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Abstract: The quadratic rank transmutation map is used in this article to suggest a novel extension of 
the power inverted Topp–Leone distribution. The newly generated distribution is known as the 
transmuted power inverted Topp–Leone (TPITL) distribution. The power inverted Topp–Leone and 
the inverted Topp–Leone are included in the recommended distribution as specific models. Aspects of 
the offered model, including the quantile function, moments and incomplete moments, stochastic 
ordering, and various uncertainty measures, are all discussed. Plans for acceptance sampling are 
created for the TPITL model with the assumption that the life test will end at a specific time. The 
median lifetime of the TPITL distribution with the chosen variables is the truncation time. The smallest 
sample size is required to obtain the stated life test under a certain consumer’s risk. Five conventional 
estimation techniques, including maximum likelihood, least squares, weighted least squares, 
maximum product of spacing, and Cramer-von Mises, are used to assess the characteristics of TPITL 
distribution. A rigorous Monte Carlo simulation study is used to evaluate the effectiveness of these 
estimators. To determine how well the most recent model handled data modeling, we tested it on a 
range of datasets. The simulation results demonstrated that, in most cases, the maximum likelihood 
estimates had the smallest mean squared errors among all other estimates. In some cases, the Cramer-
von Mises estimates performed better than others. Finally, we observed that precision measures 
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decrease for all estimation techniques when the sample size increases, indicating that all estimation 
approaches are consistent. Through two real data analyses, the suggested model’s validity and 
adaptability are contrasted with those of other models, including the power inverted Topp–Leone, log-
normal, Weibull, generalized exponential, generalized inverse exponential, inverse Weibull, inverse 
gamma, and extended inverse exponential distributions. 

Keywords: power inverted Topp–Leone distribution; transmuted family; stochastic ordering; 
maximum product spacing 
 

Symbols: ℎ(𝑡;  Θ): PDF; 𝐻(𝑡;  Θ): CDF; 𝑆(𝑡;  Θ): SF; 𝜆(𝑡;  Θ): HRF; 𝜓(𝜏) : AE; 𝛾(𝜏) : H-CE; 𝔐(𝜏) : RE; 𝜌(𝜏) : Ts; 𝐿(𝑝) : AP; 𝑄(𝑢) : QF; 𝐺𝑀(Θ) : GM; −2 log 𝐿 : −2log likelihood ; 𝑝∗ : 
Consumer’s risk 
Abbreviations: AIC: Akaike information criterion; ASP: Acceptance sampling plan; AE: Arimoto 
entropy; AP: Acceptance probability of the lot as function of the failure probability; BIC: Bayesian 
information criterion; EIE: Extended inverse exponential; Ge-Ex: Generalized exponential; GIE: 
Generalized inverse exponential; in-Ga: inverse gamma; in-We: Inverse Weibull; K–S: Kolmogorov–
Smirnov; CAIC: Corrected AIC; CvMEs: Cramer-von Mises estimators; CDF: Cumulative 
distribution function; HRF: Hazard rate function; H-CE: Havrda and Charvat entropy; ITL: Inverted 
Topp–Leone; Ku: Kurtosis;; LSEs: Least squares estimators; MPSEs: Maximum product spacing 
estimators; PITL: Power ITL; PDF: Probability density function; PP: Probability-probability; QF: 
Quantile function; QRTM: Quadratic rank transmutation map; RE: Rényi entropy; Sw: Skewness; SE: 
Standard error; MSE: Mean squared error; med: Median lifetime; SO: Stochastic ordering 

1. Introduction 

The validity of statistical investigations of real-world occurrences is determined by the 
appropriateness of the distributions used as models. Although well-known distribution families are 
frequently employed to simulate many events, their modeling capabilities may not always meet 
expectations. To address this issue, several scholars have presented new distribution families for 
ideally representing real-world events by employing generalizations of existing families or novel 
distribution generating procedures in the last two decades. In addition, several strategies for creating a 
new distribution have been described in the literature. For example, reference [1] devised a mechanism 
called the quadratic rank transmutation map (QRTM). This technique generates a transmuted 
distribution, as the name implies. In addition to having the same characteristics as baseline 
distributions, transmuted distributions are always more flexible. 

Reference [1] defined the transmuted class with the following cumulative distribution function 
(CDF) and probability density function (PDF): 

             𝐹 (𝑡) = 𝐺(𝑡) 1 + 𝜐 − 𝜐𝐺(𝑡)  , |𝜐| ≤ 1, 𝑡 ∈ 𝑅,                     (1) 

              𝑓 (𝑡) = 𝑔(𝑡) 1 + 𝜐 − 2𝜐𝐺(𝑡) ,                           (2) 

where 𝜐 is a transmuted parameter known as the transmutation parameter. The transmuted density (2) 
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is a mixture of the baseline density and the exponentiated-G density with power parameter equal two 
for 𝜐 = 0 , the transmuted CDF 𝐹 (𝑡)  and the baseline CDF, G(t) are identical. For more 
information about the generalization of the probability distributions via the QRTM method, the reader 
can refer to references [2–8]. Other generalization methods can be found in [9–15]. 

Reference [16] recently presented the inverted Topp–Leone (ITL) distribution as a probability 
distribution with only one shape parameter. The PDF and CDF of the ITL distribution are defined 
as follows: 𝐺(𝑡) = 1 − (1 + 2𝑡) (1 + 𝑡) ; 𝑡, 𝜗 > 0, 𝑔(𝑡) = 2𝜗𝑡(1 + 𝑡) (1 + 2𝑡) ; 𝑡, 𝜗 > 0. 

Many researchers have investigated the ITL distribution extensions and generalizations to increase 
flexibility in modeling a wide range of data. Reference [17] presented an “alpha power ITL 
distribution,” a new form of ITL model with an extra parameter based on the alpha power-G family. 
Reference [18] created a three-parameter ITL distribution for a particular case from the 
Kumaraswamy-G family. Reference [19] presented the two-parameter half-logistic ITL distribution, 
and parameter estimators were investigated under ranked samples. Reference [20] investigated 
parameter estimators using various estimating methods for the modified Kies ITL distribution. 
Reference [21] proposed a new two-parameter ITL model via the odd Weibull–G family. Our focus 
here is on a power ITL (PITL) distribution prepared in [22] with an extra shape parameter. The PDF 
and CDF of the PITL distribution are defined as follows: 𝐺 (𝑡) = 1 − 1 + 2𝑡 1 + 𝑡 ; 𝑡, 𝜗, 𝛿 > 0,                   (3) 

𝑔 (𝑡) = 2𝜗𝛿𝑡 1 + 𝑡 1 + 2𝑡 ; 𝑡, 𝜗, 𝛿 > 0. 

Acceptance sampling is used by industries worldwide to ensure the quality of incoming and 
outgoing goods, using statistical principles to create a plan for accepting or rejecting these goods. This 
process is called an acceptance sampling plan (ASP). It is one of the oldest quality assurance 
procedures, and it involves inspecting and deciding on quantities of goods to be accepted. An example 
of ASP in action is shown below: 
• Required: A corporation gets a product shipment from a vendor. This product is frequently a 
component or raw material utilized during manufacturing. 
• Sampling: A sample of the lot is obtained, and the relevant quality characteristics of the units in the 
sample are examined. 
• Decision: Based on the information provided by the presented sample, a decision is made about 
whether to accept or reject the lot. 

1) For accepted samples: Accepted lots are placed into production. 
2) For rejected samples: Rejected lots may be transferred from the seller or subjected to 

further lot disposition actions. 
Parameter estimation is essential to the study of any probability distribution. Maximum likelihood 

(ML) estimation is frequently used to estimate any model’s parameters due to its desirable qualities. 
ML estimators are asymptotically consistent, unbiased, and impartial [23]. Over time, other methods 
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for estimating distributions have emerged, including least squares (LS) and weighted LS (WLS) [24], 
maximum product of spacing (MPS) [25], and Cramer-von Mises (CvM) [26]. 

In this study, we established a new generalization method of PITL distribution to enhance the 
overall flexibility of the PITL model by employing QRTM. The newly created distribution is termed 
“transmuted PITL (TPITL) distribution”. We are motivated to introduce the TPITL distribution due to 
the following reasons: 
(i) This modification significantly impacts important distributional features, such as skewness, 
kurtosis, mean, and variance. 
(ii) The related density and hazard rate functions have a large panel of monotonic and nonmonotonic 
forms, making them appropriate for data fitting and other applications. 
(iii) It includes the PITL and ITL distributions as sub-models. 
(iv) Important aspects of the presented model are explored, including quantile function, moments and 
incomplete moments, stochastic ordering, and some uncertainty measures. 
(v) We created a sampling strategy, extracted its operational characteristic function, and gave it a 
decision rule. 
(vi) The TPITL distribution parameters are evaluated using five traditional estimation methodologies. 
(vii) An inclusive simulation study was conducted to determine if estimators based on accuracy criteria 
were successful. 
(viii) The proposed model’s validity and flexibility are compared with those of existing models, 
including the PITL, log-normal, Weibull, generalized inverse exponential, inverse Weibull, inverse gamma, 
generalized exponential, and extended inverse exponential distributions via two real data analyses. 

The remaining paper is laid out as follows: Section 2 describes the CDF, survival function, and 
hazard rate function (HRF) of the TPITL distribution. In Section 3, the statistical features of

 
the TPITL 

distribution are examined, and various helpful representations, measurements, and functions are 
derived. Section 4 discusses the suggested ASP’s design under a truncated life test. In Section 5, the 
parametric estimate of the TPITL distribution is examined using some classical techniques. A 
simulation analysis ensuring its numerical performance is presented in Section 6. Section 7 discusses 
two real-world datasets to demonstrate how beneficial the TPITL model may be. Lastly, Section 8 
contains a few findings. 

2. Model description 

We constructed the TPITL distribution using the CDF (3) of the PITL model as a baseline 
distribution in (1). The CDF of the TPITL distribution is given by: 

𝐻(𝑡; Θ) = 1 − 1 + 𝜐 , |𝜐| ≤ 1, 𝑡 > 0,                (4) 

where 𝜗 > 0  and 𝛿 > 0  are two shape parameters, 𝜐  is the transmuted parameter, and Θ ≡(𝜐, 𝜗, 𝛿) is the set of parameters. A random variable with CDF (4) will be denoted by 𝑇~𝑇𝑃𝐼𝑇𝐿(Θ). 
The PDF associated with (4) is given as follows: 

ℎ(𝑡; Θ) = 2𝜗𝛿𝑡 1 + 𝑡 1 + 2𝑡 1 − 𝜐 + 2𝜐 , 𝑡 > 0.        (5) 
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For 𝜐 = 0, the PDF (5) reduces to PITL distribution (Abushal et al. [22]). 
For 𝜐 = 0, 𝜗 = 1, the PDF (5) gives the ITL distribution (Hassen et al. [16]). 

The form of the TPITL distribution is controlled by two shape parameters 𝜐, and 𝜗, similar to 
the PITL distribution. The parameter 𝜐 adds to the distribution’s flexibility in addition to its role in 
influencing the behavior of the distribution. The survival function and HRF of the TPITL distribution 
are derived, respectively, as follows: 𝑆(𝑡; Θ) = 1 − 1 − Κ(𝛿, 𝜗) 1 + 𝜐 Κ(𝛿, 𝜗) , 𝜆(𝑡; Θ) = ( , )( , ) ( , ) , 

where Κ(𝛿, 𝜗) = 1 + 2𝑡 1 + 𝑡 . For the given parameter values, the PDF and HRF plots 

are illustrated in Figures 1 and 2, respectively. 

 

Figure 1. The PDF plots for the TPITL distribution. 

Figure 2. The HRF plots for the TPITL distribution. 
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Reversed J-shaped, unimodal, nearly symmetrical, and positively skewed are all possible shapes for 
the PDF of the TPITL model. Additionally, the HRF of the TPITL model has a growing, decreasing, 
inverted J-shaped, upside-down form. These figures indicate the flexibility of the TPITL distribution to 
model right-skewed data as well as data with decreasing and upside-down bathtub shapes. 

Furthermore, for estimation and simulation, quantiles are necessary. Inverting Equation (4) yields 
the quantile function, say, 𝑄(𝑢) = 𝐻 (𝑢), where 𝑢 ∈ (0,1), as follows: 

𝑄(𝑢) = −1 + (1 − 𝐴) ⁄ + (1 − (1 − 𝐴) ⁄ ) − 1 + (1 − 𝐴) ⁄ ⁄
, 𝐴 = ( ) ( ) .   (6) 

Setting 𝑢 = 0.5 in (6), we obtain the median. 

3. Principal characteristics 

Herein, we present ordinary and incomplete moments, stochastic ordering (SO), and some 
uncertainty measures of the TPITL distribution. 

3.1. Moments measures 

Here, we obtain the 𝑚   moment, incomplete moments of the TPITL distribution. The 𝑚  
moment for the TPITL model is derived as follows: 

𝜇 ́ = 2𝜗𝛿𝑡 1 + 𝑡 1 + 2𝑡 1 − 𝜐 + 2𝜐  𝑑𝑡 = (1 − 𝜐)𝐼 + 𝜐𝐼 ,  

where 𝐼 = 2𝜗𝛿𝑡 1 + 𝑡 1 + 2𝑡  𝑑𝑡, 

𝐼 = 4𝜗𝛿𝑡 1 + 𝑡 1 + 2𝑡  𝑑𝑡. 

Using the following generalized binomial expansion, for 𝜗 > 0 is a real non-integer and |𝑧| < 1, (1 + 𝑧) = ∑ 𝜗 − 1𝑗 𝑧 , 

in 𝐼  and 𝐼 , then, we have 𝐼 = ∑ 2𝜗 𝜗 − 1𝑗 Β + 𝑗 + 2, 𝜗 −  , 𝐼 = ∑ 4𝜗 2𝜗 − 1𝑖 Β + 𝑖 + 2, 2𝜗 − . 

where Β(. , . ) is the beta function. Hence, the 𝑚  moment of the TPITL distribution can be written 
as follows: 

𝜇 ́ = (1 − 𝜐) ∑ 2𝜗 𝜗 − 1𝑗 Β + 𝑗 + 2, 𝜗 − + 𝜐 ∑ 4𝜗 2𝜗 − 1𝑖 Β + 𝑖 + 2, 2𝜗 − .  (7) 
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The first four moments about zero are obtained after putting 𝑚 =  1, 2, 3, and 4 in (7). The 𝑚  
central moment (𝜇 ) of the TPITL distribution is given by: 𝜇 = 𝐸(𝑇 − 𝜇́ ) = ∑ (−1) 𝑚𝑢 (𝜇́ )  𝜇 ́ . 

Numerical values of the first four moments,  variance (𝜎 ), skewness (Sw), and kurtosis (Ku) of the 
TPITL distribution for 𝜗 = 0.5, and at some choice values of parameters are displayed in Table 1. 

Table 1. Moments measures for selected parameters values. 𝜇 ́  𝛿 = 7 𝜐 = −0.3 
𝛿 = 7 𝜐 = 0.3 

𝛿 = 9 𝜐 = 0.5 
𝛿 = 9 𝜐 = −0.5 

𝛿 = 7 𝜐 = −0.5 
𝛿 = 7 𝜐 = 0.5𝜇́  1.567 1.389 1.236 1.439 1.626 1.33 𝜇́  3.056 2.327 1.657 2.318 3.299 2.084 𝜇́  11.183 6.932 2.603 4.584 12.6 5.515 𝜇́  392.029 212.752 6.807 16.324 451.896 152.346 𝜎  0.601 0.397 0.131 0.247 0.655 0.315 

Sw 9.669 10.388 4.904 4.377 9.618 10.8 

Ku 964.521 1206 124.816 22.875 934.164 1371 

According to Table 1, all moments’ values, variance, and skewness measures of the TPITL model 
are less for negative values of transmuted parameters than for positive ones. While the TPITL’s kurtosis 
values was the highest for positive values of 𝜐. The TPITL distribution is right-skewed according to the 
values of the skewness measure (Figure 1). The TPITL distribution is leptokurtic according to the values 
of the kurtosis measure (Figure 2). 

Moreover, the 𝑚   incomplete moment, say 𝜁 (𝑧) of the TPITL distribution, is obtained as follows: 𝜁 (𝑧) = 2𝜗𝛿(1 − 𝜐) 𝑡𝑚+2𝛿−1(1 + 𝑡𝛿)−2𝜗−1(1 + 2𝑡𝛿)𝜗−1 𝑑𝑡𝑧0 + 4𝜐𝜗𝛿 𝑡𝑚+2𝛿−1(1 + 𝑡𝛿)−4𝜗−1(1 + 2𝑡𝛿)2𝜗−1 𝑑𝑡.𝑧0   

After simplification, the 𝑚  incomplete moment of the TPITL distribution is obtained as: 

𝜁 (𝑧) = 2𝜗(1 − 𝜐) ∑ 𝜗 − 1𝑗 Β + 𝑗 + 2, 𝜗 − , + 4𝜗𝜐 ∑ 2𝜗 − 1𝑖 Β + 𝑖 + 2, 2𝜗 − , , 

where Β(. , . , 𝑥)  is the incomplete beta function. Inequality measures, including the Bonferroni and 
Lorenz curves, are commonly utilized in various fields. These are the first incomplete moments’ principal 
applications. The Lorenz and Bonferroni curves are formed, respectively, as follows: 

ℚ = ( ) ∑  ,   ∑ ,   ( ) ∑ ,    ,   ∑ ,    ,    , 

ℂ = ℚ 1 − 1 + 𝜐 . 
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3.2. Stochastic ordering 

In reliability theory and other fields, SO is a well-studied notion in probability distributions, 
and it is used to assess the performance of random variables. Let 𝑇  has the TPITL distribution with 
parameters Θ = (ϑ , δ , υ ) 𝑖 =  1, 2 . Let 𝐻 (𝑡; Θ )  indicates 𝑇  ’s CDF and ℎ (𝑡;  Θ )  represents 𝑇 ’s PDF. 

If ℎ (𝑡; Θ ) ℎ (𝑡; Θ )⁄ , is a decreasing function ∀ 𝑡, then 𝑇  is said to be stochastically less 
than 𝑇  (represented by 𝑇 ≤ 𝑇 ) in terms of likelihood ratio order. 
Let 𝑇 ~𝑇𝑃𝐼𝑇𝐿(ϑ , δ , υ ) and 𝑇 ~𝐼𝑇𝐿(ϑ , δ , υ ) then the likelihood ratio ordering is 

( ; )( ; ) = ( , )( , )  , 

log ( ; )( ; ) = − ( ) + ( ) + ( )
  

           − ( ) + ( , )⁄( , ) − ( , )⁄( , )  , 

where, Κ(𝛿 , 𝜗 ) =  , 𝑖 = 1, 2 ( , ) =  , 𝑖 = 1, 2 

At 𝜗 < 𝜗  , 𝛿 < 𝛿  , 𝜐 < 𝜐 ,  we get 𝑑 𝑑𝑡 log ℎ (𝑡; Θ ) − log ℎ (𝑡; Θ ) < 0 , for all 𝑡 ≥ 0 , 

hence, ( ; )( ; ) is decreasing in 𝑡, and hence, 𝑇 ≤ 𝑇 . Moreover, 𝑇  is said to be smaller than 𝑇  

in other different orderings, such as SO (denoted by 𝑇 ≤ 𝑇  ), hazard rate order (denoted by 𝑇 ≤ 𝑇 ), and reversed hazard rate order (denoted by 𝑇 ≤ 𝑇 ). 

3.3. Information measures 

The entropy of a random variable with PDF (5) is a measure of the uncertainty’s fluctuation. A 
high entropy number indicates that the data is more unpredictable. The Rényi entropy (RE) [27] is 
defined by: 𝔐(𝜏) = (1 − 𝜏) log ℎ(𝑡)  𝑑𝑡  , 𝜏 ≠ 1, 𝜏 > 0.              (8) 

To obtain 𝔐(𝜏) of the TPITL model, we must obtain ℎ(𝑡;  Θ) , as follows: 

ℎ(𝑡; Θ) = Ξ Ξ , 

where, Ξ = (1 − 𝜐) (2𝜗𝛿) 𝑡 ( ) 1 + 𝑡 ( ) 1 + 2𝑡 ( )
  and Ξ = 1 + Κ(𝛿, 𝜗)  . 
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Using the binomial expansion, then Ξ  and Ξ  noticing that Κ(𝛿, 𝜗) < 1, we have 

Ξ = ∑ (1 − 𝜐) 𝜏(𝜗 − 1)𝑗 (2𝜗𝛿) 𝑡 ( ) 1 + 𝑡 , 

Ξ = ∑ 𝜏𝑖 1 + 𝑡 1 + = ∑ 𝜏𝑖 𝜗𝑖𝑘 𝑡 1 + 𝑡, . 

Hence, ℎ(𝑡; Θ) , is formed as 

ℎ(𝑡; Θ) = Υ 𝜉 , 𝑡 ( ) 1 + 𝑡 ,              (9) 

Υ = ∑ (1 − 𝜐) 𝜏(𝜗 − 1)𝑗 (2𝜗𝛿)  , 𝜉 , = ∑ 𝜏𝑖 𝜗𝑖𝑘, . 

Insert (9) in (8), then, we get the RE of the TPITL distribution as follows: 𝔐(𝜏) = (1 − 𝜏) log ,   Β 2𝜏 − + 𝑗 + 𝑘 +  , 𝜏𝜗 + 𝜗𝑖 + − . 

The Tsallis entropy (TE) measure [28] is defined by: 𝜌(𝜏) = 1 − ℎ(𝑡)  𝑑𝑡  , 𝜏 ≠ 1, 𝜏 > 0.  

The TE of the TPITL distribution is obtained as follows: 𝜌(𝜏) = 1 − ,   Β 2𝜏 − + 𝑗 + 𝑘 +  , 𝜏𝜗 + 𝜗𝑖 + − . 

The Arimoto entropy (AE) measure ([29]) is given by: 

𝜓(𝜏) = ℎ(𝑡)  𝑑𝑡 − 1  , 𝜏 ≠ 1, 𝜏 > 0. 

Hence, the AE of the TPITL distribution is given by: 

𝜓(𝜏) = ,   Β 2𝜏 − + 𝑗 + 𝑘 +  , 𝜏𝜗 + 𝜗𝑖 + − − 1 . 

The Havrda and Charvat entropy (H–CE) measure ([30]) is defined by: 

𝛾(𝜏) = ℎ (𝑡)  𝑑𝑡 − 1  , 𝜏 ≠ 1, 𝜏 > 0. 
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Hence, the H–CE of the TPITL distribution is given by: 

𝛾(𝜏) = ,   Β 2𝜏 − + 𝑗 + 𝑘 +  , 𝜏𝜗 + 𝜗𝑖 + − − 1 . 

Table 2 shows the numerical
 
entropy values for some of the elected parameter values. 

Table 2. Entropy values for the TPITL model. 

τ  (𝜗, 𝛿, 𝜐) RE TE AE H-CE 
0.5 (0.5,3,0.3) 3.28 8.308 25.563 61.716 

(1,3,0.3) 1.535 2.308 3.64 8.789 
(1.5,3,0.3) 1.028 1.345 1.797 4.337 
(2,3,0.3) 0.76 0.924 1.138 2.746 
(0.5,5,−0.3) 1.944 3.286 5.985 14.448 
(1,5,−0.3) 0.876 1.1 1.402 3.384 
(1.5,5,−0.3) 0.483 0.546 0.62 1.497 
(2,5,−0.3) 0.263 0.281 0.301 0.726 

2 (0.5,3,0.3) 1.163 0.687 0.882 0.882 
(1,3,0.3) 0.615 0.46 0.53 0.53 
(1.5,3,0.3) 0.353 0.297 0.323 0.323 
(2,3,0.3) 0.188 0.172 0.18 0.18 
(0.5,5,−0.3) 1.504 0.778 1.057 1.057 
(1,5,−0.3) 0.834 0.566 0.682 0.682 
(1.5,5,−0.3) 0.517 0.404 0.456 0.456 
(2,5,−0.3) 0.32 0.274 0.296 0.296 

From Table 2, we observe the following: 
 For a small value of 𝜏 , the H–CE measure takes the largest values for all values of (𝜗, 𝛿, 𝜐) , 

compared to other entropy measures, which leads to less information. 
 The RE measure provides more information due to its small values compared with other measures 

at 𝜏 = 0.5 for all values of (𝜗, 𝛿, 𝜐). 
 As the value of 𝜏 increases, the values of all entropy measures decrease. 
 The TS entropy gets the smallest values for all values of (𝜗, 𝛿, 𝜐), at a large value of 𝜏, which 

leads to less variability. 

4. Acceptance sampling plans 

We assume that the lifetime of a product follows the TPITL distribution with parameters (Θ) 
defined by (4) and that the specified median lifetime (med) of the units claimed by a producer is med0. 
Our interest is to make an inference about the acceptance or rejection of the proposed lot based on the 
criterion that the actual med of the units is larger than the prescribed lifetime med0. A common practice 
in life testing is to terminate the life test at a predetermined time 𝑡  and note the number of failures. 
Now to observe med, the experiment is run for a 𝑡  =  𝑎∗ med0 units of time, multiple of claimed 
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med with any positive constant a. The idea of accepting the proposed lot based on the evidence that 
med ≥ med0, given probability of at least 𝑝∗ (consumer’s risk) using a single ASP is as follows [31]: 
Draw a random sample of 𝑛 number of units from the proposed lot and conduct an experiment for 𝑡  
units of time. If during the experiment, 𝑐 or less number of units (acceptance number) fail, then accept 
the whole lot; otherwise, reject the lot. Observe the probability of accepting a lot, and consider 
sufficiently large-sized lots so that the binomial distribution can be applied under the proposed 
sampling plan given by: 𝐿(𝑝) = ∑ 𝑛𝑖 𝑝 (1 − 𝑝)  , 𝑖 = 1, … , 𝑛, 

where 𝑝 = 𝐻(𝑡 ; 𝜗), defined by (4). The function 𝐿(𝑝) is the operating characteristic function of the 
sampling plan, i.e., the acceptance probability of the lot as a function of the failure probability. Further, 
using 𝑡  =  𝑎∗ 𝑚 , 𝑝  can be written as follows: 

𝑝 = 1 − ( )( ) 1 + 𝜐 ( )( ) .                 (10) 

Now, the problem is to determine for the given values of 𝑝∗(0 <  𝑝∗  <  1), 𝑡 , and 𝑐, the smallest 
positive integer 𝑛 such that 𝐿(𝑝 ) = ∑ 𝑛𝑖 𝑝 (1 − 𝑝 ) ≤ 1 − 𝑝∗,                   (11) 

where 𝑝   is given by (10). The minimum values of 𝑛  satisfying the inequality (11) and its 
corresponding operating characteristic probability are obtained and displayed in Tables 3−8 for the 
assumed parameters as follows: 𝑝∗ = 0.2, 0.4, 0.6, 0.99, 𝑐 = 0.2 (0.2) 1 when 𝑎 =  1, thus, 𝑡 =  
med0 = 0.5 for all parameter values. The assumed parameter values of TPITL distribution are: 
(i) (𝜐, 𝛿, 𝜗) = (0.5, 0.5, 0.5) , (ii) (𝜐, 𝛿, 𝜗) = (0.5, 0.5, 1.5) , (iii) (𝜐, 𝛿, 𝜗) = (0.5, 1.5, 0.5) , (iv) (𝜐, 𝛿, 𝜗) = (1.5, 0.5, 0.5) , (v) (𝜐, 𝛿, 𝜗) = (1.5, 0.5, 1.5) , and (vi) (𝜐, 𝛿, 𝜗) = (1.5, 1.5, 1.5) . We 
provide the R codes of numerical value in Appendix A. From the results obtained in Tables 3−8, one 
can notice that: 
• Regarding the ASP parameters, when 𝑝∗ and 𝑐 are increasing, the required sample sizes 𝑛 and 𝐿(𝑝 ) are also increasing. 
• As the value of 𝑎 increases, the required sample sizes 𝑛 and 𝐿(𝑝 ) decrease. 
• Regarding the TPITL distribution parameters, the desired sample size 𝑛 increases while 𝐿(𝑝 ) 

decreases with an increased value of 𝜗 for fixed 𝜐 and 𝛿 
• The required sample size 𝑛  increases while 𝐿(𝑝 )  decreases as the value of 𝛿  increases for 

fixed values of 𝜐 and 𝜗. 
• The required sample size 𝑛 increases while 𝐿(𝑝 ) decreases with increasing values of 𝛿 and 

fixed values of 𝜐 and 𝜗. 
• As the value of 𝜐 increases for fixed values of 𝜗, and 𝛿, the required sample size 𝑛 increases, 

while 𝐿(𝑝 ) decreases. 
• For all results, we have obtained and verified that 𝐿(𝑝 ) ≤ 1 − 𝑝∗. Also, when 𝑎 = 1, we have 𝑝  = 0.5  as 𝑡  = 𝑚  ; hence, all results (𝑛, 𝐿(𝑝 ))  for any vector of parameters (𝜐, 𝛿, 𝜗) 

are similar. 
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Table 3. Single sampling plan for TPITL distribution at 𝜐 = 0.5, 𝛿 = 0.5, 𝜗 = 0.5. 𝑝∗   𝑐   𝑎 = 0.2  𝑎 = 0.4 𝑎 = 0.6 𝑎 = 0.8 𝑎 = 1𝑛   𝐿(𝑝 )  𝑛   𝐿(𝑝 ) 𝑛 𝐿(𝑝 ) 𝑛 𝐿(𝑝 )   𝑛   𝐿(𝑝 )
0.2 0 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000

2 6 0.8346 5 0.8354 4 0.9162 4 0.8941 4 0.8750
4 11 0.8468 9 0.8457 8 0.8627 8 0.8152 7 0.8906
10 29 0.8030 23 0.8085 20 0.8438 19 0.8256 18 0.8338

0.4 0 2 0.6983 2 0.6130 1 1.0000 1 1.0000 1 1.0000
2 8 0.6432 6 0.7047 6 0.6158 5 0.7268 5 0.6875
4 14 0.6491 11 0.6652 10 0.6504 9 0.6939 9 0.6367
10 33 0.6359 26 0.6373 23 0.6486 21 0.6797 20 0.6762

0.6 0 3 0.4876 2 0.6130 2 0.5624 2 0.5270 2 0.5000
2 10 0.4582 8 0.4484 7 0.4667 6 0.5504 6 0.5000
4 17 0.4439 13 0.4753 12 0.4300 11 0.4448 10 0.5000
10 38 0.4151 29 0.4539 26 0.4330 24 0.4387 23 0.4159

0.8 0 5 0.2377 4 0.2303 3 0.3163 3 0.2777 3 0.2500
2 13 0.2487 10 0.2570 9 0.2419 8 0.2731 8 0.2266
4 21 0.2324 16 0.2487 14 0.2562 13 0.2501 12 0.2744
10 44 0.2077 34 0.2099 30 0.2071 27 0.2408 26 0.2122

0.99 0 13 0.0134 10 0.0122 9 0.0100 8 0.0113 7 0.0156
2 25 0.0114 19 0.0109 16 0.0136 15 0.0111 14 0.0112
4 35 0.0110 26 0.0132 23 0.0113 21 0.0113 19 0.0154
10 62 0.0107 47 0.0114 41 0.0113 37 0.0135 35 0.0122

Table 4. Single sampling plan for TPITL distribution at 𝜐 = 0.5, 𝛿 = 0.5, 𝜗 = 1.5. 𝑝∗   𝑐   𝑎 = 0.2  𝑎 = 0.4 𝑎 = 0.6 𝑎 = 0.8 𝑎 = 1𝑛   𝐿(𝑝 )  𝑛   𝐿(𝑝 ) 𝑛 𝐿(𝑝 ) 𝑛 𝐿(𝑝 )   𝑛   𝐿(𝑝 )
0.2 0 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000

2 8 0.8058 5 0.8890 5 0.8148 4 0.9037 4 0.8750
4 15 0.8099 10 0.8553 9 0.8183 8 0.8360 7 0.8906
10 38 0.8055 26 0.8223 22 0.8127 19 0.8563 18 0.8338

0.4 0 3 0.6001 2 0.6668 1 1.0000 1 1.0000 1 1.0000
2 11 0.6005 7 0.6806 6 0.6737 5 0.7473 5 0.6875
4 19 0.6174 13 0.6318 11 0.6202 10 0.6016 9 0.6367
10 44 0.6278 30 0.6362 25 0.6308 22 0.6507 20 0.6762

0.6 0 4 0.4649 3 0.4446 2 0.5949 2 0.5417 2 0.5000
2 14 0.4118 9 0.4685 8 0.4088 7 0.4248 6 0.5000
4 23 0.4261 16 0.4044 13 0.4237 11 0.4828 10 0.5000
10 51 0.4092 34 0.4354 28 0.4368 25 0.4214 23 0.4159

0.8 0 7 0.2161 4 0.2964 4 0.2105 3 0.2934 3 0.2500
2 18 0.2274 12 0.2343 10 0.2223 9 0.2062 8 0.2266
4 29 0.2108 19 0.2314 16 0.2056 14 0.2100 12 0.2744
10 59 0.2126 39 0.2313 32 0.2275 28 0.2357 26 0.2122

0.99 0 19 0.0101 12 0.0116 9 0.0157 8 0.0137 7 0.0156
2 34 0.0121 22 0.0129 18 0.0111 15 0.0146 14 0.0112
4 48 0.0109 31 0.0123 25 0.0118 22 0.0104 19 0.0154
10 85 0.0101 55 0.0124 45 0.0104 39 0.0109 35 0.0122
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Table 5. Single sampling plan for TPITL distribution at 𝜐 = 0.5, 𝛿 = 1.5, 𝜗 = 0.5. 𝑝∗   𝑐   𝑎 = 0.2 𝑎 = 0.4 𝑎 = 0.6 𝑎 = 0.8 𝑎 = 1𝑛   𝐿(𝑝 )   𝑛  𝐿(𝑝 ) 𝑛 𝐿(𝑝 ) 𝑛 𝐿(𝑝 )   𝑛   𝐿(𝑝 )
0.2 0 5 0.8277 2 0.8220 1 1.0000 1 1.0000 1 1.0000

2 34 0.8059 9 0.8432 6 0.8221 4 0.9270 4 0.8750
4 68 0.8032 18 0.8285 11 0.8303 8 0.8854 7 0.8906
10 178 0.8031 47 0.8163 28 0.8108 21 0.8344 18 0.8339

0.4 0 11 0.6234 3 0.6757 2 0.6890 1 1.0000 1 1.0000
2 50 0.6045 13 0.6370 8 0.6221 6 0.6512 5 0.6875
4 90 0.6072 24 0.6093 14 0.6210 10 0.6950 9 0.6367
10 214 0.6045 56 0.6126 32 0.6386 24 0.6498 20 0.6762

0.6 0 20 0.4074 5 0.4566 3 0.4748 2 0.5821 2 0.5000
2 67 0.4073 17 0.4386 10 0.4339 7 0.5073 6 0.5000
4 113 0.4064 29 0.4263 17 0.4121 12 0.4836 10 0.5000
10 249 0.4037 64 0.4207 37 0.4098 27 0.4468 23 0.4159

0.8 0 35 0.2005 9 0.2085 5 0.2254 3 0.3389 3 0.2500
2 92 0.2033 23 0.2225 13 0.2274 9 0.2792 8 0.2266
4 145 0.2011 37 0.2072 21 0.2062 15 0.2352 12 0.2744
10 294 0.2030 75 0.2118 42 0.2269 31 0.2271 26 0.2122

0.99 0 98 0.0102 24 0.0110 13 0.0115 9 0.0132 7 0.0156
2 179 0.0103 44 0.0115 24 0.0120 17 0.0129 14 0.0112
4 248 0.0102 62 0.0104 34 0.0107 24 0.0124 19 0.0154
10 432 0.0101 108 0.0110 60 0.0107 43 0.0119 35 0.0122

Table 6. Single sampling plan for TPITL distribution at 𝜐 = 1.5, 𝛿 = 0.5, 𝜗 = 0.5. 𝑝∗   𝑐   𝑎 = 0.2  𝑎 = 0.4 𝑎 = 0.6 𝑎 = 0.8 𝑎 = 1𝑛   𝐿(𝑝 )  𝑛   𝐿(𝑝 ) 𝑛 𝐿(𝑝 ) 𝑛 𝐿(𝑝 )   𝑛   𝐿(𝑝 )
0.2 0 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000

2 7 0.8405 5 0.8776 5 0.8063 4 0.9018 4 0.8750
4 14 0.8097 10 0.8354 9 0.8067 8 0.8317 7 0.8906
10 35 0.8142 25 0.8284 21 0.8469 19 0.8502 18 0.8338

0.4 0 2 0.7564 2 0.6543 1 1.0000 1 1.0000 1 1.0000
2 10 0.6185 7 0.6557 6 0.6610 5 0.7430 5 0.6875
4 17 0.6530 12 0.6795 11 0.6019 9 0.7174 9 0.6367
10 41 0.6205 29 0.6344 25 0.6030 22 0.6399 20 0.6762

0.6 0 4 0.4327 3 0.4281 2 0.5877 2 0.5386 2 0.5000
2 13 0.4107 9 0.4381 7 0.5188 7 0.4186 6 0.5000
4 21 0.4409 15 0.4361 13 0.4036 11 0.4747 10 0.5000
10 47 0.4152 33 0.4246 28 0.4068 25 0.4093 23 0.4159

0.8 0 6 0.2476 4 0.2801 4 0.2030 3 0.2901 3 0.2500
2 17 0.2135 12 0.2085 10 0.2093 9 0.2011 8 0.2266
4 27 0.2046 18 0.2463 15 0.2484 14 0.2035 12 0.2744
10 55 0.2022 38 0.2163 32 0.2037 28 0.2258 26 0.2122

0.99 0 17 0.0115 11 0.0144 9 0.0142 8 0.0131 7 0.0156
2 32 0.0103 21 0.0134 17 0.0144 15 0.0138 14 0.0112
4 44 0.0113 30 0.0114 24 0.0142 21 0.0147 19 0.0154
10 78 0.0105 53 0.0119 44 0.0107 38 0.0138 35 0.0122
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Table 7. Single sampling plan for TPITL distribution at 𝜐 = 1.5, 𝛿 = 0.5, 𝜗 = 1.5. 𝑝∗   𝑐   𝑎 = 0.2  𝑎 = 0.4 𝑎 = 0.6 𝑎 = 0.8 𝑎 = 1𝑛   𝐿(𝑝 )   𝑛   𝐿(𝑝 )   𝑛   𝐿(𝑝 )   𝑛   𝐿(𝑝 )   𝑛   𝐿(𝑝 )  

0.2 0 2 0.8116 1 1.0000 1 1.0000 1 1.0000 1 1.0000
2 9 0.8220 6 0.8359 5 0.8398 4 0.9104 4 0.8750
4 17 0.8319 11 0.8484 9 0.8515 8 0.8504 7 0.8906
10 45 0.8064 29 0.8062 23 0.8192 20 0.8219 18 0.8338

0.4 0 3 0.6588 2 0.6992 2 0.6170 1 1.0000 1 1.0000
2 12 0.6560 8 0.6453 6 0.7115 5 0.7619 5 0.6875
4 22 0.6392 14 0.6520 11 0.6751 10 0.6275 9 0.6367
10 53 0.6120 33 0.6404 26 0.6530 23 0.6131 20 0.6762

0.6 0 5 0.4340 3 0.4889 2 0.6170 2 0.5526 2 0.5000
2 16 0.4429 10 0.4608 8 0.4574 7 0.4467 6 0.5000
4 28 0.4058 17 0.4472 14 0.4014 12 0.4039 10 0.5000
10 61 0.4084 38 0.4200 30 0.4142 25 0.4640 23 0.4159

0.8 0 8 0.2320 5 0.2390 4 0.2349 3 0.3053 3 0.2500
2 22 0.2147 14 0.2008 10 0.2651 9 0.2245 8 0.2266
4 35 0.2059 21 0.2352 17 0.2035 14 0.2337 12 0.2744
10 71 0.2089 44 0.2116 34 0.2239 29 0.2215 26 0.2122

0.99 0 23 0.0101 13 0.0137 10 0.0130 8 0.0157 7 0.0156
2 42 0.0105 25 0.0116 19 0.0119 16 0.0112 14 0.0112
4 58 0.0110 35 0.0114 27 0.0105 22 0.0134 19 0.0154
10 102 0.0108 62 0.0111 48 0.0101 40 0.0112 35 0.0122

Table 8. Single sampling plan for TPITL distribution at 𝜐 = 1.5, 𝛿 = 1.5, 𝜗 = 1.5. 𝑝∗   𝑐   𝑎 = 0.2  𝑎 = 0.4 𝑎 = 0.6 𝑎 = 0.8 𝑎 = 1𝑛   𝐿(𝑝 )   𝑛   𝐿(𝑝 )   𝑛   𝐿(𝑝 )   𝑛   𝐿(𝑝 )   𝑛   𝐿(𝑝 )  
0.2 0 19 0.8043 3 0.8513 2 0.8010 1 1.0000 1 1.0000

2 128 0.8027 21 0.8019 8 0.8536 5 0.8740 4 0.8750
4 258 0.8008 41 0.8058 17 0.8012 10 0.8291 7 0.8906
10 680 0.8003 107 0.8034 42 0.8220 25 0.8180 18 0.8338

0.4 0 43 0.6016 7 0.6169 3 0.6416 2 0.6505 1 1.0000
2 190 0.6028 30 0.6086 12 0.6206 7 0.6481 5 0.6875
4 345 0.6020 54 0.6087 21 0.6339 12 0.6696 9 0.6367
10 821 0.6006 128 0.6061 50 0.6182 29 0.6182 20 0.6762

0.6 0 76 0.4036 12 0.4125 5 0.4116 3 0.4231 2 0.5000
2 258 0.4018 40 0.4103 16 0.4017 9 0.4290 6 0.5000
4 435 0.4017 68 0.4010 26 0.4255 15 0.4243 10 0.5000
10 957 0.4012 149 0.4010 58 0.4019 33 0.4070 23 0.4159

0.8 0 134 0.2001 20 0.2166 8 0.2115 4 0.2752 3 0.2500
2 355 0.2011 55 0.2017 21 0.2091 12 0.2011 8 0.2266
4 558 0.2007 86 0.2043 33 0.2082 18 0.2361 12 0.2744
10 1134 0.2003 175 0.2037 67 0.2113 38 0.2025 26 0.2122

0.99 0 381 0.0101 58 0.0102 21 0.0118 11 0.0136 7 0.0156
2 696 0.0101 106 0.0103 39 0.0117 21 0.0123 14 0.0112
4 962 0.0100 147 0.0101 55 0.0105 30 0.0103 19 0.0154
10 1671 0.0100 256 0.0101 96 0.0112 53 0.0103 35 0.0122
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5. Parameter estimation 

In this section, the parameter estimation of the TPITL distribution is discussed using classical 
methods, including ML, MPS, LS, WLS, and CvM. 

5.1. Maximum likelihood estimation 

Let 𝑇 , 𝑇 , … 𝑇   be the TPITL distribution’s observed random sample. Then, the TPITL 
distribution’s log-likelihood function, denoted by ln 𝑙, for parameters, based on a complete sample, is 
given by ln 𝑙 = 𝑛 ln(2𝜗𝛿) + (2𝛿 − 1) ∑ ln 𝑡 − (2𝜗 + 1) ∑ ln 𝑊 + (𝜗 − 1) ∑ ln 𝑆 + ∑ ln 1 − 𝜐 + 2𝜐 𝑆 𝑊 . 

where, 𝑊 = 𝑊 (𝛿) = 1 + 𝑡  and 𝑆 = 𝑆 (𝛿) = 1 + 2𝑡 . The partial derivatives of ln 𝑙 with respect to 𝜐, 𝛿 and 𝜗 are given by: = ∑ 2 1 − 𝑆 𝑊 − 1 1 − 𝜐 + 2𝜐 𝑆 𝑊 , 

𝜕 ln 𝑙𝜕𝛿 = 𝑛𝛿 + 2 ln 𝑡 − (2𝜗 + 1) 𝑡 ln 𝑡 𝑊 + 2(𝜗 − 1) 𝑡 ln 𝑡 𝑆  

+4𝜗𝜐 ∑ 𝑡 ln 𝑡 𝑊 𝑆 − 𝑆 𝑊 1 − 𝜐 + 2𝜐 𝑆 𝑊 , 

= − 2 ∑ ln 𝑊 + ∑ ln 𝑆 + 2𝜐 ∑ 𝑆 𝑊 (ln 𝑆 − 2 ln 𝑊 ) 1 − 𝜐 + 2𝜐 𝑆 𝑊 . 

To obtain the ML estimators of 𝜐, 𝛿  and 𝜗 , say 𝜐, 𝛿  and 𝜗  we use the nonlinear equations, 𝜕 ln 𝑙 𝜕𝜐⁄ = 0, 𝜕 ln 𝑙 𝜕𝛿⁄ = 0 and 𝜕 ln 𝑙 𝜕𝜗⁄ = 0 to solve them using an iterative approach. 

5.2. Maximum product spacing 

Reference [25] proposed the MPS estimation of population parameters. The notion of 
discrepancies between the CDF values at consecutive data points may be used to create this 
approach. Assume that T(1), T(2),…, T(n), are the ordered observations of TPITL distribution. Then, 
the uniform spacings may be determined based on a random sample of size 𝑛 from the TPITL 
distribution, as follows: 𝐷 (Θ) = 𝐻 𝑡( ) Θ − 𝐻 𝑡( ) Θ , 𝑖 = 1, 2, … , 𝑛 + 1, 𝐻 𝑡( ) Θ = 0, 𝐻 𝑡( ) Θ = 1, ∑ 𝐷 (Θ) = 1. 
For simplicity of notation, we write 𝑡 = 𝑡( ), hence, the MPS estimates obtained by 𝜐 , 𝛿  and 𝜗  can be obtained by maximizing the geometric mean of the spacings 

𝐺𝑀(Θ) = ∑ log 1 − 𝑆 𝑊 1 + 𝜐 − 𝜐 1 − 𝑆 𝑊 − 1 − 𝑆 𝑊 1 + 𝜐 − 𝜐 1 − 𝑆 𝑊 , 

with respect to 𝜐, 𝛿 and 𝜗, or by solving the following equations: 
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( ) = ∑ 𝑡 Θ 𝑡 Θ( )  , ( ) = ∑ 𝑡 Θ 𝑡 Θ( ) , 

( ) = ∑ 𝑡 Θ 𝑡 Θ( ) . 

𝜔 (𝑡 |Θ) = 1 − 𝑆 𝑊 𝑆 𝑊 ,                     (12) 

𝜔 (𝑡 |Θ) = 𝑆 𝑊 1 − 𝑆 𝑊 𝜐 ln 𝑆 − 2 ln 𝑊 + 1 + 𝜐𝑆 𝑊 2 ln 𝑊 − ln 𝑆 ,  (13) 

𝜔 (𝑡 |Θ) = 2𝜗𝑡 ln 𝑡 𝑆 𝑊 𝑊 − 𝑆 𝜐(𝑆 − 𝑊 ) .           (14) 

5.3. LS and WLS estimation 

Let 𝑇( ), 𝑇( ), … . 𝑇( )  be the observed ordered sample and 𝑇 , 𝑇 , … . 𝑇   a TPITL-generated 
random sample of size n. Then, the LS estimates (LSEs) and WLS estimates (WLSEs) of 𝜐, 𝛿 and 𝜗 
can be obtained by minimizing the following function with respect to 𝜐, 𝛿 and 𝜗: Λ(Θ) = ∑ 𝑢 1 − 𝑆 𝑊 1 + 𝜐𝑆 𝑊 − . 

where 𝑡 = 𝑡( ), we can get the LSEs designated by 𝜐 , 𝛿  and 𝜗  by setting 𝑢 = 1, whereas 

we can get the WLSEs denoted by 𝜐 , 𝛿   and 𝜗   by setting 𝑢 = ( ) ( )( )  . These 

estimates can also be obtained by solving the equations stated below: 

( ) = ∑ 2𝑢 1 − 𝑆 𝑊 1 + 𝜐𝑆 𝑊 − 𝜔 (𝑡 |Θ), 

( ) = ∑ 2𝑢 1 − 𝑆 𝑊 1 + 𝜐𝑆 𝑊 − 𝜔 (𝑡 |Θ), 

and 

( ) = ∑ 2𝑢 1 − 𝑆 𝑊 1 + 𝜐𝑆 𝑊 − 𝜔 (𝑡 |Θ). 𝜔 (𝑡 |Θ), 𝜔 (𝑡 |Θ) and 𝜔 (𝑡 |Θ) are defined in (12)–(14). 

5.4. The Cramer-von Mises estimation 

The CvM estimates (CvMEs) denoted by 𝜐 , 𝛿   and 𝜗   of 𝜐, 𝛿  and 𝜗  can be 
obtained by minimizing the following function with respect to 𝜐, 𝛿 and 𝜗: 

CvM(Θ) = 112𝑛 + 1 − 𝑆 𝑊 1 + 𝜐𝑆 𝑊 − 2𝑖 − 12𝑛 , 
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where 𝑡 = 𝑡( ). These estimates can also be obtained by solving the following equations: 

( ) = ∑ 2 1 − 𝑆 𝑊 1 + 𝜐𝑆 𝑊 − 𝜔 (𝑡 |Θ), 

( ) = ∑ 2 1 − 𝑆 𝑊 1 + 𝜐𝑆 𝑊 − 𝜔 (𝑡 |Θ), 

and 

( ) = ∑ 2 1 − 𝑆 𝑊 1 + 𝜐𝑆 𝑊 − 𝜔 (𝑡 |Θ). 

where 𝜔 (𝑡 |Θ), 𝜔 (𝑡 |Θ) and 𝜔 (𝑡 |Θ) are defined in (12)–(14). 

6. Simulation study 

As mentioned in the previous section, expressions for the derived estimators are hard to obtain. 
Therefore, we designed a simulation study to clarify the theoretical results. The behavior of estimates 
was examined in terms of their mean squared error (MSE) and standard error (SE). We performed the 
following steps: 
Step 1: Random samples (10,000) of sizes 20, 30, 50, 75 and 150 were generated from the TPITL 
distribution. The chosen parameter values are as follows:  (𝛿 = 0.75, 𝜗 = 0.25, 𝜐 = −0.25) , (𝛿 = 1.5, 𝜗 = 0.5, 𝜐 = −0.25) , (𝛿 = 0.75, 𝜗 = 0.25, 𝜐 = −0.75) , and (𝛿 = 1.5, 𝜗 = 0.5, 𝜐 = −0.75). 
Step 2: ML estimate (MLE), MPSE, LSE, WLSE, and CvMEs of the parameters were obtained. 
Step 3: We computed MSEs and SEs of all estimates, and the results are listed in Tables 9–12. We 
noticed the following about the performance of estimates: 
 For all estimating methods, it was evident that MSEs and SEs reduced with 𝑛. 
 The MSE and SE for 𝜐 performed better than the other estimates as the sample size increased. 
 The LSE, WLSE, WLSE, MPSE, and CvMEs for 𝜐 and 𝜗 had analogous results, while MLE 

had a slightly different result in terms of MSE and SE (Figure 3). 

  

Figure 3. The MSE and SE for 𝜐 based on different methods. 
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Figure 4. MSE and SE for 𝜗 based on different methods. 

 

Figure 5. The MSE and SE for 𝛿 based on different methods. 

 As shown in the left panel of Figures 4–5, the LSE, WLSE, MPSE, and CvME outperformed MLE 
in terms of MSE, especially for 𝜗 and 𝛿. 

 Generally, under all approaches, we noticed that MSE of 𝜐 had the least value, while MSE of  𝜗  took the smallest value. 
 For a fixed value of the parameters (𝛿, 𝜗) and as 𝜐 increased, the MSEs and SEs of 𝜐 estimate 

increased while the MSEs and SEs of (𝛿, 𝜗) estimate decreased for different methods. 
 The general conclusion from the aforementioned figures is that as the sample size increases, all 

MSE and SE graphs for all parameters will reach zero. This confirms the accuracy of these 
estimation methods. 

 It should be emphasized that, in most situations, the ML technique outperformed other methods in 
terms of MSE. 

 In some situations, MPSE comes in as the second-best performing estimator, followed by LSE. 
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Table 9. The MSE and SE for different estimates of the TPITL distribution. 𝑛 Parameters MLE LSE WLSE MPSE CvME 

MSE SE MSE SE MSE SE MSE SE MSE SE 

20 𝛿 = 0.75 0.0634 0.0512 0.0462 0.0471 0.0321 0.0392 0.0318 0.0385 0.0457 0.0476 𝜗 = 0.25 4.2070* 0.0104 5.9938* 0.0168 3.7685* 0.0135 1.8682* 9.6702* 5.7922* 0.0166 𝜐 = −0.25 0.0563 3.5521* 0.1807 0.0249 0.1933 0.0222 0.2111 0.0204 0.2275 0.0281 

30 𝛿 = 0.75 0.0316 0.0295 0.0327 0.0309 0.0242 0.0270 0.0193 0.0248 0.0328 0.0321 𝜗 = 0.25 3.5439* 7.0577* 3.0803* 9.8808* 2.7990* 9.6063* 1.0694* 5.5847* 4.3042* 0.0118 𝜐 = −0.25 0.0558 2.0435* 0.1807 0.0176 0.1915 0.0147 0.1973 0.0116 0.2110 0.0199 

50 𝛿 = 0.75 0.0317 0.0213 0.0162 0.0174 0.0101 0.0140 0.0157 0.0165 0.0162 0.0178 𝜗 = 0.25 3.8108* 4.7838* 1.1283* 4.7452* 0.5372* 3.0750* 1.1926* 3.7336* 1.1844* 4.8565*𝜐 = −0.25 0.0561 1.3275* 0.1649 8.5725* 0.1800 5.9981* 0.1874 5.1355* 0.1824 8.9142*

75 𝛿 = 0.75 0.0400 0.0202 0.0101 0.0104 6.1135* 8.6267* 0.0106 0.0112 8.3405* 9.6595*𝜗 = 0.25 3.6780* 3.5785* 0.4110* 2.3153* 0.3427* 1.8551* 1.0702* 2.6413* 0.3617* 2.1469*𝜐 = −0.25 0.0555 1.4264* 0.1659 5.9550* 0.1788 3.7775* 0.1838 3.2474* 0.1763 5.9837*

100 𝛿 = 0.75 0.0194 0.0113 7.9590* 7.7147* 5.3663* 6.9967* 8.3169* 8.5896* 7.3736* 7.4625*𝜗 = 0.25 3.1715* 2.4667* 0.4031* 1.9978* 0.3735* 1.7288* 0.9853* 2.0216* 0.3708* 1.9209*𝜐 = −0.25 0.0558 0.7247* 0.1641 4.0990* 0.1780 2.5736* 0.1811 2.2216* 0.1713 4.2937*

150 𝛿 = 0.75 0.0174 8.6607* 4.7108* 4.4809* 3.5370* 4.4433* 4.2869* 5.3664* 4.3355* 4.4987*𝜗 = 0.25 3.0945* 1.8702* 0.2082* 1.1216* 0.2407* 0.8882* 0.6736* 1.4636* 0.2130* 1.1105*𝜐 = −0.25 0.0557 0.4741* 0.1543 3.4320* 0.1758 1.6379* 0.1533 1.7328* 0.1703 3.1378*

Table 10. The MSE and SE for different estimates of the TPITL distribution. 𝑛 Parameters MLE LSE WLSE MPSE CvME 

MSE SE MSE SE MSE SE MSE SE MSE SE 

20 𝛿 = 1.5 0.5272 0.1158 0.2419 0.0810 0.2248 0.0707 0.4151 0.1004 0.3123 0.0825 𝜗 = 0.5 0.0346 0.0142 0.0184 6.5972* 0.0190 5.5531* 0.0256 0.0107 0.0205 6.0177*𝜐 = −0.25 0.0375 9.2001* 0.4592 0.0446 0.4543 0.0345 0.3840 0.0235 0.5443 0.0447 

30 𝛿 = 1.5 0.4394 0.0833 0.1267 0.0477 0.1531 0.0502 0.2508 0.0594 0.1548 0.0482 𝜗 = 0.5 0.0334 0.0100 0.0138 6.2299* 0.0146 5.9041* 0.0205 8.3477* 0.0144 5.2513*𝜐 = −0.25 0.0336 0.0101 0.4306 0.0254 0.4516 0.0219 0.4126 0.0164 0.4962 0.0278 

50 𝛿 = 1.5 0.4512 0.0672 0.1199 0.0348 0.1158 0.0321 0.1586 0.0376 0.1261 0.0324 𝜗 = 0.5 0.0356 8.5213* 0.0144 4.0590* 0.0142 3.7567* 0.0190 4.9860* 0.0146 3.3391*𝜐 = −0.25 0.0353 6.0854* 0.4172 0.0154 0.4337 0.0122 0.3878 9.5065* 0.4603 0.0164 

75 𝛿 = 1.5 0.4150 0.0512 0.1116 0.0226 0.1003 0.0193 0.1555 0.0300 0.1234 0.0216 𝜗 = 0.5 0.0351 6.0012* 0.0140 2.7917* 0.0135 2.6442* 0.0201 4.4084* 0.0146 2.4824*𝜐 = −0.25 0.0358 4.3681* 0.4250 0.0103 0.4419 8.0752* 0.3809 6.4523* 0.4510 0.0106 

100 𝛿 = 1.5 0.4328 0.0426 0.1056 0.0171 0.0920 0.0172 0.1647 0.0282 0.1011 0.0153 𝜗 = 0.5 0.0363 5.5815* 0.0136 2.3123* 0.0121 2.7129* 0.0189 4.3207* 0.0131 1.8163*𝜐 = −0.25 0.0339 3.6981* 0.4570 7.3339* 0.4564 5.6197* 0.3973 5.2128* 0.4761 7.1705*

150 𝛿 = 1.5 0.3750 0.0254 0.0874 6.4564* 0.0663 6.6803* 0.1223 0.0146 0.0980 7.1989*𝜗 = 0.5 0.0333 3.0071* 0.0134 1.1206* 0.0121 1.2057* 0.0189 3.0867* 0.0135 1.1276*𝜐 = −0.25 0.0336 1.9440* 0.4335 2.6577* 0.4322 1.7794* 0.3768 2.8150* 0.4433 2.4982*
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Table 11. The MSE and SE for different estimates of the TPITL distribution. 𝑛 Parameters MLE LSE WLSE MPSE CvME 

MSE SE MSE SE MSE SE MSE SE MSE SE 

20 𝛿 = 0.75 0.0276 0.0320 0.0650 0.0400 0.0521 0.0350 0.0312 0.0370 0.0656 0.0420 𝜗 = 0.25 2.9819* 9.6410* 8.3113* 0.0200 6.9943* 0.0180 2.1731* 0.0100 0.0109 0.0220 𝜐 = −0.75 0.5469 1.3110* 0.9473 0.0340 0.9252 0.0260 0.8917 0.0210 1.0580 0.0370 

30 𝛿 = 0.75 0.0240 0.0250 0.0523 0.0240 0.0435 0.0250 0.0217 0.0250 0.0539 0.0260 𝜗 = 0.25 3.4648* 7.9550* 5.8641* 0.0140 5.8410* 0.0140 2.2441* 6.4740* 6.4372* 0.0140 𝜐 = −0.75 0.5458 1.4640* 0.9186 0.0210 0.9199 0.0190 0.8715 0.0150 0.9848 0.0230 

50 𝛿 = 0.75 0.0173 0.0170 0.0441 0.0170 0.0377 0.0170 0.0129 0.0140 0.0452 0.0180 𝜗 = 0.25 3.8093* 5.0600* 3.6101* 8.5390* 4.1827* 9.1340* 2.3664* 3.4760* 3.8059* 8.7550*𝜐 = −0.75 0.5438 0.9780* 0.8972 0.0110 0.8821 8.3640* 0.8377 6.2060* 0.9392 0.0110 

75 𝛿 = 0.75 0.0238 0.0157 0.0410 0.0140 0.0307 0.0130 9.5963* 9.3015* 0.0413 0.0148 𝜗 = 0.25 2.9710* 4.3074* 3.6810* 7.0170* 3.2999* 6.5592* 1.9662* 2.2798* 4.7127* 7.9185*𝜐 = −0.75 0.5459 0.6425* 0.9595 8.5172* 0.8979 5.5828* 0.8356 3.6097* 0.9863 8.7994*

100 𝛿 = 0.75 0.0227 0.0134 0.0298 0.0100 0.0137 7.9828* 4.3208* 5.2667* 0.0297 9.1020*𝜗 = 0.25 2.3568* 4.0206* 2.8294* 5.5969* 1.5028* 2.2740* 1.5569* 1.4654* 2.5345* 5.3057*𝜐 = −0.75 0.5416 0.6058* 0.9242 5.0194* 0.8670 2.3480* 0.8194 3.1607* 0.9360 5.1240*

150 𝛿 = 0.75 9.1118* 2.7224* 0.0249 5.3565* 8.5464* 7.9564* 4.1972* 4.5636* 0.0241 5.8262*𝜗 = 0.25 1.7642* 0.9286* 1.5173* 1.8264* 0.8638* 0.4991* 1.0472* 0.9626* 1.0430* 2.3932*𝜐 = −0.75 0.5329 1.0329* 0.9163 5.0756* 0.8485 1.7051* 0.7717 1.7450* 0.9272 4.3014*

Table 12. The MSE and SE for different estimates of the TPITL distribution. 𝑛 Parameters MLE LSE WLSE MPSE CvME 
MSE SE MSE SE MSE SE MSE SE MSE SE 

20 𝛿 = 1.5 0.3166 0.1074 0.0752 0.0611 0.0688 0.0584 0.1069 0.0688 0.0855 0.0628 𝜗 = 0.5 0.0371 0.0136 0.0161 7.9040* 0.0156 8.2771* 0.0170 0.0104 0.0172 7.9114*𝜐 = −0.75 0.4460 0.0347 1.4360 0.0421 1.4374 0.0389 1.3799 0.0355 1.6197 0.0471 
30 𝛿 = 1.5 0.2908 0.0852 0.0450 0.0385 0.0401 0.0359 0.0525 0.0419 0.0446 0.0385 𝜗 = 0.5 0.0361 0.0105 0.0136 5.8095* 0.0121 5.5192* 0.0125 7.1990* 0.0141 5.2089*𝜐 = −0.75 0.4180 0.0143 1.4336 0.0260 1.4175 0.0237 1.3529 0.0213 1.5567 0.0286 
50 𝛿 = 1.5 0.2901 0.0662 0.0281 0.0235 0.0269 0.0219 0.0337 0.0256 0.0273 0.0234 𝜗 = 0.5 0.0352 7.9137* 0.0134 3.6008* 0.0111 3.5586* 0.0121 5.2926* 0.0138 3.4227*𝜐 = −0.75 0.4176 0.0131 1.4264 0.0148 1.3670 0.0112 1.2780 0.0106 1.4927 0.0155 
75 𝛿 = 1.5 0.1622 0.0418 0.0195 0.0158 0.0229 0.0153 0.0315 0.0192 0.0185 0.0157 𝜗 = 0.5 0.0301 5.3795* 0.0131 2.5415* 0.0103 2.9067* 0.0112 3.9476* 0.0134 2.4295*𝜐 = −0.75 0.4141 9.7076* 1.4082 0.0101 1.3617 6.9812* 1.2608 6.7749* 1.4829 0.0101 
100 𝛿 = 1.5 0.2589 0.0436 0.0151 0.0122 0.0181 0.0107 0.0204 0.0132 0.0159 0.0126 𝜗 = 0.5 0.0357 5.4308* 0.0129 2.0247* 9.3446* 2.0512* 0.0106 3.7361* 0.0132 2.0816*𝜐 = −0.75 0.4123 6.1602* 1.3819 7.3598* 1.3518 5.2508* 1.2430 5.0394* 1.4739 7.9705*

150 𝛿 = 1.5 0.1303 0.0258 0.0113 8.2565* 0.0176 0.0105 0.0189 7.0110* 0.0134 9.3264*𝜗 = 0.5 0.0312 4.0948* 0.0124 1.4042* 7.8324* 2.2745* 8.8525* 2.0483* 0.0128 1.6189*𝜐 = −0.75 0.4096 4.3745* 1.3245 5.5974* 1.3308 3.0557* 1.2360 2.7320* 1.4591 5.2175*

*Note: * Indicate that the value multiply 10  in Tables 9–12. 
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7. Real data analysis 

This section discussed two applications for the TPITL model using two different real datasets. The 
first dataset represents 30 observations of the March precipitation (in inches) in Minneapolis/St Paul. 
The proposed dataset was first recorded in [32] and recently used to fit the PITL distribution in [22]. 

We checked whether the TPITL distribution is suitable for analyzing this dataset. We reported the 
MLEs of the parameters and the values of the negative −2 log-likelihood (−2 log 𝐿) , Akaike’s 
information criterion (AIC), Bayesian IC (BIC), corrected AIC (CAIC), and the Kolmogorov–Smirnov 
(K–S) test statistic, as well as associated P-value to judge the goodness of fit with comparison to PITL, 
generalized inverse exponential (GIE), inverse Weibull (in-We), inverse gamma (in-Ga) and Burr XII 
distributions. The lower the values of these criteria, the better the fit. Table 13 shows the parameter 
estimators, SE, and some goodness of fit statistics. Plots of estimated PDF and CDF are provided in 
Figure 6. The probability–probability (PP) plots of estimated densities are given in Figure 7. 
The second dataset represents the survival times (in days) of 72 guinea pigs infected with virulent 
tubercle bacilli. The above dataset was first recorded in [33] and was recently used to fit the inverse 
Weibull distribution by reference [34] under Type-II right censoring. Reference [35] also used it to fit 
extended inverse power Lomax under Type-I right censoring. 

We checked whether the TPITL distribution is suitable for analyzing this dataset. We reported the 
MLEs of the parameters and the values of the –2log L, AIC, BIC, and the K–S test statistics to judge 
the goodness of fit with comparison to PITL, log-normal (log-N), Weibull (We), generalized 
exponential (Ge-Ex), and extended inverse exponential (EIE) distributions. The lower the values of 
these criteria, the better the fit. In Table 14, MLEs, SE, and some measures are obtained. Plots of 
estimated PDF and CDF are provided in Figure 8. The PP plots of estimated densities are given in 
Figure 9. It can be seen that the TPITL provides the overall best fit based on Tables 13 and 14. The R 
codes of data analysis are provided in Appendix B. 

Table 13. The MLEs, SEs of all model parameters and goodness of fit measures for first data. 

Model MLE SE -2LogL AIC BIC CAIC K-S P-value 
TPITL 𝜐 = −0.373 0.610 77.89 82.66 85.09 83.10 0.1069 0.8831 𝛿 = 1.723 0.587 𝜗 = 1.758 1.003 
PITL 𝛼 = 1.313 0.322 78.66 83.32 85.46 83.77 0.1182 0.7961 𝜗 = 1.974 0.365 
GIE 𝛼 = 3.300 1.065 79.32 83.89 86.13 84.81 0.1266 0.7224 𝜆 = 2.199 0.433 
Burr XII 𝜗 = 3.216 0.645 80.55 84.55 87.36 85 0.1287 0.7033 𝛽 = 0.563 0.137 
in-Ga 𝜆 = 2.596 0.631 80.61 85.61 87.42 85.06 0.1375 0.6218 𝛽 = 2.966 0.795 
in-We 𝛼 = 1.550 0.198 83.83 87.83 90.64 88.28 0.1523 0.4896 𝜆 = 1.025 0.203 
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Table 14. The MLEs, SEs of all model parameters and goodness of fit measures for second data. 

Model MLE SE -2LogL AIC BIC CAIC K-S P-value 
TPITL 𝜐 = −0.794 0.193 194.002 198.002 202.610 198.171 0.089 0.601 𝛿 = 1.640 0.270 𝜗 = 2.010 0.407 
Ge-Ex 𝛼 = 3.565 0.696 195.184 200.889 205.498 201.026 0.090 0.588 𝜆 = 0.891 0.103 
We �̂� = 1.820 0.156 196.889 201.184 208.096 201.558 0.100 0.448 𝛽 = 1.989 0.134 
log-N �̂� = 0.393 0.073 200.565 204.565 209.174 204.734 0.101 0.437 𝜎 = 0.632 0.052 
PITL 𝛼 = 1.142 0.189 200.604 204.604 209.213 204.774 0.118 0.254 𝜗 = 2.154 0.274 
EIE 𝛼 = 2.858 0.586 221.525 225.525 230.133 225.694 0.145 0.072 𝜆 = 2.082 0.271 

 
Figure 6. Estimated PDF and CDF of models for the first data. 

 

Figure 7. Estimated PDF and CDF of all models for second data. 
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Figure 8. The PP plots of all models for the first data. 

 

Figure 9. The PP plots of all models for the second data. 

Figures 6 and 7 demonstrate that, among the two datasets, the TPITL model provided an excellent 
fit to the observed distribution (i.e., to the histogram). Also, we conclude that from these figures, the 
TPITL model offered the best agreement to the empirical CDF for the two datasets. Figures 8 and 9 
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also show that the TPITL model matches the two real-world datasets more closely than the other 
competing models. Consequently, the TPITL distribution can be chosen as a suitable model when 
compared with other distributions for explaining the studied data. 

8. Conclusions 

The QRTM is used to suggest a novel extension of the power inverted Topp–Leone distribution 
in this article. The developed distribution is known as the TPITL distribution. The PITL and ITL are 
included in the proposed distribution as specific models. The significant characteristics of the provided 
model, including quantile function, moments and incomplete moments, SO, and some uncertainty 
measures, are also discussed. The ASPs are created for the TPITL model, assuming the life test is 
terminated at a specific period. The median lifetime of the TPITL distribution with pre-specified 
variables is used to calculate the truncation time. The smallest sample size is necessary to get the 
claimed life test at a given consumer risk. Different estimating approaches are used to analyze the 
TPITL distribution characteristics. To assess the efficacy of estimations based on precision criteria, a 
comprehensive simulation research is conducted. 

Regarding the simulation outcomes, it should be noted that the ML estimation approach often 
outperforms other methods. In some cases, the next best performing estimator is MPSE, followed by 
LSE. Finally, we observed that MSE decreases across all estimation techniques as the sample size 
grows, indicating that all estimation approaches are consistent. Two real data analyses are used to 
compare the proposed model’s validity and adaptability to the alternative models, such as the PITL, 
log-normal, Weibull, GIE, inverse Weibull, inverse gamma, Ge-Ex, and EIE models. In the future, we 
will examine the statistical inference of this suggested model using Bayesian estimates under various 
censored schemes. Other researchers can employ this model in the future to investigate its statistical 
inference using Bayesian and E-Bayesian estimations under various complete and censored schemes. 
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Appendix A 

######## Compute sampling plan and probability of acceptance 
accept <- function(pstar, v, delta, vartheta, a, c) 
{ 
######## Compute median life time from quantile function (t_0 ) 
  m0 <- t_0(0.5, v, delta, vartheta) 
   
######## Compute truncation time at a 
  t0 <- a*m0 
######## Compute probability (p) from cdf  
  p0 <- Fx(t0, v, delta, vartheta)  
######## Determine optimal sample size (n) 
  for(n0 in 1:10^9)  
  { 
    s=0 
    l_p=0 
    for(i in 0:c) 
    { 
      s   = s+choose(n0,i)*p0^i*(1-p0)^(n0-i) 
      l_p = l_p+choose((n0-1),i)*p0^i*(1-p0)^((n0-1)-i) 
    } 
######## print minimum sample size 
    if (s<=1-pstar) 
    { 
      print(c(c=c, n=n0, OC=l_p)) 
      return(c(c, n0, l_p)) 
      break()  
    } 
  }  
} 

Appendix B 

######## Define pdf and cdf of PITL distribution 
Pdf_PITL <- function(parm,x){ 
  alpha <- parm[1] 
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  theta <- parm[2] 
  a <- 2*alpha*theta*x^(2*theta-1) 
  b <- (1+x^theta)^(-2*alpha-1) 
  c <- (1+2*x^theta)^(alpha-1) 
  Pdf_PITL <- a*b*c 
} 
Cdf_PITL <- function(parm,x){ 
  alpha <- parm[1] 
  theta <- parm[2] 
  a <- (1+x^theta)^(2*alpha) 
  b <- (1+2*x^theta)^alpha 
  Cdf_PITL <- 1-(b/a) 
} 
######## define pdf and cdf of inv. Weibull (invWe) Distribution 
Pdf_inWE <- function(parm,x){ 
  lambda <- parm[1] 
  beta   <- parm[2] 
  Pdf_inWE <- lambda*beta*x^(-beta-1)*exp(-lambda/x^beta) 
} 
Cdf_inWE <- function(parm,x){ 
  lambda <- parm[1] 
  beta   <- parm[2] 
  Cdf_inWE <- exp(-lambda/x^beta) 
} 
######## define pdf and cdf for inverse gamma (invGa) Distribution 
Pdf_inGa <- function(parm,x){ 
  alpha  <- parm[1] 
  lambda <- parm[2] 
  Pdf_inGa <- dinvgamma(x, alpha, rate=lambda) 
} 
Cdf_inGa <- function(parm,x){ 
  alpha  <- parm[1] 
  lambda <- parm[2] 
  Cdf_inGa <- pinvgamma(x,alpha, rate=lambda) 
} 
######## define pdf and cdf for Weibull Distribution 
Pdf_We <- function(parm,x){ 
  alpha    <- parm[1] 
  lambda   <- parm[2]     
  Pdf_We <- (alpha*x^(alpha-1)*exp(-(x/lambda)^alpha))/lambda^alpha 
} 
Cdf_We <- function(parm,x){ 
  alpha   <- parm[1] 
  lambda  <- parm[2]  
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  Cdf_We    <- 1-exp(-(x/lambda)^alpha) 
} 
######## define pdf and cdf for log-Normal Distribution 
Pdf_log <- function(parm,x){ 
  alpha    <- parm[1] 
  lambda   <- parm[2]     
  Pdf_log <- dlnorm(x,alpha,lambda) 
} 
Cdf_log <- function(parm,x){ 
  alpha    <- parm[1] 
  lambda   <- parm[2]     
  Cdf_log <- plnorm(x,alpha,lambda) 
} 
######## define pdf and cdf for Gamma Distribution 
Pdf_Ga <- function(parm,x){ 
  alpha  <- parm[1] 
  lambda <- parm[2] 
  Pdf_Ga  <- dgamma(x,shape = alpha,scale = lambda) 
} 
Cdf_Ga <- function(parm,x){ 
  alpha  <- parm[2] 
  lambda <- parm[1] 
  Cdf_Ga <- pgamma(x,shape = alpha,scale =lambda) 
} 
######## define pdf and cdf for Generalized Exponential Distribution 
Pdf_Gex <- function(parm,x){ 
  alpha  <- parm[1] 
  lambda <- parm[2] 
  Pdf_Gex <- (alpha/lambda)*exp(-x/lambda)*(1-exp(-x/lambda))^(alpha-1) 
} 
Cdf_Gex <- function(parm,x){ 
  alpha  <- parm[1] 
  lambda <- parm[2] 
  Cdf_Gex <- (1-exp(-x/lambda))^alpha 
} 
######## define pdf and cdf for Generalized inverted Exponential (GIE) Distribution 
Pdf_GIE <- function(parm,x){ 
  alpha  <- parm[1] 
  lambda <- parm[2] 
  Pdf_GIE <- (alpha*lambda/x^2)*exp(-lambda/x)*(1-exp(-lambda/x))^(alpha-1) 
} 
Cdf_GIE <- function(parm,x){ 
  alpha  <- parm[1] 
  lambda <- parm[2] 
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  Cdf_GIE <- 1-(1-exp(-lambda/x))^alpha 
} 
######## define pdf and cdf for Extendend inverse exponential (EIE) Distribution 
Pdf_EIE <- function(parm,x){ 
  alpha  <- parm[1] 
  theta <- parm[2] 
  a <- exp(-theta/x) 
  Pdf_EIE <- ((alpha*theta)/x^2)*a*(1/(1-a)^2)*exp(-alpha*(a/(1-a))) 
} 
Cdf_EIE <- function(parm,x){ 
  alpha  <- parm[1] 
  theta  <- parm[2] 
  a <- exp(-theta/x) 
  Cdf_EIE <- 1-exp(-alpha*(a/(1-a))) 
} 
######## Define TPITL distribution 
Pdf_TPITL <- function(parm,x){ 
  v        <- parm[1] 
  delta    <- parm[2] 
  vartheta <- parm[3] 
  a = (1+2*x^delta)^vartheta 
  b = (1+x^delta)^(2*vartheta) 
  d = (1-(a/b)) 
  aa = 2*vartheta*delta*x^(2*delta-1)*(1+x^delta)^(-2*vartheta-1)*(1+2*x^delta)^(vartheta-1) 
  Pdf_TPITL <- aa*(1+v-2*v*d)  
} 
Cdf_TPITL <- function(parm,x){ 
  v        <- parm[1] 
  delta    <- parm[2] 
  vartheta <- parm[3] 
    a = (1+2*x^delta)^vartheta 
  b = (1+x^delta)^(2*vartheta) 
  d = (1-(a/b)) 
  Cdf_TPITL <- d*(1+v-v*(d)) 
} 
######## define pdf and cdf of Burr XII dist. 
Pdf_Burr <- function(parm,x){ 
  theta <- parm[1] 
  beta  <- parm[2] 
  Pdf_Burr <- theta*beta*x^(theta-1)*(1+x^theta)^(-(beta+1)) 
} 
Cdf_Burr <- function(parm,x){ 
  theta <- parm[1] 
  beta  <- parm[2] 
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  Cdf_Burr <- 1-(1+x^theta)^(-beta) 
} 
######## log-likhood 
LL_PITL  <- function(alpha,theta){-sum(log(Pdf_PITL(c(alpha,theta),x)))}  
LL_inWE  <- function(lambda,beta){-sum(log(Pdf_inWE(c(lambda,beta),x)))}  
LL_inGa  <- function(alpha,lambda){-sum(log(Pdf_inGa(c(alpha,lambda),x)))}  
LL_GIE   <- function(alpha,lambda){-sum(log(Pdf_GIE(c(alpha,lambda),x)))} 
LL_EIE   <- function(alpha,theta){-sum(log(Pdf_EIE(c(alpha,theta),x)))} 
LL_TPITL <- function(v,delta,vartheta){-sum(log(Pdf_TPITL(c(v,delta,vartheta),x)))} 
LL_Burr  <- function(theta,beta){-sum(log(Pdf_Burr(c(theta,beta),x)))} 
LL_We      <- function(alpha,lambda){-sum(log(Pdf_We(c(alpha,lambda),x)))} 
LL_Ga      <- function(alpha,lambda){-sum(log(Pdf_Ga(c(alpha,lambda),x)))} 
LL_Gex      <- function(alpha,lambda){-sum(log(Pdf_Gex(c(alpha,lambda),x)))} 
LL_log      <- function(alpha,lambda){-sum(log(Pdf_log(c(alpha,lambda),x)))} 
######################################################################## 
######## Real data set I: ------------------------------------------------------------- 
# The data contain 30 observations of the March precipitation (in inches) in Minneapolis/St Paul 
######## D. Hinkley, "On quick choice of power transformation," Applied Statistics, vol. 26, no. 1, 
X1 = c(0.77, 1.74, 0.81, 1.20, 1.95, 1.2, 0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1,0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 
1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9, 2.05) 
######## Real data set II: ------------------------------------------------------------- 
######## The survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli, 
# observed and reported by Bjerkedal (1960). 
X2 = c(0.1, 0.33, 0.44, 0.56, 0.59, 0.59, 0.72, 0.74, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 
1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53,1.59, 1.6, 1.63, 1.63, 1.68, 
1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3,2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 
2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55,2.54, 0.77) 
######## Use one data set: 
x = X1 
######## obtain MLE 
fit_TPITL   <- mle2(minuslog=LL_TPITL,start=list(v=1,delta=0.6,vartheta=0.05), 
                    data=list(x),method = "Nelder-Mead") 
fit_invWe  <- mle2(minuslog=LL_inWE,start=list(lambda=1,beta=1), 
                   data= list(x), method = "Nelder-Mead") 
fit_invGa   <- mle2(minuslog=LL_inGa,start=list(alpha=1,lambda=3), 
                    data=list(x),method = "Nelder-Mead") 
fit_GIE     <- mle2(minuslog=LL_GIE,start=list(alpha=1,lambda=1), 
                    data=list(x),method = "Nelder-Mead") 
fit_EIE     <- mle2(minuslog=LL_EIE,start=list(alpha=1,theta=1), 
                    data=list(x),method = "Nelder-Mead") 
fit_Burr   <- mle2(minuslog=LL_Burr,start=list(theta=1,beta=1), 
                   data=list(x),method = "Nelder-Mead") 
fit_We <- mle2(minuslog=LL_We,start=list(alpha=1,lambda=1), 
               data=list(x),method = "Nelder-Mead") 
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fit_Ga <- mle2(minuslog=LL_Ga,start=list(alpha=1,lambda=1), 
               data=list(x),method = "Nelder-Mead") 
fit_Gex <- mle2(minuslog=LL_Gex,start=list(alpha=1,lambda=1), 
               data=list(x),method = "Nelder-Mead") 
fit_log <- mle2(minuslog=LL_log,start=list(alpha=1,lambda=1), 
                data=list(x),method = "Nelder-Mead") 
################################################################ 
######## goodness of fit 
gof.test_TPITL <- goodness.fit(Pdf_TPITL,Cdf_TPITL,starts=c(coef(fit_TPITL)),data=x, 
                               method = "N",domain = c(0,1000)) 
gof.test_invWE  <- goodness.fit(Pdf_inWE,Cdf_inWE,starts=c(coef(fit_invWe)),data=x, 
                                method = "N", domain = c(0,10000)) 
gof.test_invGa  <- goodness.fit(Pdf_inGa,Cdf_inGa,starts=c(coef(fit_invGa)),data=x, 
                                lim_inf = c(0.001,0.001),lim_sup = c(10,10)) 
gof.test_GIE    <- goodness.fit(Pdf_GIE,Cdf_GIE,starts=c(coef(fit_GIE)),data=x, 
                                lim_inf = c(0.001,0.001),lim_sup = c(10,20)) 
gof.test_EIE    <- goodness.fit(Pdf_EIE,Cdf_EIE,starts=c(coef(fit_EIE)),data=x, 
                                lim_inf = c(0.00001,0.00001),lim_sup = c(10,10)) 
gof.test_Burr   <- goodness.fit(Pdf_Burr,Cdf_Burr,starts=c(coef(fit_Burr)),data=x, 
                                lim_inf = c(0.001,0.001),lim_sup = c(10,10)) 
gof.test_We  <- goodness.fit(Pdf_We,Cdf_We,starts=c(coef(fit_We)),data=x, 
                             lim_inf = c(0.001,0.001),lim_sup = c(10,10)) 
gof.test_Ga  <- goodness.fit(Pdf_Ga,Cdf_Ga,starts=c(coef(fit_Ga)),data=x, 
                                lim_inf = c(0.001,0.001),lim_sup = c(10,10)) 
gof.test_Gex  <- goodness.fit(Pdf_Gex,Cdf_Gex,starts=c(coef(fit_Gex)),data=x, 
                             lim_inf = c(0.001,0.001),lim_sup = c(10,10)) 
gof.test_log  <- goodness.fit(Pdf_log,Cdf_log,starts=c(coef(fit_log)),data=x, 
                              lim_inf = c(0.001,0.001),lim_sup = c(10,10)) 

©2022 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


