimates as the sample size increased.

    ■ The LSE, WLSE, WLSE, MPSE, and CvMEs for \upsilon and \vartheta had analogous results, while MLE had a slightly different result in terms of MSE and SE (Figure 3).

    Figure 3.  The MSE and SE for \upsilon based on different methods.

    ■ As shown in the left panel of Figures 45, the LSE, WLSE, MPSE, and CvME outperformed MLE in terms of MSE, especially for \vartheta and \delta .

    Figure 4.  MSE and SE for \vartheta based on different methods.
    Figure 5.  The MSE and SE for \delta based on different methods.

    ■ Generally, under all approaches, we noticed that MSE of \widehat{\upsilon } had the least value, while MSE of {\widehat{\vartheta }}_{WLS} took the smallest value.

    ■ For a fixed value of the parameters \left(\delta , \vartheta \right) and as \upsilon increased, the MSEs and SEs of \upsilon estimate increased while the MSEs and SEs of \left(\delta , \vartheta \right) estimate decreased for different methods.

    ■ The general conclusion from the aforementioned figures is that as the sample size increases, all MSE and SE graphs for all parameters will reach zero. This confirms the accuracy of these estimation methods.

    ■ It should be emphasized that, in most situations, the ML technique outperformed other methods in terms of MSE.

    ■ In some situations, MPSE comes in as the second-best performing estimator, followed by LSE.

    This section discussed two applications for the TPITL model using two different real datasets. The first dataset represents 30 observations of the March precipitation (in inches) in Minneapolis/St Paul. The proposed dataset was first recorded in [32] and recently used to fit the PITL distribution in [22].

    We checked whether the TPITL distribution is suitable for analyzing this dataset. We reported the MLEs of the parameters and the values of the negative –2 log-likelihood \left(-2\mathrm{log}L\right) , Akaike's information criterion (AIC), Bayesian IC (BIC), corrected AIC (CAIC), and the Kolmogorov–Smirnov (K–S) test statistic, as well as associated P-value to judge the goodness of fit with comparison to PITL, generalized inverse exponential (GIE), inverse Weibull (in-We), inverse gamma (in-Ga) and Burr XII distributions. The lower the values of these criteria, the better the fit. Table 13 shows the parameter estimators, SE, and some goodness of fit statistics. Plots of estimated PDF and CDF are provided in Figure 6. The probability–probability (PP) plots of estimated densities are given in Figure 7.

    Table 13.  The MLEs, SEs of all model parameters and goodness of fit measures for first data.
    Model MLE SE -2LogL AIC BIC CAIC K-S P-value
    TPITL \widehat{\upsilon }=-0.373 0.610 77.89 82.66 85.09 83.10 0.1069 0.8831
    \widehat{\delta }=1.723 0.587
    \widehat{\vartheta }=1.758 1.003
    PITL \widehat{\alpha }=1.313 0.322 78.66 83.32 85.46 83.77 0.1182 0.7961
    \widehat{\vartheta }=1.974 0.365
    GIE \widehat{\alpha }=3.300 1.065 79.32 83.89 86.13 84.81 0.1266 0.7224
    \widehat{\lambda }=2.199 0.433
    Burr XII \widehat{\vartheta }=3.216 0.645 80.55 84.55 87.36 85 0.1287 0.7033
    \widehat{\beta }=0.563 0.137
    in-Ga \widehat{\lambda }=2.596 0.631 80.61 85.61 87.42 85.06 0.1375 0.6218
    \widehat{\beta }=2.966 0.795
    in-We \widehat{\alpha }=1.550 0.198 83.83 87.83 90.64 88.28 0.1523 0.4896
    \widehat{\lambda }=1.025 0.203

     | Show Table
    DownLoad: CSV
    Figure 6.  Estimated PDF and CDF of models for the first data.
    Figure 7.  Estimated PDF and CDF of all models for second data.

    The second dataset represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli. The above dataset was first recorded in [33] and was recently used to fit the inverse Weibull distribution by reference [34] under Type-II right censoring. Reference [35] also used it to fit extended inverse power Lomax under Type-I right censoring.

    We checked whether the TPITL distribution is suitable for analyzing this dataset. We reported the MLEs of the parameters and the values of the –2log L, AIC, BIC, and the K–S test statistics to judge the goodness of fit with comparison to PITL, log-normal (log-N), Weibull (We), generalized exponential (Ge-Ex), and extended inverse exponential (EIE) distributions. The lower the values of these criteria, the better the fit. In Table 14, MLEs, SE, and some measures are obtained. Plots of estimated PDF and CDF are provided in Figure 8. The PP plots of estimated densities are given in Figure 9. It can be seen that the TPITL provides the overall best fit based on Tables 13 and 14. The R codes of data analysis are provided in Appendix B.

    Table 14.  The MLEs, SEs of all model parameters and goodness of fit measures for second data.
    Model MLE SE -2LogL AIC BIC CAIC K-S P-value
    TPITL \hat{v}=-0.794 0.193 194.002 198.002 202.610 198.171 0.089 0.601
    \hat{\delta}=1.640 0.270
    \hat{\vartheta}=2.010 0.407
    Ge-Ex \hat{\alpha}=3.565 0.696 195.184 200.889 205.498 201.026 0.090 0.588
    \hat{\lambda}=0.891 0.103
    We \hat{\eta}=1.820 0.156 196.889 201.184 208.096 201.558 0.100 0.448
    \hat{\beta}=1.989 0.134
    log-N \hat{\mu}=0.393 0.073 200.565 204.565 209.174 204.734 0.101 0.437
    \hat{\sigma}=0.632 0.052
    PITL \hat{\alpha}=1.142 0.189 200.604 204.604 209.213 204.774 0.118 0.254
    \hat{\vartheta}=2.154 0.274
    EIE \hat{\alpha}=2.858 0.586 221.525 225.525 230.133 225.694 0.145 0.072
    \hat{\lambda}=2.082 0.271

     | Show Table
    DownLoad: CSV
    Figure 8.  The PP plots of all models for the first data.
    Figure 9.  The PP plots of all models for the second data.

    Figures 6 and 7 demonstrate that, among the two datasets, the TPITL model provided an excellent fit to the observed distribution (i.e., to the histogram). Also, we conclude that from these figures, the TPITL model offered the best agreement to the empirical CDF for the two datasets. Figures 8 and 9 also show that the TPITL model matches the two real-world datasets more closely than the other competing models. Consequently, the TPITL distribution can be chosen as a suitable model when compared with other distributions for explaining the studied data.

    The QRTM is used to suggest a novel extension of the power inverted Topp–Leone distribution in this article. The developed distribution is known as the TPITL distribution. The PITL and ITL are included in the proposed distribution as specific models. The significant characteristics of the provided model, including quantile function, moments and incomplete moments, SO, and some uncertainty measures, are also discussed. The ASPs are created for the TPITL model, assuming the life test is terminated at a specific period. The median lifetime of the TPITL distribution with pre-specified variables is used to calculate the truncation time. The smallest sample size is necessary to get the claimed life test at a given consumer risk. Different estimating approaches are used to analyze the TPITL distribution characteristics. To assess the efficacy of estimations based on precision criteria, a comprehensive simulation research is conducted.

    Regarding the simulation outcomes, it should be noted that the ML estimation approach often outperforms other methods. In some cases, the next best performing estimator is MPSE, followed by LSE. Finally, we observed that MSE decreases across all estimation techniques as the sample size grows, indicating that all estimation approaches are consistent. Two real data analyses are used to compare the proposed model's validity and adaptability to the alternative models, such as the PITL, log-normal, Weibull, GIE, inverse Weibull, inverse gamma, Ge-Ex, and EIE models. In the future, we will examine the statistical inference of this suggested model using Bayesian estimates under various censored schemes. Other researchers can employ this model in the future to investigate its statistical inference using Bayesian and E-Bayesian estimations under various complete and censored schemes.

    The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4340290DSR02). Additionally, the authors thank the editor and the reviewers for their careful reading of the research article and for their constructive comments that greatly improved this paper. The authors also thank all those who help in creating or revising this work. Thanks, is also extended to Enago® Office for proofreading and editing the paper. The authors extend their appreciation to the Deanship of Scientific Research at Umm Al-Qura University for supporting and funding this work this work by Grant Code: (22UQU4340290DSR02).

    All authors declare no conflicts of interest in this paper.

    ######## Compute sampling plan and probability of acceptance

    accept < - function(pstar, v, delta, vartheta, a, c)

    {

    ######## Compute median life time from quantile function (t_0)

      m0 < - t_0(0.5, v, delta, vartheta)

    ######## Compute truncation time at a

      t0 < - a*m0

    ######## Compute probability (p) from cdf

      p0 < - Fx(t0, v, delta, vartheta)

    ######## Determine optimal sample size (n)

      for(n0 in 1:10^9)

      {

        s = 0

        l_p = 0

        for(i in 0:c)

        {

          s   = s+choose(n0, i)*p0^i*(1-p0)^(n0-i)

          l_p = l_p+choose((n0-1), i)*p0^i*(1-p0)^((n0-1)-i)

        }

    ######## print minimum sample size

        if (s < = 1-pstar)

        {

          print(c(c = c, n = n0, OC = l_p))

          return(c(c, n0, l_p))

          break()

        }

      }

    }

    ######## Define pdf and cdf of PITL distribution

    Pdf_PITL < - function(parm, x){

      alpha < - parm[1]

      theta < - parm[2]

      a < - 2*alpha*theta*x^(2*theta-1)

      b < - (1+x^theta)^(-2*alpha-1)

      c < - (1+2*x^theta)^(alpha-1)

      Pdf_PITL < - a*b*c

    }

    Cdf_PITL < - function(parm, x){

      alpha < - parm[1]

      theta < - parm[2]

      a < - (1+x^theta)^(2*alpha)

      b < - (1+2*x^theta)^alpha

      Cdf_PITL < - 1-(b/a)

    }

    ######## define pdf and cdf of inv. Weibull (invWe) Distribution

    Pdf_inWE < - function(parm, x){

      lambda < - parm[1]

      beta < - parm[2]

      Pdf_inWE < - lambda*beta*x^(-beta-1)*exp(-lambda/x^beta)

    }

    Cdf_inWE < - function(parm, x){

      lambda < - parm[1]

      beta < - parm[2]

      Cdf_inWE < - exp(-lambda/x^beta)

    }

    ######## define pdf and cdf for inverse gamma (invGa) Distribution

    Pdf_inGa < - function(parm, x){

      alpha < - parm[1]

      lambda < - parm[2]

      Pdf_inGa < - dinvgamma(x, alpha, rate = lambda)

    }

    Cdf_inGa < - function(parm, x){

      alpha < - parm[1]

      lambda < - parm[2]

      Cdf_inGa < - pinvgamma(x, alpha, rate = lambda)

    }

    ######## define pdf and cdf for Weibull Distribution

    Pdf_We < - function(parm, x){

      alpha < - parm[1]

      lambda < - parm[2]

      Pdf_We < - (alpha*x^(alpha-1)*exp(-(x/lambda)^alpha))/lambda^alpha

    }

    Cdf_We < - function(parm, x){

      alpha < - parm[1]

      lambda < - parm[2]

      Cdf_We < - 1-exp(-(x/lambda)^alpha)

    }

    ######## define pdf and cdf for log-Normal Distribution

    Pdf_log < - function(parm, x){

      alpha < - parm[1]

      lambda < - parm[2]

      Pdf_log < - dlnorm(x, alpha, lambda)

    }

    Cdf_log < - function(parm, x){

      alpha < - parm[1]

      lambda < - parm[2]

      Cdf_log < - plnorm(x, alpha, lambda)

    }

    ######## define pdf and cdf for Gamma Distribution

    Pdf_Ga < - function(parm, x){

      alpha < - parm[1]

      lambda < - parm[2]

      Pdf_Ga < - dgamma(x, shape = alpha, scale = lambda)

    }

    Cdf_Ga < - function(parm, x){

      alpha < - parm[2]

      lambda < - parm[1]

      Cdf_Ga < - pgamma(x, shape = alpha, scale = lambda)

    }

    ######## define pdf and cdf for Generalized Exponential Distribution

    Pdf_Gex < - function(parm, x){

      alpha < - parm[1]

      lambda < - parm[2]

      Pdf_Gex < - (alpha/lambda)*exp(-x/lambda)*(1-exp(-x/lambda))^(alpha-1)

    }

    Cdf_Gex < - function(parm, x){

      alpha < - parm[1]

      lambda < - parm[2]

      Cdf_Gex < - (1-exp(-x/lambda))^alpha

    }

    ######## define pdf and cdf for Generalized inverted Exponential (GIE) Distribution

    Pdf_GIE < - function(parm, x){

      alpha < - parm[1]

      lambda < - parm[2]

      Pdf_GIE < - (alpha*lambda/x^2)*exp(-lambda/x)*(1-exp(-lambda/x))^(alpha-1)

    }

    Cdf_GIE < - function(parm, x){

      alpha < - parm[1]

      lambda < - parm[2]

      Cdf_GIE < - 1-(1-exp(-lambda/x))^alpha

    }

    ######## define pdf and cdf for Extendend inverse exponential (EIE) Distribution

    Pdf_EIE < - function(parm, x){

      alpha < - parm[1]

      theta < - parm[2]

      a < - exp(-theta/x)

      Pdf_EIE < - ((alpha*theta)/x^2)*a*(1/(1-a)^2)*exp(-alpha*(a/(1-a)))

    }

    Cdf_EIE < - function(parm, x){

      alpha < - parm[1]

      theta < - parm[2]

      a < - exp(-theta/x)

      Cdf_EIE < - 1-exp(-alpha*(a/(1-a)))

    }

    ######## Define TPITL distribution

    Pdf_TPITL < - function(parm, x){

      v     < - parm[1]

      delta   < - parm[2]

      vartheta < - parm[3]

      a = (1+2*x^delta)^vartheta

      b = (1+x^delta)^(2*vartheta)

      d = (1-(a/b))

      aa = 2*vartheta*delta*x^(2*delta-1)*(1+x^delta)^(-2*vartheta-1)*(1+2*x^delta)^(vartheta-1)

      Pdf_TPITL < - aa*(1+v-2*v*d)

    }

    Cdf_TPITL < - function(parm, x){

      v < - parm[1]

      delta < - parm[2]

      vartheta < - parm[3]

        a = (1+2*x^delta)^vartheta

      b = (1+x^delta)^(2*vartheta)

      d = (1-(a/b))

      Cdf_TPITL < - d*(1+v-v*(d))

    }

    ######## define pdf and cdf of Burr XII dist.

    Pdf_Burr < - function(parm, x){

      theta < - parm[1]

      beta < - parm[2]

      Pdf_Burr < - theta*beta*x^(theta-1)*(1+x^theta)^(-(beta+1))

    }

    Cdf_Burr < - function(parm, x){

      theta < - parm[1]

      beta < - parm[2]

      Cdf_Burr < - 1-(1+x^theta)^(-beta)

    }

    ######## log-likhood

    LL_PITL < - function(alpha, theta){-sum(log(Pdf_PITL(c(alpha, theta), x)))}

    LL_inWE < - function(lambda, beta){-sum(log(Pdf_inWE(c(lambda, beta), x)))}

    LL_inGa < - function(alpha, lambda){-sum(log(Pdf_inGa(c(alpha, lambda), x)))}

    LL_GIE < - function(alpha, lambda){-sum(log(Pdf_GIE(c(alpha, lambda), x)))}

    LL_EIE < - function(alpha, theta){-sum(log(Pdf_EIE(c(alpha, theta), x)))}

    LL_TPITL < - function(v, delta, vartheta){-sum(log(Pdf_TPITL(c(v, delta, vartheta), x)))}

    LL_Burr < - function(theta, beta){-sum(log(Pdf_Burr(c(theta, beta), x)))}

    LL_We < - function(alpha, lambda){-sum(log(Pdf_We(c(alpha, lambda), x)))}

    LL_Ga < - function(alpha, lambda){-sum(log(Pdf_Ga(c(alpha, lambda), x)))}

    LL_Gex < - function(alpha, lambda){-sum(log(Pdf_Gex(c(alpha, lambda), x)))}

    LL_log < - function(alpha, lambda){-sum(log(Pdf_log(c(alpha, lambda), x)))}

    ########################################################################

    ######## Real data set I: -------------------------------------------------------------

    # The data contain 30 observations of the March precipitation (in inches) in Minneapolis/St Paul

    ######## D. Hinkley, "On quick choice of power transformation, " Applied Statistics, vol. 26, no. 1,

    X1 = c(0.77, 1.74, 0.81, 1.20, 1.95, 1.2, 0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9, 2.05)

    ######## Real data set II: -------------------------------------------------------------

    ######## The survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli,

    # observed and reported by Bjerkedal (1960).

    X2 = c(0.1, 0.33, 0.44, 0.56, 0.59, 0.59, 0.72, 0.74, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55, 2.54, 0.77)

    ######## Use one data set:

    x = X1

    ######## obtain MLE

    fit_TPITL < - mle2(minuslog = LL_TPITL, start = list(v = 1, delta = 0.6, vartheta = 0.05),

            data = list(x), method = "Nelder-Mead")

    fit_invWe < - mle2(minuslog = LL_inWE, start = list(lambda = 1, beta = 1),

            data = list(x), method = "Nelder-Mead")

    fit_invGa < - mle2(minuslog = LL_inGa, start = list(alpha = 1, lambda = 3),

            data = list(x), method = "Nelder-Mead")

    fit_GIE < - mle2(minuslog = LL_GIE, start = list(alpha = 1, lambda = 1),

            data = list(x), method = "Nelder-Mead")

    fit_EIE < - mle2(minuslog = LL_EIE, start = list(alpha = 1, theta = 1),

            data = list(x), method = "Nelder-Mead")

    fit_Burr < - mle2(minuslog = LL_Burr, start = list(theta = 1, beta = 1),

            data = list(x), method = "Nelder-Mead")

    fit_We < - mle2(minuslog = LL_We, start = list(alpha = 1, lambda = 1),

            data = list(x), method = "Nelder-Mead")

    fit_Ga < - mle2(minuslog = LL_Ga, start = list(alpha = 1, lambda = 1),

            data = list(x), method = "Nelder-Mead")

    fit_Gex < - mle2(minuslog = LL_Gex, start = list(alpha = 1, lambda = 1),

            data = list(x), method = "Nelder-Mead")

    fit_log < - mle2(minuslog = LL_log, start = list(alpha = 1, lambda = 1),

            data = list(x), method = "Nelder-Mead")

    ################################################################

    ######## goodness of fit

    gof.test_TPITL < - goodness.fit(Pdf_TPITL, Cdf_TPITL, starts = c(coef(fit_TPITL)), data = x,

              method = "N", domain = c(0, 1000))

    gof.test_invWE < - goodness.fit(Pdf_inWE, Cdf_inWE, starts = c(coef(fit_invWe)), data = x,

              method = "N", domain = c(0, 10000))

    gof.test_invGa < - goodness.fit(Pdf_inGa, Cdf_inGa, starts = c(coef(fit_invGa)), data = x,

              lim_inf = c(0.001, 0.001), lim_sup = c(10, 10))

    gof.test_GIE < - goodness.fit(Pdf_GIE, Cdf_GIE, starts = c(coef(fit_GIE)), data = x,

              lim_inf = c(0.001, 0.001), lim_sup = c(10, 20))

    gof.test_EIE < - goodness.fit(Pdf_EIE, Cdf_EIE, starts = c(coef(fit_EIE)), data = x,

              lim_inf = c(0.00001, 0.00001), lim_sup = c(10, 10))

    gof.test_Burr < - goodness.fit(Pdf_Burr, Cdf_Burr, starts = c(coef(fit_Burr)), data = x,

              lim_inf = c(0.001, 0.001), lim_sup = c(10, 10))

    gof.test_We < - goodness.fit(Pdf_We, Cdf_We, starts = c(coef(fit_We)), data = x,

              lim_inf = c(0.001, 0.001), lim_sup = c(10, 10))

    gof.test_Ga < - goodness.fit(Pdf_Ga, Cdf_Ga, starts = c(coef(fit_Ga)), data = x,

              lim_inf = c(0.001, 0.001), lim_sup = c(10, 10))

    gof.test_Gex < - goodness.fit(Pdf_Gex, Cdf_Gex, starts = c(coef(fit_Gex)), data = x,

              lim_inf = c(0.001, 0.001), lim_sup = c(10, 10))

    gof.test_log < - goodness.fit(Pdf_log, Cdf_log, starts = c(coef(fit_log)), data = x,

              lim_inf = c(0.001, 0.001), lim_sup = c(10, 10))



    [1] W. T. Shaw, I. R. C. Buckley, The alchemy of probability distributions: Beyond Gram–Charlier expansions, and a skew-kurtotic normal distribution from a rank transmutation map, preprint, arXiv: 0901.0434.
    [2] M. S. Khan, R. King, I. L. Hudson, Transmuted Weibull distribution: properties and estimation, Commun. Stat. Theory Methods, 46 (2017), 5394–5418. https://doi.org/10.1080/03610926.2015.1100744 doi: 10.1080/03610926.2015.1100744
    [3] Z. M. Nofal, A. Z. Afify, H. M. Yousof, G. M. Cordeiro, The generalized transmuted-G family of distributions, Commun. Stat. Theory Methods, 46 (2017), 4119–4136. https://doi.org/10.1080/03610926.2015.1078478 doi: 10.1080/03610926.2015.1078478
    [4] M. Elgarhy, I. Elbatal, A. S. Hassan, Transmuted Kumaraswamy quasi-Lindley distribution with applications, Ann. Data Sci., 5 (2018), 565–581. https://doi.org/10.1007/s40745-018-0153-4 doi: 10.1007/s40745-018-0153-4
    [5] H. D. Biçer, Properties and inference for a new class of XGamma distributions with an application, Math. Sci., 13 (2019), 335–346. https://doi.org/10.1007/s40096-019-00303-x doi: 10.1007/s40096-019-00303-x
    [6] A. S. Hassan, S. M. Assar, A. M. Abd Elghaffar, Bayesian estimation of power transmuted inverse Rayleigh distributions, Thailand Stat., 19 (2021), 393–410.
    [7] A. S. Hassan, M. A. Khaleel, S. G. Nassr, Transmuted Topp–Leone power function distribution: Theory and application, J. Stat. Appl. Probab., 10 (2021), 215–227. https://doi.org/10.18576/jsap/100120 doi: 10.18576/jsap/100120
    [8] A. Shafiq, S. A. Lone, T. N. Sindhu, Y. E. Khatib, Q. M. Al-Mdallal, T. Muhammad, A new modified Kies Fréchet distribution: Applications of mortality rate of COVID-19, Results Phys., 28 (2021), 104638, 1–17. https://doi.org/10.1016/j.rinp.2021.104638
    [9] A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with applications to the exponential and Weibull families, Biometrika, 84 (1997), 641–652. https://doi.org/10.1093/biomet/84.3.641 doi: 10.1093/biomet/84.3.641
    [10] O. Nave, V. Gol'dshtein, A combination of two semi-analytical method called "singular perturbed homotopy analysis method, (SPHAM)" applied to combustion of spray fuel droplets, Cogent Math., 3 (2016), 1256467. https://doi.org/10.1080/23311835.2016.1256467
    [11] A. Algarni, A. M. Almarashi, I. Elbatal, A. S. Hassan, E. M. Almetwally, A. M. Daghistani, et al., Type I half lLogistic Burr X-G family: Properties, Bayesian, and non-Bayesian estimation under censored samples and applications to COVID-19 data, Math. Probl. Eng., 2021 (2021), 1–21. https://doi.org/10.1155/2021/5461130
    [12] A. S. Hassan, M. A. H. Sabry, A. M. Elsehetry, A new probability distribution family arising from truncated power Lomax distribution with application to Weibull model, Pak. J. Stat. Oper. Res., 16 (2020), 661–674. https://doi.org/10.18187/pjsor.v16i4.3442 doi: 10.18187/pjsor.v16i4.3442
    [13] A. S. Hassan, A. W. Shawkia, H. Z. Muhammeda, Weighted Weibull-G family of distributions: Theory and application in the analysis of renewable energy sources, J. Posit. Sch. Psychol., 6 (2022), 9201–9216.
    [14] A. S. Hassan, A. Al-Omari, R. R. Hassan, G. A. Alomani, The odd inverted Topp Leone–H family of distributions: Estimation and applications, J. Radiat. Res. Appl. Sci., 2022. https://doi.org/10.1016/j.jrras.2022.08.006
    [15] A. Shafiq, T. N. Sindhu, N. Alotaibi, A novel extended model with versatile shaped failure rate: Statistical inference with Covid-19 applications, Results Phys., 3 (2022), 105398. https://doi.org/10.1016/j.rinp.2022.105398 doi: 10.1016/j.rinp.2022.105398
    [16] A. S. Hassan, M. Elgarhy, R. Ragab, Statistical properties and estimation of inverted Topp–Leone distribution, J. Stat. Appl. Probab., 9 (2020), 319–331. https://doi.org/10.18576/jsap/090212 doi: 10.18576/jsap/090212
    [17] G. M. Ibrahim, A. S. Hassan, E. M. Almetwally, H. M. Almongy, Parameter estimation of alpha power inverted Topp–Leone distribution with applications, Intell. Autom. Soft Comput., 29 (2021), 353–371. https://doi.org/10.32604/iasc.2021.017586 doi: 10.32604/iasc.2021.017586
    [18] A. S. Hassan, E. M. Almetwally, G. M. Ibrahim, Kumaraswamy inverted Topp–Leone distribution with applications to COVID-19 data, Comput. Mater. Contin., 68 (2021), 337–358. https://doi.org/10.32604/cmc.2021.013971 doi: 10.32604/cmc.2021.013971
    [19] R. Bantan, M. Elsehetry, A. S. Hassan, M. Elgarhy, D. Sharma, C. Chesneau, et al., A two-parameter model: Properties and estimation under ranked sampling, MDPI Math., 9 (2021), 1214. https://doi.org/10.3390/math9111214 doi: 10.3390/math9111214
    [20] E. M. Almetwally, R. Alharbi, D. Alnagar, E. H. Hafez, A new inverted Topp-Leone distribution: Applications to the COVID-19 mortality rate in two different countries, Axioms, 10 (2021), 25. https://doi.org/10.3390/axioms10010025 doi: 10.3390/axioms10010025
    [21] E. M. Almetwally, The odd Weibull inverse Topp–Leone distribution with applications to COVID-19 data, Ann. Data Sci., 9 (2022), 121–140. https://doi.org/10.1007/s40745-021-00329-w doi: 10.1007/s40745-021-00329-w
    [22] T. A. Abushal, A. S. Hassan, A. R. El-Saeed, S. G. Nassr, Power inverted Topp–Leone distribution in acceptance sampling plans, Comput. Mater. Contin., 67 (2021), 991–1011. https://doi.org/10.32604/cmc.2021.014620 doi: 10.32604/cmc.2021.014620
    [23] E. Lehmann, Elements of Large-sample Theory, Springer-Verlag, New York, 1999. https://doi.org/10.1007/b98855
    [24] J. J. Swain, S. Venkatraman, J. R. Wilson, Least squares estimation of distribution function in Johnson's system, J. Stat. Comput. Simul., 29 (1988), 271–297. https://doi.org/10.1080/00949658808811068 doi: 10.1080/00949658808811068
    [25] R. C. H. Cheng, N. A. K. Amin, Estimating parameters in continuous univariate distributions with a shifted origin, J. R. Stat. Soc., 45 (1983), 394–403. https://doi.org/10.1111/j.2517-6161.1983.tb01268.x doi: 10.1111/j.2517-6161.1983.tb01268.x
    [26] P. D. M. MacDonald, Comment on "An estimation procedure for mixtures of distributions" by Choi and Bulgren, J. R. Stat. Soc. Series B (Methodological), 33 (1971), 326–329. https://doi.org/10.1111/j.2517-6161.1971.tb00884.x doi: 10.1111/j.2517-6161.1971.tb00884.x
    [27] A. Rényi, On measures of entropy and information, in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, 1 (1960), 547–561.
    [28] C. Tsallis, Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys., 52 (1988), 479–487. https://doi.org/10.1007/BF01016429 doi: 10.1007/BF01016429
    [29] S. Arimoto, Information-theoretical considerations on estimation problems, Inf. Control, 19 (1971), 181–194. https://doi.org/10.1016/S0019-9958(71)90065-9 doi: 10.1016/S0019-9958(71)90065-9
    [30] J. Havrda, F. Charvat, Quantification method of classification processes, concept of structural a-entropy, Kybernetika, 3 (1967), 30–35
    [31] S. Singh, Y. M. Tripathi, Acceptance sampling plans for inverse Weibull distribution based on truncated life test, Life Cycle Reliab. Saf. Eng., 6 (2017), 169–178. https://doi.org/10.1007/s41872-017-0022-8 doi: 10.1007/s41872-017-0022-8
    [32] D. Hinkley, On quick choice of power transformation, Appl. Stat., 26 (1977), 67–69. https://doi.org/10.2307/2346869 doi: 10.2307/2346869
    [33] T. Bjerkedal, Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli, Am. J. Hyg., 72 (1960), 130–148. https://doi.org/10.1093/oxfordjournals.aje.a120129 doi: 10.1093/oxfordjournals.aje.a120129
    [34] D. Kundu, H. Howlader, Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data, Comput. Stat. Data Anal., 54 (2010), 1547–1558. https://doi.org/10.1016/j.csda.2010.01.003 doi: 10.1016/j.csda.2010.01.003
    [35] A. S. Hassan, S. G. Nassr, Parameter estimation of an extended inverse power Lomax distribution with Type I right censored data, Commun. Stat. Appl. Methods, 28 (2021), 99–118. https://doi.org/10.29220/CSAM.2021.28.2.099 doi: 10.29220/CSAM.2021.28.2.099
  • This article has been cited by:

    1. Osama H. Mahmoud Hassan, Ibrahim Elbatal, Abdullah H. Al-Nefaie, Ahmed R. El-Saeed, Statistical Inference of the Beta Binomial Exponential 2 Distribution with Application to Environmental Data, 2022, 11, 2075-1680, 740, 10.3390/axioms11120740
    2. Ali Hussein AL-Marshadi, Muhammad Aslam, Abdullah Alharbey, Design of double acceptance sampling plan for Weibull distribution under indeterminacy, 2023, 8, 2473-6988, 13294, 10.3934/math.2023672
    3. Najwan Alsadat, Amal S. Hassan, Mohammed Elgarhy, Christophe Chesneau, Ahmed R. El-Saeed, Sampling Plan for the Kavya–Manoharan Generalized Inverted Kumaraswamy Distribution with Statistical Inference and Applications, 2023, 12, 2075-1680, 739, 10.3390/axioms12080739
    4. Ahmed R. El-Saeed, Amal S. Hassan, Neema M. Elharoun, Aned Al Mutairi, Rana H. Khashab, Said G. Nassr, A class of power inverted Topp-Leone distribution: Properties, different estimation methods & applications, 2023, 16, 16878507, 100643, 10.1016/j.jrras.2023.100643
    5. Said G. Nassr, Amal S. Hassan, Ehab M. Almetwally, Aned Al Mutairi, Rana H. Khashab, Neema M. ElHaroun, Statistical inference of the inverted exponentiated Lomax distribution using generalized order statistics with application to COVID-19, 2023, 13, 2158-3226, 10.1063/5.0174540
    6. Fatehi Yahya Eissa, Chhaya Dhanraj Sonar, Osama Abdulaziz Alamri, Ahlam H. Tolba, Statistical Inferences about Parameters of the Pseudo Lindley Distribution with Acceptance Sampling Plans, 2024, 13, 2075-1680, 443, 10.3390/axioms13070443
    7. Huda M. Alshanbari, Gadde Srinivasa Rao, Jin-Taek Seong, Sultan Salem, Saima K. Khosa, A New Cosine-Originated Probability Distribution with Symmetrical and Asymmetrical Behaviors: Repetitive Acceptance Sampling with Reliability Application, 2023, 15, 2073-8994, 2187, 10.3390/sym15122187
    8. Amani S. Alghamdi, Lulah Alnaji, Hilary Izuchukwu Okagbue, A new extended Chen distribution for modelling COVID-19 data, 2025, 20, 1932-6203, e0316235, 10.1371/journal.pone.0316235
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1940) PDF downloads(85) Cited by(8)

Figures and Tables

Figures(9)  /  Tables(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog