Research article Special Issues

Parametric inference on partially accelerated life testing for the inverted Kumaraswamy distribution based on Type-II progressive censoring data


  • This article discusses the problem of estimation with step stress partially accelerated life tests using Type-II progressively censored samples. The lifetime of items under use condition follows the two-parameters inverted Kumaraswamy distribution. The maximum likelihood estimates for the unknown parameters are computed numerically. Using the property of asymptotic distributions for maximum likelihood estimation, we constructed asymptotic interval estimates. The Bayes procedure is used to calculate estimates of the unknown parameters from symmetrical and asymmetric loss functions. The Bayes estimates cannot be obtained explicitly, therefor the Lindley's approximation and the Markov chain Monte Carlo technique are used to obtaining the Bayes estimates. Furthermore, the highest posterior density credible intervals for the unknown parameters are calculated. An example is presented to illustrate the methods of inference. Finally, a numerical example of March precipitation (in inches) in Minneapolis failure times in the real world is provided to illustrate how the approaches will perform in practice.

    Citation: Manal M. Yousef, Rehab Alsultan, Said G. Nassr. Parametric inference on partially accelerated life testing for the inverted Kumaraswamy distribution based on Type-II progressive censoring data[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 1674-1694. doi: 10.3934/mbe.2023076

    Related Papers:

    [1] Wael S. Abu El Azm, Ramy Aldallal, Hassan M. Aljohani, Said G. Nassr . Estimations of competing lifetime data from inverse Weibull distribution under adaptive progressively hybrid censored. Mathematical Biosciences and Engineering, 2022, 19(6): 6252-6275. doi: 10.3934/mbe.2022292
    [2] Walid Emam, Khalaf S. Sultan . Bayesian and maximum likelihood estimations of the Dagum parameters under combined-unified hybrid censoring. Mathematical Biosciences and Engineering, 2021, 18(3): 2930-2951. doi: 10.3934/mbe.2021148
    [3] Hatim Solayman Migdadi, Nesreen M. Al-Olaimat, Omar Meqdadi . Inference and optimal design for the k-level step-stress accelerated life test based on progressive Type-I interval censored power Rayleigh data. Mathematical Biosciences and Engineering, 2023, 20(12): 21407-21431. doi: 10.3934/mbe.2023947
    [4] M. Nagy, Adel Fahad Alrasheedi . The lifetime analysis of the Weibull model based on Generalized Type-I progressive hybrid censoring schemes. Mathematical Biosciences and Engineering, 2022, 19(3): 2330-2354. doi: 10.3934/mbe.2022108
    [5] Said G. Nassr, Amal S. Hassan, Rehab Alsultan, Ahmed R. El-Saeed . Acceptance sampling plans for the three-parameter inverted Topp–Leone model. Mathematical Biosciences and Engineering, 2022, 19(12): 13628-13659. doi: 10.3934/mbe.2022636
    [6] Walid Emam, Ghadah Alomani . Predictive modeling of reliability engineering data using a new version of the flexible Weibull model. Mathematical Biosciences and Engineering, 2023, 20(6): 9948-9964. doi: 10.3934/mbe.2023436
    [7] M. Nagy, M. H. Abu-Moussa, Adel Fahad Alrasheedi, A. Rabie . Expected Bayesian estimation for exponential model based on simple step stress with Type-I hybrid censored data. Mathematical Biosciences and Engineering, 2022, 19(10): 9773-9791. doi: 10.3934/mbe.2022455
    [8] Fathy H. Riad, Eslam Hussam, Ahmed M. Gemeay, Ramy A. Aldallal, Ahmed Z.Afify . Classical and Bayesian inference of the weighted-exponential distribution with an application to insurance data. Mathematical Biosciences and Engineering, 2022, 19(7): 6551-6581. doi: 10.3934/mbe.2022309
    [9] Francisco Julian Ariza-Hernandez, Juan Carlos Najera-Tinoco, Martin Patricio Arciga-Alejandre, Eduardo Castañeda-Saucedo, Jorge Sanchez-Ortiz . Bayesian inverse problem for a fractional diffusion model of cell migration. Mathematical Biosciences and Engineering, 2024, 21(4): 5826-5837. doi: 10.3934/mbe.2024257
    [10] Jihong Pang, Chaohui Zhang, Xinze Lian, Yichao Wu . Reliability assessment of permanent magnet brake based on accelerated bivariate Wiener degradation process. Mathematical Biosciences and Engineering, 2023, 20(7): 12320-12340. doi: 10.3934/mbe.2023548
  • This article discusses the problem of estimation with step stress partially accelerated life tests using Type-II progressively censored samples. The lifetime of items under use condition follows the two-parameters inverted Kumaraswamy distribution. The maximum likelihood estimates for the unknown parameters are computed numerically. Using the property of asymptotic distributions for maximum likelihood estimation, we constructed asymptotic interval estimates. The Bayes procedure is used to calculate estimates of the unknown parameters from symmetrical and asymmetric loss functions. The Bayes estimates cannot be obtained explicitly, therefor the Lindley's approximation and the Markov chain Monte Carlo technique are used to obtaining the Bayes estimates. Furthermore, the highest posterior density credible intervals for the unknown parameters are calculated. An example is presented to illustrate the methods of inference. Finally, a numerical example of March precipitation (in inches) in Minneapolis failure times in the real world is provided to illustrate how the approaches will perform in practice.



    As a result of significant advancements in high technology, today's products are becoming more and more reliable, and product lifetimes are increasing. A product's failure may take a long period, such as several years, making it difficult, if not impossible, to gather failure information for products that are as reliable under normal settings. While running at a higher stress level shortens the product's life, the accelerated life test (ALT) is utilized to induce more failures and then derive the reliability information under normal conditions. ALT enables the researcher to change the stress level factors to in order to gain information on the parameters of lifetime distributions more quickly than under regular operating conditions. The main assumption in ALT is that the mathematical model in which species the relationship between the average lifetime and the stress is known or the acceleration factor is known. In some cases, such a model does not exist or is very difficult to suppose. So, partially ALT (PALT) is a good nominee to carry out the life test in such cases. Various types of stress loading may be applied when performing PALT. Constant-stress and step-stress are the two most common types. A test unit runs under constant-stress PALT (CSPALT) in one of two modes: normal use or accelerated use. However, with step-stress PALT (SSPALT), a test item is run under normal conditions first, if it does not fail, it is then run under accelerated conditions until it fails or the observation is censored. The various types of PALT models have been the interest of many researchers see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17].

    In many lifetime studies, it is common for the lifetime of test units to be inaccurately recorded. In practice, investigators need to process the censored data, as they rarely have the time to record and watch all of the people involved in the experience during their course of lifetime. There are various censoring patterns. Type-I and Type-II censoring are the most prevalent censoring techniques used in life testing or reliability experiments. Lately, the Type-II progressive censoring scheme has become popular enough to analyze highly reliable data. This kind of censoring scheme can be described as: suppose n identical items are put to test, the integer mn is a prespecified number of failures and R1,R2,,Rm are m prefixed integers satisfying R1+R2++Rm+m=n. At the time of the first failure t1:m:n,R1 of the surviving units are randomly withdrawn. Likewise, at the time of the second failure t2:m:n,R2 of the surviving units are randomly withdrawn, and so on. At the time of the mth failure tm:m:n, the experiment is stopped and all surviving Rm=nR1R2Rm1m units are withdrawn. Conventional Type-II censoring is a special case when R1=R2==Rm1=0 and Rm=nm. For more details about Type-II progressive censoring, see [18,19,20,21].

    The inverted Kumaraswamy (IKum) distribution with the parameters α,β>0, will be denoted by IKum (α,β). IKum distribution was derived from Kumaraswamy distribution (Kum) using the transformation X=1/Y1, when Y has a Kum distribution. Three special cases of IKum (α,β) distribution are Lomax distribution (when β=1), inverted beta Type-II distribution (when α=1) and log-logistic (Fisk) distribution (when α=β=1). The corresponding cumulative density distribution (CDF), probability density function (PDF) and hazard rate function (HRF) are given, respectively, by

    F(x)=[1(1+x)α]β,x>0,α,β>0,
    f(x)=αβ(1+x)(α+1)[1(1+x)α]β1,
    h(x)=αβ(1+x)(α+1)[1(1+x)α]β1[1[1(1+x)α]β]1.

    Figure 1 shows that the IKum distribution has a lengthy right tail when compared to other commonly used distributions based on the PDF and HRF curves. As a result, it will influence long-term reliability predictions, producing optimistic predictions of uncommon events that occur in the right tail of the distribution when compared to other distributions. Furthermore, the IKum distribution fits various data sets from the literature quite well. IKum distribution was introduced by reference [22]. They investigated various structural properties with the application. They also addressed the problem of estimation of parameters of the IKum distribution based on Type-II censoring. Reference [23] used general progressive censored samples to evaluate the unknown parameters of the IKum distribution. Reference [24] studied relations for moments of dual generalized order statistics for IKum. For more details about IKum distribution see [25,26]

    Figure 1.  The PDF and HRFplots for the IKum distribution.

    The motivation of this paper is to apply SSPALT to items whose lifetimes under normal stress conditions follow the IKum distribution under Type-II progressive censoring, and to estimate the involved parameters using ML and Bayes methods (under squared error (SE) and linear exponential (LINEX) loss functions). To demonstrate and evaluate the performance of the given estimating methods, an actual data set is investigated. The rest of this article is planned as follows. Section 2 presents the description of the model. In Section 3, both the ML estimates (MLEs) and observed Fisher information matrix are presented. In addition, Lindely's approximation and the Markov chain Monte Carlo (MCMC) technique are used to get the Bayes estimates (Bes) and the highest posterior density (HPD) credible intervals of the model parameters as given in Section 4. illustrative example and Monte Carlo (MC) simulation results are presented in Sections 5 and 6, respectively. Section 7 presents a numerical example to illustrate all methods of inference established in the article in hand. Finally, we make some concluding remarks in Section 8.

    In this Section, for Type-II progressive censoring, we develop the following assumptions under SSPALT:

    1) The SSPALT is composed of two stress levels, s0 and s1 (s0<s1), where s0 represents normal stress conditions and s1 represents accelerated stress conditions.

    2) Suppose n independent and identical distribution units are placed on a life test and at least one failure must be observed for each stress s0 and s1.

    3) All n units are subjected to an initial stress level s0. At the fixed pre-specified time τ the stress level is increased to s1.

    4) The lifetime distributions at the stress levels s0 and s1 are assumed to be IKum distribution with shape parameters α1 and α2 respectively, and a common additional shape parameter β.

    Under the assumption of the cumulative exposure model (CEM), the CDF of the lifetime of a test unit under SSPALT is given by

    G(t)={G1(t)=F1(t),0t<τ,G2(t)=F2(s+tτ),tτ, (1)

    where s is the solution of the equation F1(τ)=F2(s) (see [27]). So, it is evident that s=(1+τ)α1/α21.

    The corresponding PDF of the lifetime of a test unit is

    g(t)={α1β(1+t)(α1+1)[1(1+t)α1]β1,0t<τ,α2β[(1+τ)α1/α2+tτ](α2+1){1[(1+τ)α1/α2+tτ]α2}β1,tτ. (2)

    This part derives the MLEs of unknown model parameters. Also, we obtain the observed Fisher information matrix. Based on the Type-II progressively censored sample, we have n identical units under an initial stress level s0. The stress level is changed to s1 at a pre-fixed time τ, and the life-testing experiment is terminated when the mth failure time tm:m:n occurs, where 2mn. Let n1 be the number of units that fail before time τ at stress level s0. With these notations the observed progressive censored data is t1:m:n<t2:m:n<<tn1:m:n<τ<tn1+1:m:n<<tm:m:n. with the corresponding progressive censoring scheme R=(R1,,Rm), where mj=1Rj=nm.

    From the CEM in (1) and the corresponding PDF in (2), the likelihood function (LF) of α1,α2 and β are obtained based on the Type-II progressively censored sample as follows:

    L(α1,α2,β|t)=Cn1i=1α1β(1+ti:m:n  )(α1+1)(ψ1(ti:m:n  ))β1[1(ψ1(ti:m:n  ))β]Ri×mi=n1+1α2β(ψ(ti:m:n  ))(α2+1)(ψ2  (ti:m:n  ))β1[1(ψ2  (ti:m:n  ))β]Ri, (3)

    where ψ(ti:m:n  )=(1+τ)α1/α2+ti:m:nτ, ψ1(ti:m:n  )=1(1+ti:m:n  )α1, ψ2  (ti:m:n  )=1(ψ(ti:m:n  ))α2 and C=n(n1R1)(n2R1R2)(nm1m1k=1Rk).

    The logarithm of LF may be written as

    l(α1,α2,β)=lnC+n1lnα1+(mn1)lnα2+mlnβn1i=1[(α1+1)ln(1+ti:m:n  )(β1)lnψ1(ti:m:n  )Riln(1(ψ1(ti:m:n  ))β)]mi=n1+1[(α2+1)lnψ(ti:m:n  )(β1)lnψ2  (ti:m:n  )Riln(1(ψ2  (ti:m:n  ))β)]. (4)

    The likelihood equations of α1, α1 and β as

    Lα1=n1α1n1i=1[ln(1+ti:m:n  )+(1β+βRiψ3(ti:m:n  ))1ψ1(ti:m:n  )ψ1(ti:m:n  )α1]mi=n1+1[((α2+1)+(1β+βRiψ4(ti:m:n  ))α2(ψ(ti:m:n  ))α2ψ2  (ti:m:n  ))1ψ(ti:m:n  )ψ(ti:m:n  )α1], (5)
    Lα2=mn1α2mi=n1+1[lnψ(ti:m:n  )+(α21)1ψ(ti:m:n  )ψ(ti:m:n  )α2]mi=n1+1[(1β+βRiψ4(ti:m:n  ))1ψ2  (ti:m:n  )ψ2  (ti:m:n  )α2], (6)
    Lβ=mβ+n1i=1[(1Riψ3(ti:m:n  ))lnψ1(ti:m:n  )]+mi=n1+1[(1Riψ4(ti:m:n  ))lnψ2  (ti:m:n  )], (7)

    where; ψ3(ti:m:n  )=(ψ1(ti:m:n  ))β1(ψ1(ti:m:n  ))β, ψ4(ti:m:n  )=(ψ2  (ti:m:n  ))β1(ψ1(ti:m:n  ))β, ψ(ti:m:n  )α1=1α2(1+τ)α1/α2ln(1+τ), ψ1(ti:m:n  )α1=(1+ti:m:n  )α1ln(1+ti:m:n  ), ψ2  (ti:m:n  )α1=α2(ψ(ti:m:n  ))(α2+1)ψ(ti:m:n  )α1, ψ(ti:m:n  )α2=α1α2ψ(ti:m:n  )α1 and ψ2  (ti:m:n  )α2=(ψ(ti:m:n  ))α2lnψ(ti:m:n  )ψ(ti:m:n  )α2.

    It can be seen that (5)-(7) cannot be solved explicitly, hence the MLEs of α1, α2 and β must be obtained using an appropriate numerical method. The iterative algorithm such as the Newton-Raphson (NR) can be utilized to obtain ˆα1, ˆα2 and ˆβ.

    Asymptotic confidence interval

    The observed Fisher information matrix on α1, α2 and β, I, can be obtained by using (5)-(7). If Θ=(α1,α2,β), then

    I=(2lΘiΘj),i,j=1,2,3,

    where the information matrix I is calculated at (ˆα1,ˆα2,ˆβ). The asymptotic variance-covariance matrix may be approximated as the inverse of I. That is,

    I1=(cov(ΘiΘj)). (8)

    Based on the asymptotic theory of MLEs, the sampling distribution of (ˆΘiΘi)/ˆσij is asymptotically standard normal distribution, where ˆσij=1/var(ˆΘi) is calculated from (8). Therefore, the 100(1γ)% approximate confidence interval (ACI) of Θi can then be constructed as

    (ˆΘiZ1γ/2ˆσij,ˆΘi+Z1γ/2ˆσij),i=1,2,3.

    where Z1γ/2 is the upper (γ/2) percentile of the standard normal distribution.

    This section used SE and LINEX loss functions to obtain BEs of the parameters α1, α2 and β. Unfortunately, in many cases, the BEs are not always able to be described explicitly forms. As a result, using Lindley's approximation and MCMC approach, approximate BEs are obtained under informative prior.

    Suppose all the unknown parameters are stochastically independent. Assume that the prior distribution for the parameters α1 and α2 are taken Gamma(μ1,ν1) and Gamma(μ2,ν2) receptively. While the prior distribution of the parameter β is taken Gamma(μ3,ν3). Hence, the joint prior distribution for α1, α2 and β is

    π(α1,α2,β)=αμ111αμ212βμ31exp[(α1ν1+α2ν2+βν3)]. (9)

    Combining (3) and (9) to obtain the joint posterior density function of the parameters α1, α2 and β as

    π(α1,α2,β)=αμ1+n111αμ2+mn112βμ3+m1exp[(α1ν1+α2ν2+βν3)]n1i=1(1+ti:m:n  )(α1+1)(ψ1(ti:m:n  ))β1[1(ψ1(ti:m:n  ))β]Rimi=n1+1(ψ(ti:m:n  ))(α2+1)(ψ2  (ti:m:n  ))β1[1(ψ2  (ti:m:n  ))β]Ri. (10)

    The BEs of the function of the parameters U(Θ)=(α1,α2,β) denting by  UBSL, we observe that under SE loss function the BE of U(Θ) is the posterior mean given by

     UBSL=E(U(Θ)|t)=ΘU(Θ)π(Θ|t)dΘ. (11)

    The SE loss is an asymmetric loss function that puts equal weight to the underestimation and overestimation. In many cases, underestimating a problem is more significant than overestimation a problem, and vice versa. In these circumstances, a LINEX loss can be recommended as an alternative to the SE loss which is given by reference [28]

    (U(Θ), U(Θ))=e U(Θ)U(Θ)C( U(Θ)U(Θ))1.

    where c0 is a shape parameter. Here c>1 proposes that an overestimation is more serious than the underestimation, and vice versa for c<0. Further c approaching to zero replicates the SE loss function itself. One may refer to references [28] and [29] for more details in this regard. The BE of U(Θ) under this loss can be derived as

     UBLL=E(ecU|t)=1cln[ΘecUπ(Θ|t)dΘ]. (12)

    It is seen that estimates given by (11) and (12) cannot be simplified into closed form expressions. Therefore, we next apply Lindley's approximation method and MCMC technique to obtain the desired BEs.

    Reference [30] proposed an approximation procedure to evaluate the expressions like (11) and (12). Reference [31] applied this method to obtain BEs under the considered prior distribution. For the three-parameter case U(Θ|t), we observe that E(U(Θ|t)) can be approximated as

    E(U(Θ|t))=U+[U1a1+U2a2+U3a3+a4+a5]+12[φ1(U1σ11+U2σ12+U3σ13)+φ2(U1σ21+U2σ22+U3σ23)+φ3(U1σ31+U2σ32+U3σ33)]. (13)

    where; Ui=Uξi, σij is the element (i,j) in the variance-covariance matrix (Lij), i,j=1,2,3, and

    ai=ρ1σi1+ρ2σi2+ρ3σi3,i=1,2,3,
    a4=U12σ12+U13σ13+U23σ23,a5=12(U11σ11+U22σ22+U33σ33),
    φ1=σ11L111+2(σ12L121+σ13L131+σ23L231)+σ22L221+σ33L331,
    φ2=σ11L112+2(σ12L122+σ13L132+σ23L232)+σ22L222+σ33L332,
    φ3=σ11L113+2(σ12L123+σ13L133+σ23L233)+σ22L223+σ33L333,
    ρi=ρξi,Uij=2Uξiξj,Lijk=3Lξiξjξk.

    Form the prior distribution in (9) and (13), the values of the BEs of various parameters under SE loss function are

     α1BSL=ˆα1+a1+12(φ1σ11+φ2σ12+φ3σ13), (14)
     α2BSL=ˆα2+a2+12(φ1σ12+φ2σ22+φ3σ23), (15)
     βBSL=ˆβ+a3+12(φ1σ13+φ2σ23+φ3σ33). (16)

    the BEs of various parameters under LINEX loss function are

     α1BLL=1cln[ecˆα1(1+c22σ11cˆα1c2(φ1σ11+φ2σ12+φ3σ13))], (17)
     α2BLL=1cln[ecˆα2(1+c22σ22cˆα2c2(φ1σ12+φ2σ22+φ3σ23))], (18)
     βBLL=1cln[ecˆβ(1+c22σ33cˆβc2(φ1σ13+φ2σ23+φ3σ33))]. (19)

    The forms (14)-(16) and (17)-(19) are evaluated at the MLEs of the parameters α1, α2 and β respectively.

    The MCMC techniques are a general simulation method for sampling from posterior distributions and computing posterior quantities of interest. Indeed, the MCMC samples may be used to completely summarize the posterior uncertainty about the parameters α1, α2 and β through a kernel estimate of the posterior distribution. From the joint posterior density function in (10), the conditional posterior distributions of α1, α2 and β can be written, respectively, as

    π(α1|α2,β,t)αμ1+n111e(α1ν1)n1i=1(1+ti:m:n  )α1(ψ1(ti:m:n  ))β1[1(ψ1(ti:m:n  ))β]Ri
    mi=n1+1(ψ(ti:m:n  ))(α2+1)(ψ2  (ti:m:n  ))β1[1(ψ2  (ti:m:n  ))β]Ri,
    π(α2|α1,β,t)αμ2+mn112e(α2ν2)exp[(α2ν2)]
    mi=n1+1(ψ(ti:m:n  ))(α2+1)(ψ2  (ti:m:n  ))β1[1(ψ2  (ti:m:n  ))β]Ri,
    π(β|α1,α2,t)βμ3+m1e(βν3)n1i=1(ψ1(ti:m:n  ))β[1(ψ1(ti:m:n  ))β]Ri
    mi=n1+1(ψ2  (ti:m:n  ))β[1(ψ2  (ti:m:n  ))β]Ri.

    It can be seen that the conditional posterior distributions of α1, α2 and β cannot be reduced analytically to well-known distribution, but the plot of them shows that they are similar to normal distribution see Figures 2-7. So, the Metropolis-Hastings (MH) method is used to generate random samples from this distribution, with normal proposal distribution.

    Figure 2.  Posterior density function of α1.
    Figure 3.  Posterior density function of α2.
    Figure 4.  Posterior density function of β.
    Figure 5.  Simulation number of α1 generated by the MCMC method.
    Figure 6.  Simulation number of α2 generated by the MCMC method.
    Figure 7.  Simulation number of β generated by the MCMC method.

    The following MCMC procedure is proposed to compute BEs for the function UU(α1,α2,β)

    Step 1: Start with α(0)1=ˆα1,α(0)2=ˆα2 and β(0)=ˆβ.

    Step 2: Set i=1.

    Step 3: Generate α1 from proposal distribution N(α(i1)1,var(α(i1)1)).

    Step 4: Calculate the acceptance probability

    S(α(i1)1|α1)=min(1,π(α1|α(i1)2,β(i1),t)π(α1|α(i1)2,β(i1),t)).

    Step 5: Generate U U(0,1).

    Step 6: If US(α(i1)1|α1), accept the proposal distribution and set α(i)1=α1. Otherwise, reject the proposal distribution and set α(i)1=α(i1)1.

    Step 7: To generate α2 and β do the Steps 2-6 for α2 and β.

    Step 8: Set i=i+1.

    Step 9: Repeat Steps 3-8 N times.

    Step 10: Obtain the BEs of U(α1,α2,β) using MCMC under SE and LINEX loss functions as

     UBSM=E(U(α1,α2,β|t))=1NMNi=M+1U(α(i)1,α(i)2,β(i)),
     UBLM=E(ecU(α1,α2,β|t))=1cln(1NMNi=M+1ecU(α(i)1,α(i)2,β(i))),

    where M is the burn-in period.

    Step 11: [U(NM)γ/2(α(i)1,α(i)2,β(i)),U(NM)(1γ/2)(α(i)1,α(i)2,β(i))] yields an approximate 100(1γ)% credible interval for U(α(i)1,α(i)2,β(i)).

    This section presents an example to illustrate the estimation procedure and the CIs for the parameters (α1,α2,β). Generate the Type-II progressive censoring from (3) with true value for parameters (α1,α2,β) as (1.50,2.51,1.71) when (n,m,τ)=(20,15,0.8) with censoring scheme (m1,m2,,m15)=(5,0,,10). The simulated data is listed in Table 1.

    Table 1.  SSPALT simulation data.
    Failure times under normal condition Failure times under accelerated condition
    0.161522 0.221959 0.236070 0.329451 0.809535 0.883767 0.95693 0.967955
    0.522292 0.524396 0.566979 1.942770 2.307990 4.18468 5.613810

     | Show Table
    DownLoad: CSV

    We obtain the average and mean square error (MSE) for Θ=(α1,α2,β) in Table 2. Also, Approximate and HPD CIs and their lengths are listed in Table 3.

    Table 2.  The average and MSE for Θ=(α1,α2,β).
    Θ ML Bayes
    Lindley's MCMC
    BSL BLL1 BLL2 BSM BLM1 BLM2
    α1 2.37129 0.97264 1.12533 1.44004 1.72924 1.58455 1.26443
    (0.75915) (0.2781) (0.14038) (0.00359) (0.05255) (0.00715) (0.05549)
    α2 2.37717 1.9153 1.87413 1.86157 2.13492 2.0524 1.84584
    (0.01765) (0.35367) (0.40433) (0.42046) (0.14068) (0.20939) (0.44111)
    β 2.49709 1.15864 1.21243 1.49745 1.96639 1.80225 1.50235
    (0.61951) (0.3040) (0.24757) (0.04518) (0.06573) (0.00851) (0.04312)

     | Show Table
    DownLoad: CSV
    Table 3.  Approximate and HPD CIs and their lengths of the parameters (α1,α2,β).
    (n,m) Θ Cis Lengths of CIs
    Appr. CI HPD CI Appr. CI HPD CI
    (40,30) α1 (0.11836, 4.62423) (0.45268, 3.49434) 4.50588 3.04166
    α2 (1.07654, 3.67779) (1.12724, 3.43897) 2.60125 2.31173
    β (-0.17125, 5.16542) (0.75421, 4.22058) 5.33667 3.46637

     | Show Table
    DownLoad: CSV

    This part conducts a simulation analysis to examine the performance of proposed estimates for the Type-II progressive censoring schemes in terms of average estimates and MSE values. We mention that Mathematica 7 software is used, and the simulation is based on 1000 repetitions. The schemes used are as follows:

    Scheme I: R1=nm and Ri=0 for i1.

    Scheme II: R2=nm and Ri=0 for i2.

    Scheme III: Rm=nm and Ri=0 for im.

    The recommended estimates for each scheme are computed using the Type-II progressive censored samples obtained from the IKum distribution using the algorithm given by reference [32]. We select the hyper-parameters (μ1=0.5,ν1=1.2,μ2=0.9,ν2=1.8,μ3=1.5,ν3=1.5) in (9) that allow us to generate the values of α1,α2 and β. These generated values are (α1,α2,β)=(1.50,2.51,1.71). The stress change time τ is chosen to be equal to 0.8.

    The MLEs and BEs of α1,α2 and β are obtained based on these censoring schemes. Also, the 95% CIs are computed based on the asymptotic distribution of the MLEs and Bayesian CIs for α1,α2 and β. We replicate the process 1000 times and then compute the average and MSEs of the resulting estimates as well as the average lengths Appr. and HPD CIs. We consider BLL1, BLL2, BLM1 and BLM2 with a notation that c=0.5,2. The respective results are reported up to 5 decimal places in Tables 4-9.

    Table 4.  The average and MSE of α1,α2,β for scheme I.
    (n,m) Θ ML Bayes
    Lindley's MCMC
    BSL BLL1 BLL2 BSM BLM1 BLM2
    (40,30) α1 1.65543 1.28705 1.2519 1.21992 1.42057 1.3590 1.20177
    (0.42999) (0.21481) (0.24574) (0.32018) (0.21822) (0.21371) (0.23893)
    α2 2.65326 2.44264 2.38662 2.3049 2.50495 2.43849 2.26092
    (0.33867) (0.22183) (0.22122) (0.25676) (0.23316) (0.21504) (0.22047)
    β 1.97409 1.57305 1.54014 1.5136 1.74602 1.66684 1.49469
    (0.70691) (0.14638) (0.16539) (0.30586) (0.25685) (0.20506) (0.17016)
    (40,35) α1 1.64862 1.30962 1.27755 1.24229 1.42521 1.36892 1.22295
    (0.39323) (0.19826) (0.22037) (0.28567) (0.20355) (0.19970) (0.22091)
    α2 2.64346 2.45204 2.40356 2.32678 2.50473 2.44703 2.28995
    (0.31550) (0.21374) (0.21219) (0.23924) (0.22513) (0.21044) (0.21137)
    β 1.99358 1.58682 1.57038 1.54711 1.75867 1.68156 1.51260
    (0.81505) (0.20465) (0.18208) (0.34996) (0.28678) (0.22754) (0.17760)
    (60,50) α1 1.62312 1.41280 1.37516 1.31596 1.45844 1.41501 1.29831
    (0.26361) (0.15324) (0.16263) (0.19733) (0.16181) (0.15786) (0.16666)
    α2 2.62169 2.49885 2.46070 2.38683 2.51963 2.47823 2.36218
    (0.20820) (0.15756) (0.15314) (0.16136) (0.16234) (0.15376) (0.15071)
    β 1.89337 1.68729 1.63844 1.57146 1.74089 1.68618 1.55662
    (0.43261) (0.15993) (0.15977) (0.20976) (0.21772) (0.18392) (0.14811)
    (60,55) α1 1.59519 1.40350 1.36644 1.30551 144190 1.40112 1.29076
    (0.21686) (0.13908) (0.14671) (0.17629) (0.14217) (0.14075) (0.15416)
    α2 2.57916 2.46693 2.43251 2.36330 2.48441 2.44729 2.34256
    (0.18811) (0.15289) (0.15072) (0.16101) (0.15414) (0.14883) (0.15115)
    β 1.86461 168288 1.63200 1.55915 1.72537 1.67403 1.55043
    (0.32666) (0.14426) (0.13634) (0.16560) (0.17773) (0.15357) (0.13120)

     | Show Table
    DownLoad: CSV
    Table 5.  The average and MSE of α1,α2,β for scheme II.
    (n,m) Θ ML Bayes
    Lindley's MCMC
    BSL BLL1 BLL2 BSM BLM1 BLM2
    (40,30) α1 1.68862 1.29947 1.26764 1.241690 1.43982 1.37699 1.21666
    (0.43057) (0.21428) (0.23551) (0.30259) (0.21065) (0.20411) (0.22597)
    α2 2.66861 2.45134 2.39578 2.31587 2.51442 2.44717 2.26779
    (0.33133) (0.21266) (0.21032) (0.24253) (0.22553) (0.20601) (0.20951)
    β 2.01308 1.57484 1.56057 1.54242 1.76780 1.68805 151427
    (0.77083) (0.30166) (0.16461) (0.32316) (0.25854) (0.20274) (0.16110)
    (40,35) α1 1.65135 1.31154 1.27931 1.24215 1.42709 1.37048 1.22409
    (0.34735) (0.19456) (0.20292) (0.26069) (0.17793) (0.17578) (0.20172)
    α2 2.62027 2.43070 2.38256 2.30568 2.48129 2.42432 2.26923
    (0.27903( (0.20208) (0.20078) (0.22693) (0.20463) (0.19348) (0.20321)
    β 1.96691 1.56982 1.55748 1.52932 1.73960 1.66554 1.50225
    (0.69979) (0.38616) (0.15731) (0.30310) (0.23953) (0.19178) (0.15897)
    (60,50) α1 1.60625 1.39965 1.36213 1.30233 1.44417 1.40106 1.20507
    (0.26531) (0.16239) (0.17236) (0.20804) (0.16985) (0.16675) (0.17770)
    α2 2.60057 2.48035 2.44261 2.36890 2.50041 2.45968 2.34547
    (0.18288) (0.14292) (0.14011) (0.15048) (0.14607) (0.13983) (0.14263)
    β 1.88494 1.68365 1.63859 1.56933 1.73673 1.68342 1.55592
    (0.41470) (0.15605) (0.15761) (0.21082) (0.20395) (0.17375) (0.14270)
    (60,55) α1 1.61851 1.42172 1.38574 1.32649 1.46185 1.42079 1.30954
    (0.23619) (0.13926) (0.14718) (0.17751) (0.14668) (0.14335) (0.15183)
    α2 2.59645 2.48323 2.44889 2.37962 2.50084 2.46374 2.35885
    (0.16439) (0.12894) (0.12704) (0.13638) (0.13043) (0.12576) (0.12920)
    β 1.89490 1.69924 1.65377 1.58544 1.74823 1.69593 1.57028
    (0.40487) (0.14542) (0.14846) (0.19649) (0.19938) (0.16804) (0.13378)

     | Show Table
    DownLoad: CSV
    Table 6.  The average and MSE of α1,α2,β for scheme III.
    (n,m) Θ ML Bayes
    Lindley's MCMC
    BSL BLL1 BLL2 BSM BLM1 BLM2
    (40,30) α1 1.67468 1.33963 1.30954 1.27582 1.44789 1.39401 1.25246
    (0.38210) (0.18888) (0.20886) (0.26779) (0.19642) (0.19114) (0.20608)
    α2 2.71109 2.45218 2.38609 2.30586 2.52052 2.43673 2.22214
    (0.52014) (0.28634) (0.28811) (0.35025) (0.31761) (0.27747) (0.27014)
    β 2.00940 1.59348 1.58277 1.56234 1.76239 1.68673 1.51879
    (0.84333) (0.23874) (0.19153) (0.36994) (0.28759) (0.22777) (0.17522)
    (40,35) α1 1.68589 1.35414 1.32299 1.28701 1.45995 1.40578 1.26368
    (0.37445) (0.17471) (0.19429) (0.25425) (0.18654) (0.18062) (0.19413)
    α2 2.66805 2.45790 2.40602 2.32949 2.51081 2.44812 2.27892
    (0.35275) (0.23424) (0.23040) (0.25831) (0.24459) (0.22541) (0.22312)
    β 2.02579 1.61455 1.60452 1.57674 1.78200 1.70581 1.53676
    (0.83181) (0.34268) (0.18228) (0.36377) (0.27424) (0.21447) (0.16139)
    (60,50) α1 1.60030 1.41001 1.37509 1.31679 1.44653 1.40723 1.30017
    (0.21965) (0.14099) (0.14861) (0.17702) (0.14551) (0.14381) (0.15526)
    α2 2.61698 2.48318 2.44130 2.36411 2.50299 2.45715 2.32968
    (0.24871) (0.19030) (0.18436) (0.19556) (0.19353) (0.18235) (0.17888)
    β 1.87625 1.68946 1.641710 1.57152 1.73156 1.68095 1.55817
    (0.34566) (0.14527) (0.14214) (0.17674) (0.18279) (0.15742) (0.13209)
    (60,55) α1 1.61398 1.42225 1.38779 1.32984 1.45989 1.42045 1.31294
    (0.21681) (0.13114) (0.13831) (0.16568) (0.13753) (0.13484) (0.14381)
    α2 2.60790 2.48732 2.45145 2.38085 2.50462 2.46549 2.35508
    (0.18854) (0.14604) (0.14322) (0.15220) (0.14838) (0.14218) (0.14344)
    β 1.88892 1.69278 1.65098 1.58316 1.74135 1.69007 1.56630
    (0.40552) (0.14335) (0.15024) (0.20478) (0.19462) (0.16359) (0.13086)

     | Show Table
    DownLoad: CSV
    Table 7.  Approximate and HPD CIs and their lengths of the parameters (α1,α2,β) for scheme I.
    (n,m) Θ Cis Lengths of CIs
    Appr. CI HPD CI Appr. CI HPD CI
    (40,30) α1 (0.44842, 2.86243) (0.57881, 2.51126) 2.41400 1.93245
    α2 (1.57289, 3.73362) (1.58029, 3.59153) 2.16073 2.01124
    β (0.56166, 3.38652) (0.89460, 3.05901) 2.82485 2.16441
    (40,35) α1 (0.51150, 2.78575) (0.61392, 2.46083) 2.27425 1.84690
    α2 (1.64491, 3.64201) (1.63511, 3.50903) 1.99710 1.87392
    β (0.61090, 3.37626) (0.91712, 3.03803) 2.76536 2.12091
    (60,50) α1 (0.68488, 2.56136) (0.72896, 2.35349) 1.87648 1.62453
    α2 (1.79284, 3.45054) (1.77264, 3.36206) 1.65770 1.58942
    β (0.83455, 2.95220) (1.00713, 2.79542) 2.11765 1.78829
    (60,55) α1 (0.69241, 2.49797) (0.73149, 2.30604) 1.80556 1.57456
    α2 (1.79774, 3.36058) (1.77490, 3.27798) 1.56284 1.50307
    β (0.84745, 2.88178) (1.00683, 2.7615) 2.03434 1.73932

     | Show Table
    DownLoad: CSV
    Table 8.  Approximate and HPD CIs and their lengths of the parameters (α1,α2,β) for scheme II.
    (n,m) Θ Cis Lengths of CIs
    Appr. CI HPD CI Appr. CI HPD CI
    (40,30) α1 (0.46780, 2.90944) (0.58824, 2.5402) 2.44164 1.95197
    α2 (1.58403, 3.75319) (1.58524, 3.60722) 2.16915 2.02198
    β (0.58767, 3.43848) (0.90980, 3.07903) 2.85081 2.16922
    (40,35) α1 (0.50841, 2.79430) (0.61227, 2.46790) 2.28589 1.85563
    α2 (1.62795, 3.61259) (1.61686, 3.47999) 1.98464 1.86313
    β (0.61274, 3.32109) (0.91109, 2.99448) 2.70834 2.08340
    (60,50) α1 (0.67377, 2.53872) (0.71706, 2.33422) 1.86496 1.61716
    α2 (1.77842, 3.42272) (1.75907, 3.33550) 1.64431 1.57643
    β (0.84327, 2.92661) (1.00736, 2.77472) 2.08334 1.76736
    (60,55) α1 (0.71446, 2.52256) (0.74751, 2.32754) 1.80809 1.58002
    α2 (1.81359, 3.37931) (1.78876, 3.29593) 1.56572 1.50717
    β (0.86825, 2.92154) (1.02278, 2.77349) 2.05329 1.75071

     | Show Table
    DownLoad: CSV
    Table 9.  Approximate and HPD CIs and their lengths of the parameters (α1,α2,β) for scheme III.
    (n,m) Θ Cis Lengths of CIs
    Appr. CI HPD CI Appr. CI HPD CI
    (40,30) α1 (0.57373, 2.77563) (0.64412, 2.45263) 2.20190 1.80851
    α2 (1.48642, 3.93577) (1.50360, 3.74638) 2.44935 2.24278
    β (0.64792, 3.37089) (0.92108, 3.01884) 2.72297 2.09776
    (40,35) α1 (0.58083, 2.79095) (0.65407, 2.46931) 2.21012 1.81524
    α2 (1.62504, 3.71106) (1.60794, 3.55714) 2.08601 1.94920
    β (0.65645, 3.39514) (0.93527, 3.05102) 2.73868 2.11575
    (60,50) α1 (0.72122, 2.47937) (0.74526, 2.29158) 1.75815 1.54631
    α2 (1.74578, 3.48818) (1.72035, 3.38819) 1.74240 1.66784
    β (0.87150, 2.88100) (1.01345, 2.7403) 2.00950 1.72685
    (60,55) α1 (0.73253, 2.49543) (0.75623, 2.30571) 1.76290 1.54948
    α2 (1.80380, 3.41201) (1.77484, 3.32044) 1.60821 1.54560
    β (0.87613, 2.90170) (1.02087, 2.75243) 2.02557 1.73156

     | Show Table
    DownLoad: CSV

    This section analyzes a real data set given by reference [33]. It consists of thirty successive values of March precipitation (in inches) in Minneapolis/St Paul. The data are as follows:

    0.77,1.74,0.81,1.20,1.95,1.20,0.47,1.43,3.37,2.20,3.00,3.09,1.51,2.10,0.52,1.62,1.31,0.32,0.59,0.81,2.81,1.87,1.18,1.35,4.75,2.48,0.96,1.89,0.90,2.05.

    Reference [22], verified that the IKum distribution provides a good fit for the given data set. The calculated Kolmogorov-Smirnov (KS) distance between the empirical and the fitted for the IKum distribution was 0.1105 and its p-value is 0.8571 where ˆα=3.0038 and ˆβ=8.7984 which indicates that this distribution can be considered as an adequate model for the given data set.

    Now, using SSPALT, we will analyze the supplied data by setting the value of τ to be 1.3. From the original data, three Type-II progressive censored schemes are generated with number of stages m=20 from a total of n=30 observations and removed items Rj, where j=1,2,,m. These different schemes can be described as follows:

    Scheme I: R1=nm and R2=R3==Rm=0.

    Scheme II: R1=R2=R3==Rm1=0 and Rm=nm.

    Scheme III: R1=R2=R3==Rm=0 and n=m.

    Note that Type-II censoring (Scheme II) and complete sampling (Scheme III) can be considered as a special case of Type-II progressive censoring when n=m and R1=R2=R3==Rm=0.

    We calculate the MLEs of the parameters α and β and their associated 95% asymptotic CIs. We also compute BEs utilizing the MH algorithm under the non-informative prior. Note that the non-informative prior is assumed where μi=νi=0, i=1,2,3. It is indicated that, while generating samples from the posterior distribution utilizing the MH algorithm, initial values of (α,β) are considered as (α(0),β(0))=(ˆα,ˆβ), where ˆα and ˆβ are the MLEs of the parameters α and β respectively. Thus, we considered the variance-covariance matrix SΘ of (ln(ˆα),ln(ˆβ)), that can be easily obtained utilizing the delta method. Finally, we discarded 2000 burn-in samples among the total 10000 samples created from the posterior density, and subsequently obtained Bayes estimates, and HPD interval estimates utilizing the technique of [34].

    All the estimated values of MLEs and associated standard errors (St.Er) are presented in Table 10. Also, Bayesian estimation using Lindley's approximations and MCMC by applying MH algorithm and its St.Er are computed. Approximate CIs for MLEs and HPD for Bayesian estimates using MCMC are presented in Table 11 under SE loss function.

    Table 10.  ML and Bayesian estimates with associated St.Er (in practices) based on different Type-II progressive censoring schemes scheme for a given real data set.
    Scheme Θ ML Bayesian
    Lindley's MCMC
    BSL BLL1 BLL2 BSM BLM1 BLM2
    Scheme I α1 1.9162 1.9288 1.9365 1.9540 1.9137 1.9103 1.9032
    (0.6442) (0.0924)
    α2 3.0628 3.0634 3.0684 3.0706 3.0623 3.0583 3.0498
    (0.6638) (0.0995)
    β 4.7644 4.7605 4.7652 4.7646 4.7602 4.7562 4.7478
    (2.2619) (0.1007)
    Scheme II α1 24812 2.4862 2.4904 2.998 2.4771 2.4737 2.4666
    (0.6410) (0.0924)
    α2 2.5023 2.5041 2.5066 2.5103 2.5015 2.4979 2.4901
    (0.4429) (0.0934)
    β 7.8787 7.8778 7.8788 7.8787 7.8810 7.8770 7.8685
    (3.7634) (0.9982)
    Scheme III α1 2.9300 2.9331 2.9367 2.9443 2.9259 2.9224 2.9149
    (0.6427) (0.0851)
    α2 3.3399 3.3405 3.3420 3.3442 3.3358 3.3319 3.3237
    (0.5232) (0.0724)
    β 7.7583 7.7577 7.7582 7.7582 7.7558 7.7518 7.7433
    (3.3666) (0.0905)

     | Show Table
    DownLoad: CSV
    Table 11.  Approximate and HPD CIs and their lengths based on different Type-II progressive censoring schemes for a given real data set.
    Scheme Θ CIs Lengths of CIs
    Appr. CI HPD CI Appr. CI HPD CI
    Scheme I α1 (0.6536, 3.1788) (1.7411, 2.1002) 2.5252 0.3591
    α2 (1.7617, 4.3638) (2.8737, 3.2645) 2.6021 0.3908
    β (0.3312, 9.1975) (4.5711, 4.9614) 8.8663 0.3903
    Scheme II α1 (1.2249, 3.7376) (2.2932, 2.6537) 2.5127 0.3605
    α2 (1.6341, 3.3706) (2.3091, 2.6851) 1.7365 0.3760
    β (0.5025, 15.2549) (7.6931, 8.0797) 14.7524 0.3866
    Scheme III α1 (1.6702, 4.1897) (2.7439, 3.1108) 2.5195 0.3669
    α2 (2.3144, 4.3655) (3.1494, 3.5284) 2.0510 0.3790
    β (1.15987, 14.3568) (7.5501, 7.9403) 13.1969 0.3902

     | Show Table
    DownLoad: CSV

    The convergence of MCMC estimation in case of scheme II of Type-II progressive censoring for the given real data set. As shown in Figure 8, the Bayesian estimates using MCMC are convergence through three sub-graphs: scatter plot, histogram, and cumulative mean of the 10, 000 estimates.

    Figure 8.  Convergence of MCMC estimates for α1,α2 and β using MH algorithm for given real data set under Type-II progressive and SSPALT model.

    In this study, the statistical inferences procedure for the unknown parameters of the IKum distribution and the acceleration factor, when the data are Type-II progressive censored from SSPALT were considered. We studied this problem under CEM. Since it is impossible to compute the MLEs in closed form, the Newton-Raphson approach is suggested as an alternative. We develop the approximate confidence interval length of the parameters and acceleration factor based on the asymptotic distribution of MLEs. We investigated the Bayes estimation approach in order to obtain an alternate estimate procedure. Bayesian estimates are achieved by Lindley's approximation the MCMC method, based on SE and LINEX loss functions. Under the premise that the priors of α1,α2 and β are Gamma density, the Metropolis-Hastings sampling technique is shown to produce Bayesian estimates. In addition, HPD CIs have been acquired. The Monte Carlo simulation study was utilized to get numerical point and interval estimates of the parameters.

    From the results in Tables 4-9, we observe the following:

    1) when the sample size increases, the MSEs of MLEs and BEs of the considered parameters decrease.

    2) The BEs of the considered parameters obtained from both Lindley's approximation and MCMC method give more accurate results through the MSEs than MLEs.

    3) The BEs of β obtained from Lindley's approximation give more accurate results through the MSEs than the BEs obtained from MCMC method.

    4) The BEs of the considered parameters based on LINEX loss function (c=2) are smaller than that based on SE loss function.

    5) In most cases, the HPD CIs give more accurate results than the approximate CIs since the lengths of the former are less than the lengths of latter, for different sample sizes, observed failures, and censoring schemes.

    A real-life numerical example of March precipitation (in inches) in Minneapolis failure times is used to demonstrate the usefulness of the recommended estimation technique under SSPALT based on Type-II progressive censored. As per the K-S distance and the p-value, the data set presents a good match for the IKum distribution. To confirm that the distribution matches the data.

    The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4340290DSR03). Additionally, the authors thank the editor and the reviewers for their careful reading of the research article and for their constructive comments that greatly improved this paper.

    All authors declare that there is no conflict of interest in this paper.



    [1] E. K. Al-Hussaini, A. H. Abdel-Hamid, Bayesian estimation of the parameters, reliability and hazard rate functions of mixtures under accelerated life tests, Commun. Stat. Simul. Comput., 33 (2004), 963–982. https://doi.org/10.1081/SAC-200040703 doi: 10.1081/SAC-200040703
    [2] E. K. Al-Hussaini, A. H. Abdel-Hamid, Accelerated life tests under finite mixture models, J. Stat. Comput. Simul., 76 (2006), 673–690. https://doi.org/10.1080/10629360500108087 doi: 10.1080/10629360500108087
    [3] A. M. Abd-Elfattah, A. S. Hassan, S. G. Nassr, Estimation in step-stress partially accelerated life tests for the Burr type XⅡ distribution using type I censoring, Stat. Methodol., 5 (2008), 502–514. https://doi.org/10.1016/j.stamet.2007.12.001 doi: 10.1016/j.stamet.2007.12.001
    [4] M. M. Mohie El-Din, S. E. Abu-Youssef, N. S. A. Ali, A. M. Abd El-Raheem, Estimation in step-stress accelerated life tests for Weibull distribution with progressive first-failure censoring, J. Stat. Appl. Probab., 3 (2015), 403–411. http://dx.doi.org/10.1155/2015/319051 doi: 10.1155/2015/319051
    [5] A. E. B. A. Ahmad, A. A. Soliman, M. M. Yousef, Bayesian Bayesian estimation of exponentiated Weibull distribution under partially accelerated life tests, Bull. Malays. Math. Sci. Soc., 39 (2016), 227–244. https://doi.org/10.1007/s40840-015-0170-9 doi: 10.1007/s40840-015-0170-9
    [6] A. A. Ismail, Likelihood Inference for a step stress partially accelerated life test model with type-I progressive hybrid censored data from Weibull distribution, J. Stat. Comput. Simul., 84 (2016), 2486–2494. https://doi.org/10.1080/00949655.2013.836195 doi: 10.1080/00949655.2013.836195
    [7] B. Liu, Y. Shi, J. Cai, R. Wang, Reliability analysis of masked data in adaptive step-stress partially accelerated lifetime tests with progressive removal, Commun. Stat. Theory Methods, 46 (2017), 6174–6191. https://doi.org/10.1080/03610926.2015.1122058 doi: 10.1080/03610926.2015.1122058
    [8] S. A. Lone, A. Rahman, A. Islam, Step stress partially accelerated life testing plan for competing risk using adaptive Type-I progressive hybrid censoring, Pak. J. Stat., 33 (2017), 237–248.
    [9] M. Nassar, S. G. Nassr, S. Dey, Analysis of Burr type XⅡ distribution under step stress partially accelerated life tests with Type I and adaptive Type Ⅱ progressively hybrid censoring schemes, Ann. Data Sci., 4 (2017), 227–248. https://doi.org/10.1007/s40745-017-0101-8 doi: 10.1007/s40745-017-0101-8
    [10] S. G. Nassr, N. Elharoun, Inference for exponentiated Weibull distribution under constant stress partially accelerated life tests with multiple censored, Commun. Stat. Appl. Methods, 26 (2019), 131–148. https://doi.org/10.29220/CSAM.2019.26.2.131 doi: 10.29220/CSAM.2019.26.2.131
    [11] A. S. Hassan, S. G. Nassr, S. Pramanik, S. S. Maiti, Estimation in constant stress partially accelerated life tests for Weibull distribution based on censored competing risks data, Ann. Data Sci., 7 (2020), 45–62. https://doi.org/10.1007/s40745-019-00226-3 doi: 10.1007/s40745-019-00226-3
    [12] Ç. ÇETİNKAYA, Estimation in step-stress partially accelerated life tests for the power Lindley distribution under progressive censoring, Gazi Univ. J. Sci., 34 (2021), 579–590. https://doi.org/10.35378/gujs.682499 doi: 10.35378/gujs.682499
    [13] I. Alam, A. Ahmed, Inference on maintenance service policy under step-stress partially accelerated life tests using progressive censoring, J. Stat. Comput. Simul., 92 (2022), 813–829. https://doi.org/10.1080/00949655.2021.1975282 doi: 10.1080/00949655.2021.1975282
    [14] Y. Wang, W. Wang, Y. Tang, A Bayesian semiparametric accelerate failure time mixture cure model, Int. J. Biostat., 2021 (2021). https://doi.org/10.1515/ijb-2021-0012 doi: 10.1515/ijb-2021-0012
    [15] A. Xu, S. Zhou, Y. Tang, A unified model for system reliability evaluation under dynamic operating conditions, IEEE Trans. Reliab., 70 (2019), 65–72. https://doi.org/10.1109/TR.2019.2948173 doi: 10.1109/TR.2019.2948173
    [16] C. Luo, L. Shen, A. Xu, Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints, Reliab. Eng. Syst. Saf., 218 (2022), 108136. https://doi.org/10.1016/j.ress.2021.108136 doi: 10.1016/j.ress.2021.108136
    [17] M. M. Yousef, S. A. Alyami, A. F. Hashem, Statistical inference for a constant-stress partially accelerated life tests based on progressively hybrid censored samples from inverted Kumaraswamy distribution, PloS One, 17 (2022), e0272378.‏ https://doi.org/10.1371/journal.pone.0272378 doi: 10.1371/journal.pone.0272378
    [18] N. Balakrishnan, R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications, Birkhauser, Boston, 2000.
    [19] N. Balakrishnan, E. Cramer, The Art of Progressive Censoring, Birkhauser, New York, 2014. https://doi.org/10.1007/978-0-8176-4807-7
    [20] F. Zhang, X. Shi, H. K. T. Ng, Information geometry of the exponential family of distributions with progressive Type-Ⅱ censoring, Entropy, 23 (2021), 687. https://doi.org/10.3390/e23060687 doi: 10.3390/e23060687
    [21] S. Dey, A. Elshahhat, Analysis of Wilson‐Hilferty distribution under progressive Type‐Ⅱ censoring, Qual. Reliab. Eng. Int., 2022 (2022). https://doi.org/10.1002/qre.3173 doi: 10.1002/qre.3173
    [22] A. M. Abd AL-Fattah, A. A. EL-Helbawy, G. R. AL-Dayian, Inverted Kumaraswamy distribution: Properties and estimation, Pak. J. Stat., 33 (2017), 37–61.
    [23] M. Mohie El-Din, M. Abu-Moussa, On estimation and prediction for the inverted Kumaraswamy distribution based on general progressive censored samples, Pak. J. Stat. Oper. Res., 14 (2018), 717–736. https://doi.org/10.18187/pjsor.v14i3.2103 doi: 10.18187/pjsor.v14i3.2103
    [24] A. M. Daghistani, B. Al-Zahrani, M. Q. Shahbaz, Relations for moments of dual generalized order statistics for a new inverse Kumaraswamy distribution, Pak. J. Stat. Oper. Res., 15 (2019), 989–997. https://doi.org/10.18187/pjsor.v15i4.3079 doi: 10.18187/pjsor.v15i4.3079
    [25] K. Bagci, T. Arslan, H. E. Celik, Inverted Kumarswamy distribution for modeling the wind speed data: Lake Van, Turkey, Renewable Sustainable Energy Rev., 135 (2021), 110110. https://doi.org/10.1016/j.rser.2020.110110 doi: 10.1016/j.rser.2020.110110
    [26] F. Noor, S. Masood, M. Zaman, M. Siddiqa, R. A. Wagan, I. U. Khan, et al., Bayesian analysis of inverted Kumaraswamy mixture model with application to burning velocity of chemicals, Math. Prob. Eng., 2021 (2021). https://doi.org/10.1155/2021/5569652 doi: 10.1155/2021/5569652
    [27] V. Bagdonavicius, M. Nikulin, Accelerated Life Models: Modeling and Statistical Analysis. Chapman and Hall/CRC Press, Boca Raton, Florida, 2021.
    [28] H. R. Varian, A Bayesian approach to real estate assessment, in Variants in Economic Theory: Selected Works of H. R. Varian, Edward Elgar Publishing, (2000), 144–155.
    [29] M. Doostparast, S. Deepak, A. Zangoie, Estimation with the lognormal distribution on the basis of records, J. Stat. Comput. Simul., 83 (2013), 2339–2351. https://doi.org/10.1080/00949655.2012.691973 doi: 10.1080/00949655.2012.691973
    [30] D. V. Lindley, Approximate Bayesian methods, Trabajos de Estadistica y de investigacin operativa, 31 (1980), 223–245. https://doi.org/10.1007/BF02888353 doi: 10.1007/BF02888353
    [31] M. Doostparast, M. G. Akbari, N. Balakrishna, Bayesian analysis for the two-parameter Pareto distribution based on record values and times, J. Stat. Comput. Simul., 81 (2011), 1393–1403. https://doi.org/10.1080/00949655.2010.486762 doi: 10.1080/00949655.2010.486762
    [32] N. Balakrishnan, R. A. Sandhu, A simple simulational algorithm for generating progressive Type-Ⅱ censored samples, Am. Stat., 49 (1985), 229–230.
    [33] D. Hinkley, On quick choice of power transformations, J. R. Stat. Ser. C, 26 (1977), 67–69. https://doi.org/10.2307/2346869 doi: 10.2307/2346869
    [34] M. H. Chen, Q. M. Shao, Monte Carlo estimation of Bayesian credible and HPD intervals, J. Comput. Graphical Stat., 8 (1999), 69–92.
  • This article has been cited by:

    1. O. E. Abo-Kasem, A. Abdelgaffar, Aned Al Mutairi, Rana H. Khashab, Wael S. Abu El Azm, Classical and Bayesian estimation for Gompertz distribution under the unified hybrid censored sampling with application, 2023, 13, 2158-3226, 10.1063/5.0174543
    2. Manal M. Yousef, Aisha Fayomi, Ehab M. Almetwally, Simulation Techniques for Strength Component Partially Accelerated to Analyze Stress–Strength Model, 2023, 15, 2073-8994, 1183, 10.3390/sym15061183
    3. Neama Salah Youssef Temraz, Analysis of stress-strength reliability with m-step strength levels under type I censoring and Gompertz distribution, 2024, 9, 2473-6988, 30728, 10.3934/math.20241484
    4. Said G. Nassr, Amal S. Hassan, Ehab M. Almetwally, Aned Al Mutairi, Rana H. Khashab, Neema M. ElHaroun, Statistical inference of the inverted exponentiated Lomax distribution using generalized order statistics with application to COVID-19, 2023, 13, 2158-3226, 10.1063/5.0174540
    5. Aned Al Mutairi, Afaf Alrashidi, Neama Taher Al-Sayed, Sarah Mohammad Behairy, Mohammed Elgarhy, Said G. Nassr, Bayesian and E-Bayesian estimation based on constant-stress partially accelerated life testing for inverted Topp–Leone distribution, 2023, 21, 2391-5471, 10.1515/phys-2023-0126
    6. Mazen Nassar, Refah Alotaibi, Ahmed Elshahhat, Reliability analysis at usual operating settings for Weibull Constant-stress model with improved adaptive Type-Ⅱ progressively censored samples, 2024, 9, 2473-6988, 16931, 10.3934/math.2024823
    7. Mustafa M. Hasaballah, Yusra A. Tashkandy, M. E. Bakr, Oluwafemi Samson Balogun, Dina A. Ramadan, Classical and Bayesian inference of inverted modified Lindley distribution based on progressive type-II censoring for modeling engineering data, 2024, 14, 2158-3226, 10.1063/5.0190542
    8. Ahmadur Rahman, Mustafa Kamal, Shahnawaz Khan, Mohammad Faisal Khan, Manahil SidAhmed Mustafa, Eslam Hussam, Mintodê Nicodème Atchadé, Aned Al Mutairi, Statistical inferences under step stress partially accelerated life testing based on multiple censoring approaches using simulated and real-life engineering data, 2023, 13, 2045-2322, 10.1038/s41598-023-39170-x
    9. Mustafa M. Hasaballah, Yusra A. Tashkandy, Oluwafemi Samson Balogun, Mahmoud E. Bakr, Bayesian inference for two populations of Lomax distribution under joint progressive Type‐II censoring schemes with engineering applications, 2024, 40, 0748-8017, 4335, 10.1002/qre.3633
    10. Intekhab Alam, Sadia Anwar, Lalit Kumar Sharma, Inference on adaptive Type-II progressive hybrid censoring under partially accelerated life test for Gompertz distribution, 2023, 14, 0975-6809, 2661, 10.1007/s13198-023-02129-2
    11. Pavuluri Jaswanth, Pavuluri Yaswanth chowdary, M.V.S. Ramprasad, Deep learning based intelligent system for robust face spoofing detection using texture feature measurement, 2023, 29, 26659174, 100868, 10.1016/j.measen.2023.100868
    12. Laila A. Al-Essa, Alaa H. Abdel-Hamid, Tmader Alballa, Atef F. Hashem, Reliability analysis of the triple modular redundancy system under step-partially accelerated life tests using Lomax distribution, 2023, 13, 2045-2322, 10.1038/s41598-023-41363-3
    13. Amal S. Hassan, Najwan Alsadat, Mohammed Elgarhy, Hijaz Ahmad, Heba F. Nagy, On Estimating Multi- Stress Strength Reliability for Inverted Kumaraswamy Under Ranked Set Sampling with Application in Engineering, 2024, 31, 1776-0852, 10.1007/s44198-024-00196-y
    14. Areej M. AL-Zaydi, On Moments of Inverse Kumaraswamy Distribution Based on Progressive Type-II Censored Order Statistics, 2024, 2214-1766, 10.1007/s44199-024-00099-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2196) PDF downloads(154) Cited by(14)

Figures and Tables

Figures(8)  /  Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog