Research article Special Issues

Transcranial Doppler analysis based on computer and artificial intelligence for acute cerebrovascular disease


  • Received: 05 October 2022 Revised: 25 October 2022 Accepted: 27 October 2022 Published: 04 November 2022
  • Cerebrovascular disease refers to damage to brain tissue caused by impaired intracranial blood circulation. It usually presents clinically as an acute nonfatal event and is characterized by high morbidity, disability, and mortality. Transcranial Doppler (TCD) ultrasonography is a non-invasive method for the diagnosis of cerebrovascular disease that uses the Doppler effect to detect the hemodynamic and physiological parameters of the major intracranial basilar arteries. It can provide important hemodynamic information that cannot be measured by other diagnostic imaging techniques for cerebrovascular disease. And the result parameters of TCD ultrasonography such as blood flow velocity and beat index can reflect the type of cerebrovascular disease and serve as a basis to assist physicians in the treatment of cerebrovascular diseases. Artificial intelligence (AI) is a branch of computer science which is used in a wide range of applications in agriculture, communications, medicine, finance, and other fields. In recent years, there are much research devoted to the application of AI to TCD. The review and summary of related technologies is an important work to promote the development of this field, which can provide an intuitive technical summary for future researchers. In this paper, we first review the development, principles, and applications of TCD ultrasonography and other related knowledge, and briefly introduce the development of AI in the field of medicine and emergency medicine. Finally, we summarize in detail the applications and advantages of AI technology in TCD ultrasonography including the establishment of an examination system combining brain computer interface (BCI) and TCD ultrasonography, the classification and noise cancellation of TCD ultrasonography signals using AI algorithms, and the use of intelligent robots to assist physicians in TCD ultrasonography and discuss the prospects for the development of AI in TCD ultrasonography.

    Citation: Lingli Gan, Xiaoling Yin, Jiating Huang, Bin Jia. Transcranial Doppler analysis based on computer and artificial intelligence for acute cerebrovascular disease[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 1695-1715. doi: 10.3934/mbe.2023077

    Related Papers:

  • Cerebrovascular disease refers to damage to brain tissue caused by impaired intracranial blood circulation. It usually presents clinically as an acute nonfatal event and is characterized by high morbidity, disability, and mortality. Transcranial Doppler (TCD) ultrasonography is a non-invasive method for the diagnosis of cerebrovascular disease that uses the Doppler effect to detect the hemodynamic and physiological parameters of the major intracranial basilar arteries. It can provide important hemodynamic information that cannot be measured by other diagnostic imaging techniques for cerebrovascular disease. And the result parameters of TCD ultrasonography such as blood flow velocity and beat index can reflect the type of cerebrovascular disease and serve as a basis to assist physicians in the treatment of cerebrovascular diseases. Artificial intelligence (AI) is a branch of computer science which is used in a wide range of applications in agriculture, communications, medicine, finance, and other fields. In recent years, there are much research devoted to the application of AI to TCD. The review and summary of related technologies is an important work to promote the development of this field, which can provide an intuitive technical summary for future researchers. In this paper, we first review the development, principles, and applications of TCD ultrasonography and other related knowledge, and briefly introduce the development of AI in the field of medicine and emergency medicine. Finally, we summarize in detail the applications and advantages of AI technology in TCD ultrasonography including the establishment of an examination system combining brain computer interface (BCI) and TCD ultrasonography, the classification and noise cancellation of TCD ultrasonography signals using AI algorithms, and the use of intelligent robots to assist physicians in TCD ultrasonography and discuss the prospects for the development of AI in TCD ultrasonography.



    加载中


    [1] M. Portegies, P. Koudstaal, M. Ikram, Cerebrovascular disease, Handb. Clin. Neurol., 138 (2016), 239–261. https://doi.org/10.1016/B978-0-12-802973-2.00014-8 doi: 10.1016/B978-0-12-802973-2.00014-8
    [2] X. Tong, Q. Yang, M. D. Ritchey, M. G. George, S. L. Jackson, C. Gillespie, et al., The burden of cerebrovascular disease in the United States, Prev. Chronic. Dis., 16 (2019), 180411. https://doi.org/10.5888/pcd16.180411 doi: 10.5888/pcd16.180411
    [3] S. Yoshimura, N. Sakai, H. Yamagami, K. Uchida, M. Beppu, K. Toyoda, et al., Endovascular therapy for acute stroke with a large ischemic region, N. Engl. J. Med., 386 (2022), 1303–1313. https://doi.org/10.1056/NEJMoa2118191 doi: 10.1056/NEJMoa2118191
    [4] Q. Z. Tuo, S. T. Zhang, P. Lei, Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications, Med. Res. Rev., 42 (2022), 259–305. https://doi.org/10.1002/med.21817 doi: 10.1002/med.21817
    [5] K. N. Kadyrovich, S. K. Erkinovich, K. M. Ilhomovna, Microscopic examination of postcapillary cerebral venues in hemorrhagic stroke, Am. J. Med. Sci. Pharm. Res., 3 (2021), 69–73. https://doi.org/10.37547/TAJMSPR/Volume03Issue08-11 doi: 10.37547/TAJMSPR/Volume03Issue08-11
    [6] M. L. Osgood, Aneurysmal subarachnoid hemorrhage: Review of the pathophysiology and management strategies, Curr. Neurol. Neurosci. Rep., 21 (2021), 1–11. https://doi.org/10.1007/s11910-021-01136-9 doi: 10.1007/s11910-021-01136-9
    [7] S. N. Neifert, E. K. Chapman, M. L. Martini, W. H. Shuman, A. J. Schupper, E. K. Oermann, et al., Aneurysmal subarachnoid hemorrhage: The last decade, Transl. Stroke Res., 12 (2021), 428–446. https://doi.org/10.1007/s12975-020-00867-0 doi: 10.1007/s12975-020-00867-0
    [8] W. S. Dodd, D. Laurent, A. S. Dumont, D. M. Hasan, P. M. Jabbour, R. M. Starke, et al., Pathophysiology of delayed cerebral ischemia after subarachnoid hemorrhage: A review, J. Am. Heart Assoc., 10 (2021), e021845. https://doi.org/10.1161/jaha.121.021845 doi: 10.1161/jaha.121.021845
    [9] I. Daghals, M. Sargurupremraj, R. Danning, P. Gormley, R. Malik, P. Amouyel, et al., Migraine, stroke, and cervical arterial dissection: Shared genetics for a triad of brain disorders with vascular involvement, Neurol. Genet., 8 (2022), e653. https://doi.org/10.1212/nxg.0000000000000653 doi: 10.1212/nxg.0000000000000653
    [10] M. Marciniec, K. Sapko, M. Kulczyński, S. Popek-Marciniec, A. Szczepańska-Szerej, K. Rejdak, Non-traumatic cervical artery dissection and ischemic stroke: A narrative review of recent research, Clin. Neurol. Neurosurg., 187 (2019), 105561. https://doi.org/10.1016/j.clineuro.2019.105561 doi: 10.1016/j.clineuro.2019.105561
    [11] M. M. Ruchoux, C. A. Maurage, CADASIL: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, J. Neuropathol. Exp. Neurol., 56 (1997), 947–964. https://doi.org/10.1097/00005072-199709000-00001 doi: 10.1097/00005072-199709000-00001
    [12] M. Bousser, E. Tournier-Lasserve, Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: From stroke to vessel wall physiology, J. Neurol. Neurosurg. Psychiatry, 70 (2001), 285–287. https://doi.org/10.1136/jnnp.70.3.285 doi: 10.1136/jnnp.70.3.285
    [13] E. Navarro, F. Díaz, L. Muñoz, S. Giménez-Roldán, Dominant autosomal cerebral arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL): A review, Neurologia, 17 (2002), 410–417.
    [14] L. Prado, C. Han, S. P. Oh, H. Su, Recent advances in basic research for brain arteriovenous malformation, Int. J. Mol. Sci., 20 (2019), 5324. https://doi.org/10.3390/ijms20215324 doi: 10.3390/ijms20215324
    [15] P. Pan, S. Weinsheimer, D. Cooke, E. Winkler, A. Abla, H. Kim, et al., Review of treatment and therapeutic targets in brain arteriovenous malformation, J. Cereb. Blood Flow Metab., 41 (2021), 3141–3156. https://doi.org/10.1177/0271678x211026771 doi: 10.1177/0271678x211026771
    [16] S. S. Shaligram, E. Winkler, D. Cooke, H. Su, Risk factors for hemorrhage of brain arteriovenous malformation, CNS Neurosci. Ther., 25 (2019), 1085–1095. https://doi.org/10.1111/cns.13200 doi: 10.1111/cns.13200
    [17] M. Capecchi, M. Abbattista, I. Martinelli, Cerebral venous sinus thrombosis, J. Thromb. Haemostasis, 76 (2018), 12–15. https://doi.org/10.1111/jth.14210 doi: 10.1111/jth.14210
    [18] G. Sébire, B. Tabarki, D. E. Saunders, I. Leroy, R. Liesner, C. Saint-Martin, et al., Cerebral venous sinus thrombosis in children: Risk factors, presentation, diagnosis and outcome, Brain, 128 (2005), 477–489. https://doi.org/10.1093/brain/awh412 doi: 10.1093/brain/awh412
    [19] J. M. Ferro, P. Canhão, Cerebral venous sinus thrombosis: Update on diagnosis and management, Curr. Cardiol. Rep., 16 (2014), 523. https://doi.org/10.1007/s11886-014-0523-2 doi: 10.1007/s11886-014-0523-2
    [20] H. Zhang, L. Zheng, L. Feng, Epidemiology, diagnosis and treatment of moyamoya disease, Exp. Ther. Med., 17 (2019), 1977–1984. https://doi.org/10.3892/etm.2019.7198 doi: 10.3892/etm.2019.7198
    [21] J. Li, M. Jin, X. Sun, J. Li, Y. Liu, Y. Xi, et al., Imaging of moyamoya disease and moyamoya syndrome: Current status, J. Comput. Assist. Tomogr., 43 (2019), 257–263. https://doi.org/10.1097/rct.0000000000000834 doi: 10.1097/rct.0000000000000834
    [22] S. Shang, D. Zhou, J. Ya, S. Li, Q. Yang, Y. Ding, et al., Progress in moyamoya disease, Neurosurg. Rev., 43 (2020), 371–382. https://doi.org/10.1007/s10143-018-0994-5 doi: 10.1007/s10143-018-0994-5
    [23] C. Esenwa, J. Gutierrez, Secondary stroke prevention: Challenges and solutions, Vasc. Health Risk Manag., 11 (2015), 437–450. https://doi.org/10.2147/vhrm.S63791 doi: 10.2147/vhrm.S63791
    [24] V. L. Feigin, M. H. Forouzanfar, R. Krishnamurthi, G. A. Mensah, M. Connor, D. A. Bennett, et al., Global and regional burden of stroke during 1990–2010: Findings from the global burden of disease study 2010, Lancet, 383 (2014), 245–254. https://doi.org/10.1016/s0140-6736(13)61953-4 doi: 10.1016/s0140-6736(13)61953-4
    [25] I. Nagy, D. Fabó, Clinical neurophysiological methods in diagnosis and treatment of cerebrovascular diseases, Ideggyogy. Sz., 71 (2018), 7–14. https://doi.org/10.18071/isz.71.0007 doi: 10.18071/isz.71.0007
    [26] J. A. Barios, S. Ezquerro, A. Bertomeu-Motos, J. M. Catalan, J. M. Sanchez-Aparicio, L. Donis-Barber, et al., Movement-related EEG oscillations of contralesional hemisphere discloses compensation mechanisms of severely affected motor chronic stroke patients, Int. J. Neural. Syst., 31 (2021), 2150053. https://doi.org/10.1142/s0129065721500532 doi: 10.1142/s0129065721500532
    [27] S. Shaban, B. Huasen, A. Haridas, M. Killingsworth, J. Worthington, P. Jabbour, et al., Digital subtraction angiography in cerebrovascular disease: Current practice and perspectives on diagnosis, acute treatment and prognosis, Acta Neurol. Belg., 122 (2022), 763–780. https://doi.org/10.1007/s13760-021-01805-z doi: 10.1007/s13760-021-01805-z
    [28] C. C. Young, R. H. Bonow, G. Barros, M. Mossa-Basha, L. J. Kim, M. R. Levitt, Magnetic resonance vessel wall imaging in cerebrovascular diseases, Neurosurg. Focus, 47 (2019), E4. https://doi.org/10.3171/2019.9.Focus19599 doi: 10.3171/2019.9.Focus19599
    [29] S. F. Xiang, J. T. Li, S. J. Yang, F. F. Ding, W. W. Wang, S. Huo, et al., Whole-brain volume CT angiography can effectively detect early ischemic cerebrovascular diseases, Curr. Med. Imaging, 18 (2022), 731–738. https://doi.org/10.2174/1573405617666211206091831 doi: 10.2174/1573405617666211206091831
    [30] K. Taneja, H. Lu, B. G. Welch, B. P. Thomas, M. Pinho, D. Lin, et al., Evaluation of cerebrovascular reserve in patients with cerebrovascular diseases using resting-state MRI: A feasibility study, Magn. Reson. Imaging, 59 (2019), 46–52. https://doi.org/10.1016/j.mri.2019.03.003 doi: 10.1016/j.mri.2019.03.003
    [31] L. Carnevale, G. Lembo, Innovative MRI techniques in neuroimaging approaches for cerebrovascular diseases and vascular cognitive impairment, Int. J. Mol. Sci., 20 (2019), 2656. https://doi.org/10.3390/ijms20112656 doi: 10.3390/ijms20112656
    [32] J. S. Minhas, R. B. Panerai, G. Ghaly, P. Divall, T. G. Robinson, Cerebral autoregulation in hemorrhagic stroke: A systematic review and meta-analysis of transcranial Doppler ultrasonography studies, J. Clin. Ultrasound, 47 (2019), 14–21. https://doi.org/10.1002/jcu.22645 doi: 10.1002/jcu.22645
    [33] S. Sharma, R. J. Lubrica, M. Song, R. Vandse, W. Boling, P. Pillai, The role of transcranial Doppler in cerebral vasospasm: A literature review, Subarachnoid Hemorrh., 127 (2020), 201–205. https://doi.org/10.1007/978-3-030-04615-6_32 doi: 10.1007/978-3-030-04615-6_32
    [34] N. Fatima, A. Shuaib, T. S. Chughtai, A. Ayyad, M. Saqqur, The role of transcranial Doppler in traumatic brain injury: A Systemic review and Meta-analysis, Asian J. Neurosurg., 14 (2019), 626–633. https://doi.org/10.4103/ajns.AJNS_42_19 doi: 10.4103/ajns.AJNS_42_19
    [35] V. K. Sharma, K. S. Wong, A. V. Alexandrov, Transcranial Doppler, Front. Neurol. Neurosci., 40 (2016), 124–140. https://doi.org/10.1159/000448309 doi: 10.1159/000448309
    [36] C. C. Bishop, S. Powell, D. Rutt, N. L. Browse, Transcranial Doppler measurement of middle cerebral artery blood flow velocity: A validation study, Stroke, 17 (1986), 913–915. https://doi.org/10.1161/01.str.17.5.913 doi: 10.1161/01.str.17.5.913
    [37] S. Purkayastha, F. Sorond, Transcranial Doppler ultrasound: Technique and application, Semin. Neurol., 32 (2012), 411–420. https://doi.org/10.1055/s-0032-1331812 doi: 10.1055/s-0032-1331812
    [38] C. K. Willie, F. L. Colino, D. M. Bailey, Y. C. Tzeng, G. Binsted, L. W. Jones, et al., Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function, J. Neurosci. Methods., 196 (2011), 221–237. https://doi.org/10.1016/j.jneumeth.2011.01.011 doi: 10.1016/j.jneumeth.2011.01.011
    [39] G. Tsivgoulis, A. V. Alexandrov, M. A. Sloan, Advances in transcranial Doppler ultrasonography, Curr. Neurol. Neurosci. Rep., 9 (2009), 46–54. https://doi.org/10.1007/s11910-009-0008-7 doi: 10.1007/s11910-009-0008-7
    [40] F. A. Rasulo, E. De Peri, A. Lavinio, Transcranial Doppler ultrasonography in intensive care, Eur. J. Anaesthesiol. Suppl., 42 (2008), 167–173. https://doi.org/10.1017/s0265021507003341 doi: 10.1017/s0265021507003341
    [41] T. Montrief, S. Alerhand, C. Jewell, J. Scott, Incorporation of transcranial Doppler into the ED for the neurocritical care patient, Am. J. Emerg. Med., 37 (2019), 1144–1152. https://doi.org/10.1016/j.ajem.2019.03.003 doi: 10.1016/j.ajem.2019.03.003
    [42] J. H. Fetzer, What is artificial intelligence, in Artificial Intelligence: Its Scope and Limits (eds J. H. Fetzer), (1990), 3–27. https://doi.org/10.1007/978-94-009-1900-6_1
    [43] M. Haenlein, A. Kaplan, A brief history of artificial intelligence: On the past, present, and future of artificial intelligence, Calif. Manage. Rev., 61 (2019), 5–14. https://doi.org/10.1177/0008125619864925 doi: 10.1177/0008125619864925
    [44] C. Zhang, Y. Lu, Study on artificial intelligence: The state of the art and future prospects, J. Ind. Inf. Integr., 23 (2021), 100224. https://doi.org/10.1016/j.jii.2021.100224 doi: 10.1016/j.jii.2021.100224
    [45] Y. K. Chan, Y. F. Chen, T. Pham, W. Chang, M. Y. Hsieh, Artificial intelligence in medical applications, J. Healthcare Eng., 2018 (2018), 1–2. https://doi.org/10.1155/2018/4827875 doi: 10.1155/2018/4827875
    [46] J. Stewart, P. Sprivulis, G. Dwivedi, Artificial intelligence and machine learning in emergency medicine, Emerg. Med. Australas., 30 (2018), 870–874. https://doi.org/10.1111/1742-6723.13145 doi: 10.1111/1742-6723.13145
    [47] A. Kirubarajan, A. Taher, S. Khan, S. Masood, Artificial intelligence in emergency medicine: A scoping review, J. Am. Coll. Emerg. Phys. Open., 1 (2020), 1691–1702. https://doi.org/10.1002/emp2.12277 doi: 10.1002/emp2.12277
    [48] Y. Berlyand, A. S. Raja, S. C. Dorner, A. M. Prabhakar, J. D. Sonis, R. V. Gottumukkala, et al., How artificial intelligence could transform emergency department operations, Am. Jo. Emerg. Med., 36 (2018), 1515–1517. https://doi.org/10.1016/j.ajem.2018.01.017 doi: 10.1016/j.ajem.2018.01.017
    [49] A. J. Myrden, A. Kushki, E. Sejdić, A. M. Guerguerian, T. Chau, A brain-computer interface based on bilateral transcranial Doppler ultrasound, PLoS One, 6 (2011), e24170. https://doi.org/10.1371/journal.pone.0024170 doi: 10.1371/journal.pone.0024170
    [50] N. Birbaumer, Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control, Psychophysiology, 43 (2006), 517–532. https://doi.org/10.1111/j.1469-8986.2006.00456.x doi: 10.1111/j.1469-8986.2006.00456.x
    [51] H. Uğuz, A. Öztürk, R. Saraçoğlu, A. Arslan, A biomedical system based on fuzzy discrete hidden Markov model for the diagnosis of the brain diseases, Expert Syst. Appl., 35 (2008), 1104–1114. https://doi.org/10.1016/j.eswa.2007.08.006 doi: 10.1016/j.eswa.2007.08.006
    [52] I. Güler, F. Hardalaç, M. Kaymaz, Comparison of FFT and adaptive ARMA methods in transcranial Doppler signals recorded from the cerebral vessels, Comput. Biol. Med., 32 (2002), 445–453. https://doi.org/10.1016/s0010-4825(02)00036-7 doi: 10.1016/s0010-4825(02)00036-7
    [53] N. Karaboga, F. Latifoglu, Elimination of noise on transcranial Doppler signal using ⅡR filters designed with artificial bee colony—ABC-algorithm, Digital Signal Process., 23 (2013), 1051–1058. https://doi.org/10.1016/j.dsp.2012.09.015 doi: 10.1016/j.dsp.2012.09.015
    [54] T. Koza, S. Koçkana, N. Karaboğa, F. Latifoğlu, SSA analysis of noise eliminated transcranial doppler signals with iIR filters, in 2015 23nd Signal Processing and Communications Applications Conference (SIU), (2015), 2021–2024. https://doi.org/10.1109/SIU.2015.7130262
    [55] Y. J. Mei, R. T. Hu, J. Lin, H. Y. Xu, L. Y. Wu, H. P. Li, et al., Diagnosis of middle cerebral artery stenosis using transcranial Doppler images based on convolutional neural network, World Neurosurg., 161 (2022), e118–e125. https://doi.org/10.1016/j.wneu.2022.01.068 doi: 10.1016/j.wneu.2022.01.068
    [56] A. Baig, C. Manion, V. Iyer, W. Khawar, B. Donnelly, A. Monteiro, et al., E-142 robotic transcranial doppler with artificial intelligence to identify cerebral emboli during transcatheter aortic valve replacement - a novel neuromonitoring tool, J. NeuroInterventional Surg., 14 (2022), A152. https://doi.org/10.1136/neurintsurg-2022-SNIS.253 doi: 10.1136/neurintsurg-2022-SNIS.253
    [57] S. Esmaeeli, C. M. Hrdlicka, A. Brenes Bastos, J. Wang, S. Gomez-Paz, K. A. Hanafy, et al., Robotically assisted transcranial Doppler with artificial intelligence for assessment of cerebral vasospasm after subarachnoid hemorrhage, J. Neurocrit. Care, 13 (2020), 32–40. https://doi.org/10.18700/jnc.200002 doi: 10.18700/jnc.200002
    [58] H. White, B. Venkatesh, Applications of transcranial Doppler in the ICU: A review, Intensive Care Med., 32 (2006), 981–994. https://doi.org/10.1007/s00134-006-0173-y doi: 10.1007/s00134-006-0173-y
    [59] Y. Pan, W. Wan, M. Xiang, Y. Guan, Transcranial Doppler ultrasonography as a diagnostic tool for cerebrovascular disorders, Front. Hum. Neurosci., 16 (2022), 841809. https://doi.org/10.3389/fnhum.2022.841809 doi: 10.3389/fnhum.2022.841809
    [60] J. C. Granry, Transcranial Doppler in anesthesia and intensive care, Ann. Fr. Anesth. Reanim., 10 (1991), 127–136. https://doi.org/10.1016/s0750-7658(05)80453-8 doi: 10.1016/s0750-7658(05)80453-8
    [61] M. P. Spencer, D. Whisler, Transorbital Doppler diagnosis of intracranial arterial stenosis, Stroke, 17 (1986), 916–921. https://doi.org/10.1161/01.str.17.5.916 doi: 10.1161/01.str.17.5.916
    [62] L. Thomassen, U. Waje-Andreassen, H. Naess, J. Aarseth, D. Russell, Doppler ultrasound and clinical findings in patients with acute ischemic stroke treated with intravenous thrombolysis, Eur. J. Neurol., 12 (2005), 462–465. https://doi.org/10.1111/j.1468-1331.2005.01008.x doi: 10.1111/j.1468-1331.2005.01008.x
    [63] J. Allendoerfer, M. Goertler, G. M. von Reutern, Prognostic relevance of ultra-early doppler sonography in acute ischaemic stroke: A prospective multicentre study, Lancet Neurol., 5 (2006), 835–840. https://doi.org/10.1016/s1474-4422(06)70551-8 doi: 10.1016/s1474-4422(06)70551-8
    [64] A. Mattioni, S. Cenciarelli, P. Eusebi, M. Brazzelli, T. Mazzoli, M. Del Sette, et al., Transcranial Doppler sonography for detecting stenosis or occlusion of intracranial arteries in people with acute ischaemic stroke, Cochrane Database Syst. Rev., 2 (2020), Cd010722. https://doi.org/10.1002/14651858.CD010722.pub2 doi: 10.1002/14651858.CD010722.pub2
    [65] N. Samagh, H. Bhagat, K. Jangra, Monitoring cerebral vasospasm: How much can we rely on transcranial Doppler, J. Anaesthesiol. Clin. Pharmacol., 35 (2019), 12–18. https://doi.org/10.4103/joacp.JOACP_192_17 doi: 10.4103/joacp.JOACP_192_17
    [66] R. Aaslid, Transcranial Doppler assessment of cerebral vasospasm, Eur. J. Ultrasound, 16 (2002), 3–10. https://doi.org/10.1016/s0929-8266(02)00045-9 doi: 10.1016/s0929-8266(02)00045-9
    [67] D. D. Li, J. Y. Chang, C. X. Zhou, J. B. Cui, Clinical diagnosis of cerebral vasospasm after subarachnoid hemorrhage by using transcranial Doppler sonography, Eur. Rev. Med. Pharmacol. Sci., 22 (2018), 2029–2035. https://doi.org/10.26355/eurrev_201804_14732 doi: 10.26355/eurrev_201804_14732
    [68] C. E. Scherle Matamoros, E. A. Samaniego, K. Sam, J. A. Roa, J. P. Nellar, D. R. Rodríguez, Prediction of symptomatic vasospasm in patients with aneurysmal subarachnoid hemorrhage using early transcranial Doppler, J. Vasc. Interv. Neurol., 11 (2020), 19–26.
    [69] R. Behrouz, The rise and fall of transcranial Doppler ultrasonography for the diagnosis of vasospasm in aneurysmal subarachnoid hemorrhage, J. Neurosurg. Anesthesiol., 31 (2019), 79–80. https://doi.org/10.1097/ana.0000000000000490 doi: 10.1097/ana.0000000000000490
    [70] B. P. D. Inusa, L. Sainati, C. MacMahon, R. Colombatti, M. Casale, S. Perrotta, et al., An educational study promoting the delivery of transcranial Doppler ultrasound screening in paediatric sickle cell disease: A european multi-centre perspective, J. Clin. Med., 9 (2019), 44. https://doi.org/10.3390/jcm9010044 doi: 10.3390/jcm9010044
    [71] J. Kanter, S. Phillips, A. M. Schlenz, M. Mueller, M. Dooley, L. Sirline, et al., Transcranial doppler screening in a current cohort of children with sickle cell anemia: Results from the displace study, J. Pediatr. Hematol. Oncol., 43 (2021), e1062–e1068. https://doi.org/10.1097/mph.0000000000002103 doi: 10.1097/mph.0000000000002103
    [72] S. Thurn, K. Kleinschmidt, I. Kovacic, C. Wendl, R. A. Linker, S. Corbacioglu, et al., Transcranial Doppler sonography and the effect of haematopoietic stem cell transplantation in sickle cell disease, Neurol. Res. Pract., 4 (2022), 12. https://doi.org/10.1186/s42466-022-00175-y doi: 10.1186/s42466-022-00175-y
    [73] A. Pedicelli, M. Bartocci, E. Lozupone, F. D'Argento, A. Alexandre, G. Garignano, et al., The role of cervical color Doppler ultrasound in the diagnosis of brain death, Neuroradiology, 61 (2019), 137–145. https://doi.org/10.1007/s00234-018-2111-4 doi: 10.1007/s00234-018-2111-4
    [74] Y. Zurynski, N. Dorsch, I. Pearson, R. Choong, Transcranial Doppler ultrasound in brain death: Experience in 140 patients, Neurol. Res., 13 (1991), 248–252. https://doi.org/10.1080/01616412.1991.11740000 doi: 10.1080/01616412.1991.11740000
    [75] D. Escudero, J. Otero, B. Quindós, L. Viña, Transcranial Doppler ultrasound in the diagnosis of brain death. Is it useful or does it delay the diagnosis, Med. Intensiva, 39 (2015), 244–250. https://doi.org/10.1016/j.medin.2014.11.005 doi: 10.1016/j.medin.2014.11.005
    [76] D. Grosset, Aneurysm re-rupture: Doppler evidence of first phase vasospasm, J. Neurol. Neurosurg. Psychiatry, 53 (1990), 361. https://doi.org/10.1136/jnnp.53.4.361-b doi: 10.1136/jnnp.53.4.361-b
    [77] J. De Léan, N. Thomas, Neurological Complications of Pregnancy Advances in Neurology, VOLUME 64, 1993, Edited by O. Devinsky, E. Feldman and B. Hainline, Published by Raven Press, 286 pages, $C117.00, Can. J. Neurol. Sci., 24 (1977), 88. https://doi.org/10.1017/S031716710002120X
    [78] R. A. Purdy, Neurology in Clinical Practice, VOLUME 1 & 2, 1995, Edited by W. G. Bradley, R. B. Daroff, G. M. Fenichel, C. D. Marsden, Published by Butterworth-Heinemann, 3264 pages, $C439.00, Can. J. Neurol. Sci., 24 (1977), 88–89. https://doi.org/10.1017/S0317167100021223
    [79] R. Aaslid, T. M. Markwalder, H. Nornes, Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries, J. Neurosurg., 57 (1982), 769–774. https://doi.org/10.3171/jns.1982.57.6.0769 doi: 10.3171/jns.1982.57.6.0769
    [80] A. H. Ropper, S. M. Kehne, L. Wechsler, Transcranial Doppler in brain death, Neurology, 37 (1987), 1733–1733. https://doi.org/10.1212/wnl.37.11.1733 doi: 10.1212/wnl.37.11.1733
    [81] N. K. Altinbas, E. Ustuner, H. Ozcan, S. Bilgic, T. Sancak, E. Dusunceli, Effect of carotid artery stenting on ophthalmic artery flow patterns, J. Ultrasound Med., 33 (2014), 629–638. https://doi.org/10.7863/ultra.33.4.629 doi: 10.7863/ultra.33.4.629
    [82] J. Sun, Y. Liu, J. Zhang, X. Chen, Z. Lin, S. Nie, et al., Electroacupuncture improves cerebral vasospasm and functional outcome of patients with aneurysmal subarachnoid hemorrhage, Front. Neurosci., 12 (2018), 724. https://doi.org/10.3389/fnins.2018.00724 doi: 10.3389/fnins.2018.00724
    [83] D. B. Berry, E. K. Englund, S. Chen, L. R. Frank, S. R. Ward, Medical imaging of tissue engineering and regenerative medicine constructs, Biomater. Sci., 9 (2021), 301–314. https://doi.org/10.1039/d0bm00705f doi: 10.1039/d0bm00705f
    [84] O. M. Pinillos, C. N. Rodríguez, R. Hakimi, Transcranial Doppler ultrasound pulsatility index: Utility and clinical interpretation, in Neurosonology in Critical Care: Monitoring the Neurological Impact of the Critical Pathology (eds C. N. Rodríguez and C. Baracchini), (2022), 357–376. https://doi.org/10.1007/978-3-030-81419-9_21
    [85] N. G. Rainov, J. B. Weise, W. Burkert, Transcranial Doppler sonography in adult hydrocephalic patients, Neurosurg. Rev., 23 (2000), 34–38. https://doi.org/10.1007/s101430050029 doi: 10.1007/s101430050029
    [86] L. Wang, Y. Xing, Y. Li, K. Han, J. Chen, Evaluation of flow velocity in unilateral middle cerebral artery stenosis by Transcranial Doppler, Cell Biochem. Biophys., 70 (2014), 823–830. https://doi.org/10.1007/s12013-014-9986-4 doi: 10.1007/s12013-014-9986-4
    [87] M. B. McCarville, Comparison of duplex and nonduplex transcranial Doppler ultrasonography, Ultrasound Q, 24 (2008), 167–171. https://doi.org/10.1097/RUQ.0b013e3181862b67 doi: 10.1097/RUQ.0b013e3181862b67
    [88] L. Duan, L. D. Xu, Business Intelligence for Enterprise Systems: A Survey, IEEE Trans. Ind. Inf., 8 (2012), 679–687. https://doi.org/10.1109/tii.2012.2188804 doi: 10.1109/tii.2012.2188804
    [89] Y. Lu, L. D. Xu, Internet of things (IoT) cybersecurity research: A review of current research topics, IEEE Int. Things J., 6 (2019), 2103–2115. https://doi.org/10.1109/jiot.2018.2869847 doi: 10.1109/jiot.2018.2869847
    [90] P. Hamet, J. Tremblay, Artificial intelligence in medicine, Metabolism, 69 (2017), S36–S40. https://doi.org/10.1016/j.metabol.2017.01.011 doi: 10.1016/j.metabol.2017.01.011
    [91] V. Kaul, S. Enslin, S. A. Gross, History of artificial intelligence in medicine, Gastrointest. Endosc., 92 (2020), 807–812. https://doi.org/10.1016/j.gie.2020.06.040 doi: 10.1016/j.gie.2020.06.040
    [92] E. H. Shortliffe, R. Davis, S. G. Axline, B. G. Buchanan, C. C. Green, S. N. Cohen, Computer-based consultations in clinical therapeutics: Explanation and rule acquisition capabilities of the MYCIN system, Comput. Biomed. Res., 8 (1975), 303–320. https://doi.org/10.1016/0010-4809(75)90009-9 doi: 10.1016/0010-4809(75)90009-9
    [93] B. G. Buchanan, E. A. Feigenbaum, The stanford heuristic programming project: Goals and activities, AI Mag., 1 (2017), 25. https://doi.org/10.1609/aimag.v1i1.89 doi: 10.1609/aimag.v1i1.89
    [94] S. M. Weiss, C. A. Kulikowski, S. Amarel, A. Safir, A model-based method for computer-aided medical decision-making, Artif. Intell., 11 (1978), 145–172. https://doi.org/10.1016/0004-3702(78)90015-2 doi: 10.1016/0004-3702(78)90015-2
    [95] E. Strickland, IBM Watson, heal thyself: How IBM overpromised and underdelivered on AI health care, IEEE Spectr., 56 (2019), 24–31. https://doi.org/10.1109/mspec.2019.8678513 doi: 10.1109/mspec.2019.8678513
    [96] M. Christ, F. Grossmann, D. Winter, R. Bingisser, E. Platz, Modern triage in the emergency department, Dtsch. Arztebl. Int., 107 (2010), 892–898. https://doi.org/10.3238/arztebl.2010.0892 doi: 10.3238/arztebl.2010.0892
    [97] C. I. Price, L. Shaw, S. Islam, M. Javanbakht, A. Watkins, P. McMeekin, et al., Effect of an enhanced paramedic acute stroke treatment assessment on thrombolysis delivery during emergency stroke care: A cluster randomized clinical trial, JAMA Neurol., 77 (2020), 840–848. https://doi.org/10.1001/jamaneurol.2020.0611 doi: 10.1001/jamaneurol.2020.0611
    [98] M. Kanglie, S. Bipat, I. A. H. van den Berk, T. S. R. van Engelen, M. G. W. Dijkgraaf, J. M. Prins, et al., OPTimal IMAging strategy in patients suspected of non-traumatic pulmonary disease at the emergency department: Chest X-ray or ultra-low-dose chest CT (OPTIMACT) trial-statistical analysis plan, Trials, 21 (2020), 407. https://doi.org/10.1186/s13063-020-04343-w doi: 10.1186/s13063-020-04343-w
    [99] G. Vingerhoets, N. Stroobant, Lateralization of cerebral blood flow velocity changes during cognitive tasks. A simultaneous bilateral transcranial Doppler study, Stroke, 30 (1999), 2152–2158. https://doi.org/10.1161/01.str.30.10.2152 doi: 10.1161/01.str.30.10.2152
    [100] T. Wessels, J. U. Harrer, C. Jacke, U. Janssens, C. Klö tzsch, The prognostic value of early transcranial Doppler ultrasound following cardiopulmonary resuscitation, Ultrasound Med. Biol., 32 (2006), 1845–1851. https://doi.org/10.1016/j.ultrasmedbio.2006.06.023 doi: 10.1016/j.ultrasmedbio.2006.06.023
    [101] A. Myrden, A. Kushki, E. Sejdić, T. Chau, Towards increased data transmission rate for a three-class metabolic brain-computer interface based on transcranial Doppler ultrasound, Neurosci. Lett., 528 (2012), 99–103. https://doi.org/10.1016/j.neulet.2012.09.030 doi: 10.1016/j.neulet.2012.09.030
    [102] A. Goyal, A. A. Samadani, A. M. Guerguerian, T. Chau, An online three-class Transcranial Doppler ultrasound brain computer interface, Neurosci. Res., 107 (2016), 47–56. https://doi.org/10.1016/j.neures.2015.12.013 doi: 10.1016/j.neures.2015.12.013
    [103] A. Khalaf, M. Sybeldon, E. Sejdic, M. Akcakaya, A brain-computer interface based on functional transcranial doppler ultrasound using wavelet transform and support vector machines, J. Neurosci. Methods, 293 (2018), 174–182. https://doi.org/10.1016/j.jneumeth.2017.10.003 doi: 10.1016/j.jneumeth.2017.10.003
    [104] S. Serhatlioğlu, F. Hardalaç, I. Güler, Classification of transcranial Doppler signals using artificial neural network, J. Med. Syst., 27 (2003), 205–214. https://doi.org/10.1023/a:1021821229512 doi: 10.1023/a:1021821229512
    [105] A. Ozturk, A. Arslan, F. Hardalac, Comparison of neuro-fuzzy systems for classification of transcranial Doppler signals with their chaotic invariant measures, Expert Syst. Appl., 34 (2008), 1044–1055. https://doi.org/10.1016/j.eswa.2006.12.006 doi: 10.1016/j.eswa.2006.12.006
    [106] H. Uğuz, A hybrid system based on information gain and principal component analysis for the classification of transcranial Doppler signals, Comput. Methods Prog. Biomed., 107 (2011), 598–609. https://doi.org/10.1016/j.cmpb.2011.03.013 doi: 10.1016/j.cmpb.2011.03.013
    [107] H. Uğuz, A. Arslan, A new approach based on discrete hidden Markov model using Rocchio algorithm for the diagnosis of the brain diseases, Digital Signal Process., 20 (2010), 923–934. https://doi.org/10.1016/j.dsp.2009.11.001 doi: 10.1016/j.dsp.2009.11.001
    [108] M. Seera, C. P. Lim, K. S. Tan, W. S. Liew, Classification of transcranial Doppler signals using individual and ensemble recurrent neural networks, Neurocomputing, 249 (2017), 337–344. https://doi.org/10.1016/j.neucom.2016.05.11 doi: 10.1016/j.neucom.2016.05.11
    [109] N. Karaboga, F. Latifoglu, Adaptive filtering noisy transcranial Doppler signal by using artificial bee colony algorithm, Eng. Appl. Artif. Intell., 26 (2013), 677–684. https://doi.org/10.1016/j.engappai.2012.10.011 doi: 10.1016/j.engappai.2012.10.011
    [110] N. Karaboga, F. Latifoglu, T. Koza, SSA analysis of transcranial Doppler signal using ⅡR filters designed with ABC algorithm, Curr. Opin. Biotechnol., 22 (2011), 5. https://doi.org/10.1016/j.copbio.2011.05.159 doi: 10.1016/j.copbio.2011.05.159
    [111] B. Kamişlıoğlu, T. Koza, S. Koçkanat, N. Karaboğa, Noise cancellation on mitral valve Doppler signal with ⅡR digital filter using harmony search algorithm, in 2013 IEEE INISTA, (2013), 1–5. https://doi.org/10.1109/INISTA.2013.6577620
    [112] K. Clare, A. Stein, N. Damodara, E. Feldstein, H. Alshammari, S. Ali, et al., Safety and efficacy of a novel robotic transcranial doppler system in subarachnoid hemorrhage, Sci. Rep., 12 (2022), 1–6. https://doi.org/10.1038/s41598-021-04751-1 doi: 10.1038/s41598-021-04751-1
    [113] T. Wang, Y. Chen, H. Du, Y. Liu, L. Zhang, M. Meng, Monitoring of neuroendocrine changes in acute stage of severe craniocerebral injury by transcranial Doppler ultrasound image features based on artificial intelligence algorithm, Comput. Math. Methods Med., 2021 (2021), 3584034. https://doi.org/10.1155/2021/3584034 doi: 10.1155/2021/3584034
    [114] M. L. P. Portegies, P. J. Koudstaal, M. A. Ikram, Cerebrovascular disease, in Handbook of Clinical Neurology (eds M. J. Aminoff and F. Boller), (2016), 239–261. https://doi.org/10.1016/B978-0-12-802973-2.00014-8
    [115] R. Capildeo, S. Haberman, F. C. Rose, The definition and classification of stroke: A new approach, QJM Int. J. Med., 47 (1978), 177–196. https://doi.org/10.1093/oxfordjournals.qjmed.a067535 doi: 10.1093/oxfordjournals.qjmed.a067535
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3440) PDF downloads(277) Cited by(7)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog