Research article Special Issues

Bayesian inverse problem for a fractional diffusion model of cell migration

  • Received: 11 December 2023 Revised: 05 February 2024 Accepted: 20 February 2024 Published: 28 April 2024
  • In the present work, both direct and inverse problems are considered for a Fisher-type fractional diffusion equation, which is proposed to describe the phenomenon of cell migration. For the direct problem, a solution is given via the Fourier method and the Laplace transform. On the other hand, we solved the inverse problem from a Bayesian statistical framework using a set of data that are the result of a cell migration experiment on a wound closure assay. We estimated the parameters of the mathematical model via Markov Chain Monte Carlo methods.

    Citation: Francisco Julian Ariza-Hernandez, Juan Carlos Najera-Tinoco, Martin Patricio Arciga-Alejandre, Eduardo Castañeda-Saucedo, Jorge Sanchez-Ortiz. Bayesian inverse problem for a fractional diffusion model of cell migration[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 5826-5837. doi: 10.3934/mbe.2024257

    Related Papers:

  • In the present work, both direct and inverse problems are considered for a Fisher-type fractional diffusion equation, which is proposed to describe the phenomenon of cell migration. For the direct problem, a solution is given via the Fourier method and the Laplace transform. On the other hand, we solved the inverse problem from a Bayesian statistical framework using a set of data that are the result of a cell migration experiment on a wound closure assay. We estimated the parameters of the mathematical model via Markov Chain Monte Carlo methods.



    加载中


    [1] R. McLennan, L. Dyson, K. W. Prather, J. A. Morrison, R. E. Baker, P. K. Maini, et al., Multiscale mechanisms of cell migration during development: Theory and experiment, Development, 139 (2012), 2935–2944. http://doi.org/10.1242/dev.081471 doi: 10.1242/dev.081471
    [2] J. A. Sherratt, P. Martin, J. D. Murray, J. Lewis, Mathematical models of wound healing in embryonic and adult epidermis, Math. Med. Biol.: J. IMA, 9 (1992), 175–196. https://doi.org/10.1093/imammb/9.3.177 doi: 10.1093/imammb/9.3.177
    [3] P. Friedl, D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer, Nat. Rev. Mol. Cell Biol., 10 (2009), 445–457. https://doi.org/10.1038/nrm2720 doi: 10.1038/nrm2720
    [4] L. Oswald, S. Grosser, D. M. Smith, J. A. Käs, Jamming transitions in cancer, J. Phys. D: Appl. Phys., 50 (2017), 483001. http://doi.org/10.1088/1361-6463/aa8e83 doi: 10.1088/1361-6463/aa8e83
    [5] A. R. A. Anderson, A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion, Math. Med. Biol.: J. IMA, 22 (2005), 163–186. http://doi.org/10.1093/imammb/dqi005 doi: 10.1093/imammb/dqi005
    [6] J. Zahm, H. Kaplan, A. Hérard, F. Doriot, D. Pierrot, P. Somelette, et al., Cell migration and proliferation during the in vitro wound repair of the respiratory epithelium, Cytoskeleton, 37 (1997), 33–43.
    [7] A. Tremel, A. Cai, N. Tirtaatmadja, B. D. Hughes, G. W. Stevens, K. A. Landman, et al., Cell migration and proliferation during monolayer formation and wound healing, Chem. Eng. Sci., 64 (2009), 247–253. https://doi.org/10.1016/j.ces.2008.10.008 doi: 10.1016/j.ces.2008.10.008
    [8] M. C. Robson, D. P. Hill, M. E. Woodske, D. L. Steed, Wound healing trajectories as predictors of effectiveness of therapeutic agents, Arch. Surg., 135 (2000), 773–777. http://doi.org/10.1001/archsurg.135.7.773 doi: 10.1001/archsurg.135.7.773
    [9] J. A. Sherratt, J. D. Murray, Models of epidermal wound healing, Proc. R. Soc. B., 241 (1990), 29–36. https://doi.org/10.1098/rspb.1990.0061 doi: 10.1098/rspb.1990.0061
    [10] P. K Maini, D. L. S. McElwain, D. I. Leavesley, Traveling wave model to interpret a wound-healing cell migration assay for human peritoneal mesothelial cells, Tissue Eng., 10 (2004), 475–482. http://doi.org/10.1089/107632704323061834 doi: 10.1089/107632704323061834
    [11] D. P. Stonko, L. Manning, M. Starz-Gaiano, B. E. Peercy, A mathematical model of collective cell migration in a three-dimensional, heterogeneous environment, PloS one, 10 (2015), 0122799. https://doi.org/10.1371/journal.pone.0122799 doi: 10.1371/journal.pone.0122799
    [12] L. Chen, K. Painter, C. Surulescu, A. Zhigun, Mathematical models for cell migration: A non-local perspective. Philos. Trans. R. Soc., B., 375 (2020), 20190379. https://doi.org/10.1098/rstb.2019.0379 doi: 10.1098/rstb.2019.0379
    [13] B. Bonilla, M. Rivero, L. Rodríguez-Germá, J. J. Trujillo, Fractional differential equations as alternative models to nonlinear differential equations, Appl. Math. Comput., 187 (2007), 79–88. https://doi.org/10.1016/j.amc.2006.08.105 doi: 10.1016/j.amc.2006.08.105
    [14] F. J. Ariza-Hernandez, J. Sanchez-Ortiz, M. P. Arciga-Alejandre, L. X. Vivas-Cruz, Bayesian analysis for a fractional population growth model, J. Appl. Math., 2017 (2017), 9654506. https://doi.org/10.1155/2017/9654506 doi: 10.1155/2017/9654506
    [15] M. Du, Z. Wang, H. Hu, Measuring memory with the order of fractional derivative, Sci. Rep., 3 (2013), 3431. https://doi.org/10.1038/srep03431 doi: 10.1038/srep03431
    [16] S. L. Zeger, M. R. Krim, Generalized linear models with random effects; a Gibbs sampling approach, J. Am. Stat. Assoc., 86 (1991), 79–86. http://doi.org/10.1080/01621459.1991.10475006 doi: 10.1080/01621459.1991.10475006
    [17] S. Chib, E. Greenberg, Understanding the metropolis-hastings algorithm, Am. Stat., 49 (1995), 327–335. https://doi.org/10.2307/2684568 doi: 10.2307/2684568
    [18] The R Foundation, The R Project for Statistical Computing, 2024. Available from: https://www.r-project.org/.
    [19] S. Sturtz, U. Ligges, A. Gelman, R2WinBUGS: A package for running WinBUGS from R, J. Stat. Software, 12 (2005), 1–16. http://doi.org/10.18637/jss.v012.i03 doi: 10.18637/jss.v012.i03
    [20] Y. Su, M. Yajima, Package 'R2jags', 2024. Available from: https://cran.r-project.org/web/packages/R2jags/R2jags.pdf.
    [21] M. Plummer, JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling, in Proceedings of the 3rd International Workshop on Distributed Statistical Computing, (2003), 1–10.
    [22] R. M. Neal, Slice sampling, Ann. Statist., 31 (2003), 705–767. http://doi.org/10.1214/aos/1056562461 doi: 10.1214/aos/1056562461
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(933) PDF downloads(84) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog