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Abstract: In the present work, both direct and inverse problems are considered for a Fisher-type
fractional diffusion equation, which is proposed to describe the phenomenon of cell migration. For the
direct problem, a solution is given via the Fourier method and the Laplace transform. On the other
hand, we solved the inverse problem from a Bayesian statistical framework using a set of data that are
the result of a cell migration experiment on a wound closure assay. We estimated the parameters of the
mathematical model via Markov Chain Monte Carlo methods.
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1. Introduction

Cell migration plays important roles in many biological processes that require the generation and
regeneration of tissues, and is involved in processes such as morphogenesis, embryonic development,
and wound healing [1, 2]. Similarly, cell migration is responsible for pathological processes such as
the invasion of tumor cells into adjacent tissues, the formation of new blood vessels in tumors, and
the metastasis of tumor cells to distant regions in the body [3–5]. The in vitro cell migration assay is
a very important method to study this phenomenon. The procedure involves incubation of cells until
they completely cover the bottom of the cultivation plate forming a monolayer and the creation of an
artificial wound (on the monolayer). After injury, the cells rapidly migrate to the vicinity of the wound
to close it; over time, the cells will fill the wound. It has been observed that cell motility decreases
with increasing local density [6–8]. In 1990, Sherrat and Murray [9] considered a model consisting of
a conservation equation for cell density per unit area, where he used the term diffusion to model cell
migration by relying on the Fisher equation. Similarly, in 2004, Maini et al. [10] developed a model
to quantify mesothelial cell migration, interpreting the results using the Fisher equation, relating the
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diffusion coefficient and the cell proliferation rate. Subsequently, in 2015, Stonko et al. [11] studied
cell migration by implementing a model using identical mathematical cells (IMCs), where specific
biophysical properties are assigned to each IMC in order to mimic a diversity of cells.

The latest advances on cell migration have been in continuous nonlocal models, mainly from the
perspective of its involvement in embryonic development and cancer invasion and its development.
In 2020, Chen et al. [12] described a systematic classification of models in partial differential
equations (PDEs) that fall into the reaction-diffusion-advection (RDA) class.

The dynamics of certain phenomena are subject to drastic changes in magnitude, for example,
diffusive ones, which implies that these are anomalous. Such dynamics often cannot be modeled with
integer linear differential equations since they follow certain non-locality rules, which is precisely why
the fractional derivative plays a decisive role in modeling anomalous dynamics. This can be seen
as an alternative to nonlinear models, and provides a better fit compared to ordinary models for the
description of the phenomena [13, 14]. On the other hand, the fractional derivative has an associated
memory index of the system, which implies that the information of the fractional derivative at a fixed
time is determined by its previous states. This property is important in biological systems because the
governing evolution laws have this characteristic [15]. In this work, we use a Fisher-type fractional
diffusion equation

Dαt u(x, t) = auxx(x, t) + bu(x, t), (1.1)

where u(x, t) represents the cell density at position x and time t, the constant parameter a is known as
the diffusion coefficient, b represents the rate of cell density growth, and Dαt is the Caputo
fractional derivative.

2. Materials and methods for the wound closure assay

The HaCaT cell line (ATCC, Manassas, VA, USA) was cultivated in 10% DMEM/F12 (D8900,
Sigma- Aldrich) supplemented with 10% fetal bovine serum SFB (By Productos, Guadalajara, Jal,
Mexico) and antibiotic-antimycotic (15240, Gib-co) at 37 ◦C in a humidified atmosphere
containing 5% CO2. HaCaT cells were cultured in 60 mm cultivation plates until they reached 100%
confluence. Once confluence was reached, the cells were cultivated in a DMEM/F12 environment
without SFB for 12 h, plus a 2 h treatment with 10 µM AraC to inhibit cell proliferation. After
pretreatment with the proliferation inhibitor, the cell monolayer was scratched using a 200 µL sterile
pipette tip, washed twice with 1 mL of PBS 1X to remove the detached cells, and mantained in
DMEM/F12 supplemented with 2% SFB. The cells were incubated for 24 h at 37◦C in a 5% CO2

atmosphere. Phase contrast images were acquired at the same wound site every 6 h through an EVOs
FL automated microscope (Life Technologies Corporation; Carlsbad, CA, USA) using a 10x
objective. Cell counting was performed using the Image J software.

The wound closure assay is based on the observation over time of the change produced in a
monolayer of cells that have been wounded. Basically, the procedure consists of four phases (See
Figure 1):

1) Cells are cultivated on a 2D surface until they form a confluent monolayer.
2) A physical gap is created within a cell monolayer.
3) The monolayer responds with cell movement to the empty region until the wound is closed.
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4) The process of cell migration from the cells at the edge of the gap to the center of the wound is
monitored. Microscopy images are captured at different time lapses during the assay.

Figure 1. A) Generation of the artificial wound in the cell monolayer. B) Representative
image of HaCaT cells at low confluence. C) Representative image of a confluent HaCaT cell
monolayer. D) Representative image of the a wound generated on the confluent monolayer.

3. Fractional heat equation

In this section, we are going to describe the change of the cell density u(x, t) during the wound
closure assay through a mathematical model, which consists of a Neumann initial-boundary value
problem for a diffusion-reaction equation with fractional time derivative

Dαt u(x, t) = auxx(x, t) + bu(x, t), t > 0, α ∈ (0, 1],
ux(0, t) = ux(L, t) = 0, 0 < x < L, t > 0,
u(x, 0) = g(x), 0 < x < L,

(3.1)

where the Caputo fractional derivative is defined as

Dαt u(x, t) =
1

Γ (1 − α)

∫ t

0

uτ(x, τ)
(t − τ)α

dτ, α ∈ (0, 1],
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where Γ is the Gamma function and uτ is the ordinary partial derivative of u with respect to time.
Although model (3.1) is not bounded with respect to time, it is proposed in this way since the cell
migration experiment is carried out in a short time.

We keep the boundary values for the derivative of the solution equal to zero, ux(0, t) = ux(L, t) = 0,
since there is no flow of cells across the boundary of the petri dish. Likewise, knowing the structure of
the cells at time t = 0, we obtain the initial condition for the model u(x, 0) = g(x), 0 < x < L.

For the first equation in model (3.1), we use the method of separation of variables. We suppose that

u(x, t) = X(x)T (t).

Then, substituting the above equation in model (3.1), we get the following system of ordinary
differential equations:

X′′(x) − kX(x) = 0, (3.2)

Dαt T (t) − (b + ak)T (t) = 0, (3.3)

where k is a constant. When solving Eq (3.2), taking into account the boundary conditions, we obtain
the following solutions:

Xn(x) = An cos
(√
−kx

)
, k = −

(nπ
L

)2
, n = 0, 1, 2, . . . , (3.4)

where An are arbitrary constants. Using the Laplace transform defined by

L {T (t)} (s) =
∫ ∞

0
e−stT (t)dt, ℜe(s) > γ,

where T (t) is a real-valued function of exponential order γ, and its inverse is defined as

T (t) =
1

2πi

∫ γ+i∞

γ−i∞
estL {T (t)} (s) ds, (3.5)

since γ is to the right of all singularities of the function T . Thus, in Eq (3.3), we get

L {Tn(t)} (s) =
Bnsα−1

sα − (b + ak)
,

where Tn(0) = Bn, and

Tn(t) = BnL
−1

{
sα−1

sα − (b + ak)

}
= BnEα [(b + ak)tα] , (3.6)

where Eα is the Mittag-Leffler function defined as follows:

Eα(z) =
∞∑

k=0

zk

Γ(αk + 1)
, z , 0,
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where Eα(0) = 1, for α > 0. Then, by Eqs (3.4) and (3.6), un(x, t) = Xn(x)Tn(t) is a solution of
model (3.1) for each n. Finally, by linearity, the general solution is given by

u(x, t) =
∞∑

n=0

Cn cos
(nπ

L
x
)

Eα

[(
b − a

(nπ
L

)2
)

tα
]
, (3.7)

where Cn = AnBn. Now, using the initial condition, we get a cosine Fourier series

g(x) = u(x, 0) =
∞∑

n=0

Cn cos
(nπ

L
x
)
, 0 < x < L.

where

Cn =
2
L

∫ L

0
g(x) cos

(nπ
L

x
)

dx,

by orthogonality of
{
cos

(
nπ
L x

)}
.

4. Bayesian statistical inversion

Note that for model (3.1) we have the following observation equation:

yi j = u(xi, t j|ω) + ϵi j, i = 0, 1, 2, ...,m, j = 1, 2, ...,T, (4.1)

where u(xi, t j|ω) is obtained from Eq (3.7) for a fixed parameter vector ω = (a, b, α)′, and yi j

corresponds to the cell density obtained from the wound closure assay in the section (space) i at time
j, so we can form a matrix of observations

Y =


y11 y12 · · · y1T

y21 y22 · · · y2T
...

...
. . .

...

ym1 ym2 · · · ymT


where ϵi j are the measurement errors, which are considered to be independent random variables
identically distributed (iid) of a normal distribution; that is,

ϵi j ∼ N
(
0, σ2

)
.

Consequently, the observations yi j are now random variables with normal probability density function
with mean u(xi, t j|ω) and variance σ2, which is given by

f (yi j|θ) =
1
√

2πσ
exp

{
−

1
2σ2

[
yi, j − u(xi, t j|ω)

]2
}
, −∞ < yi j < ∞,

where θ = (a, b, α, σ2)′ contain all the parameters of interest. Then, we obtain the likelihood function

L(Y|θθθ) =
m∏

i=1

T∏
j=1

f (yi, j|θθθ) = (2πσ)−mT exp

− 1
2σ2

m∑
i=1

T∑
j=1

[
yi, j − u(xi, t j|ω)

]2
 . (4.2)
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We define prior distributions for θ according to prior-knowledge as follows:

a ∼ Gamma(αa, βa), 0 < a < ∞, αa > 0, βa > 0,
b ∼ Normal(αb, βb), −∞ < b < ∞,

α ∼ Beta(τα, βα), 0 < α < 1, τα > 0, βα > 0,
σ2 ∼ IGamma(ασ2 , βσ2).

The parameters involved in the prior distributions are called hyperparameters. Assuming prior
independence of the parameters, we can write the joint prior distribution as

p(θ|hyperparameters) ∝ p(a|αa, βa)p(b|αb, βb)p(α|τα, βα)p(σ2|ασ2 , βσ2). (4.3)

Substituting each distribution, we have

p(θ|hyperparameters) =
1

Γ(αa)βαa
a

aαa−1 exp
{
−a
βa

}
1
√

2πβb

exp
{
−

1
2β2

b

(b − αb)2
}

×
1

B (τα, τα)
ατα−1 (1 − α)βα−1

β
ασ2

σ2

Γ(ασ2)

(
1
σ2

)ασ2+1

exp
{
−βσ2

σ2

}
. (4.4)

In this way, using Bayes’ Theorem we can identify the posterior distribution, which is given by

p(θ|Y) =
L(Y|θ)p(θ)∫

Θ
L(Y|θ)p(θ)dθ

,

where Θ denotes the parametric space of θ. Since the denominator in the rigth hand side of the above
equation does not depend of θ, then the posterior distribution can be obtained from the
proportional relation:

p(θ|Y) ∝ (2πσ)−mT exp

− 1
2σ2

m∑
i=1

T∑
j=1

yi, j −

∞∑
n=0

Cn cos
(nπ

L
xi

)
Eα

[(
b − a

(nπ
L

)2
)

tαj

]2
×

1
Γ(αa)βαa

a
aαa−1 exp

{
−a
βa

}
1
√

2πβb

exp
{
−

1
2β2

b

(b − αb)2
}

×
1

B (τα, τα)
ατα−1 (1 − α)βα−1

β
ασ2

σ2

Γ(ασ2)

(
1
σ2

)ασ2+1

exp
{
−βσ2

σ2

}
. (4.5)

The above posterior distribution does not have a known analytical form, and so we use Markov
Chain Monte Carlo (MCMC) techniques to obtain samples of the marginal posterior distributions of
the parameters. Some of the most widely used methods are Gibbs sampling, which is flexible to adapt
to different changes, and it allows us to calculate numerical estimates of marginal probability
distributions [16]. The Metropolis-Hastings algorithm is a powerful Markov chain method for
simulating multivariate distributions [17], among others. Currently, the vast majority of MCMC
algorithms have been implemented in software, such as WinBUGS and JAGS, and all of these
software packages provide programs for Bayesian modeling through posterior simulation given a
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model and specific data. Within the R statistical software [18] packages such as R2WinBUGS [19],
R2jags [20] and rjags [21], allow for running WinBUGS and JAGS from within the R software. In
this work, we use the JAGS package inside R to determine samples of the a posteriori distribution of
each of the parameters of interest; RealSlicer is a JAGS-specific sampler that uses slice sampling to
effectively and adaptively sample continuous variables [22].

5. Data and results

In this section, the data obtained from the wound clousure assay experiment in the laboratory are
presented (see Figure 2). Once the cell migration assay was performed, a set of data was obtained by
calculating the cell density along the wound. Each image was divided into 49 vertical sections. The
cell density in each section was calculated by counting the number of cells per section, and four sets
were captured at different times, 0, 8, 16 and 24 hours, and the data are displayed in Figure 3.

The estimation was performed in two cases: (i) for alpha fixed equal to 1 and (ii) for alpha
between (0,1). By means of the deviance information criterion (DIC), the model for the estimated
alpha between (0,1) is preferred to the corresponding model with alpha equal to 1, since
DICii = −129.6 < −114.9 =DICi, where DICi and DICii corresponds to estimated DIC for the
cases (i) and (ii), described above, respectively.

8 Hours0 Hours

16 Hours 24 Hours

Figure 2. Microscopy images.

The following images show the traces and posterior distributions of the parameters of interest, which
were obtained by implementing JAGS using two chains, 50000 iterations, a burning equal to 2000, and
a thinning equal to 30.
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Figure 3. Data obtained. The x-axis represents the position of the cells in the dish, and the
y-axis the cell density.

The following table shows the estimated values for a, b, α, and τ = 1
σ2 . For this Bayesian estimation

we used the quadratic loss function, which turns out to be the posterior mean of θ. Then, the estimator
of θ, denoted by θ∗, is obtained as the mean of the parameter values of the MCMC output.

Table 1. Parameter estimation.

Parameter θ∗ Deviation R̂
a 0.046 0.031 1.003
b 1.315 0.713 1.002
α 0.641 0.148 1.001
τ 42.037 4.415 1.001

Note: R̂ is the potential scale reduction factor.

We observe that the estimated value for alpha is far from 1, and so that the solution of the model
is very different for the ordinary derivative alpha equal to 1. Using the data in Table 1, we obtain the
model fit as follows

D0.641
t u = 0.046uxx + 1.315u, t = 0, 8, 16, 24, 0 < x < 1,

u(x, 0) =


1, 0 ≤ x ≤ 0.20,
0, 0.20 ≤ x ≤ 0.88,
1, 0.88 ≤ x ≤ 1.
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6. Conclusions

A mathematical model based on a diffusion equation with fractional order was proposed to describe
the migration of HaCat cells in an in vitro wound healing assay. Bayesian analysis theory allowed us to
solve the related inverse problem, where the JAGS package, within the R software, was of great help in
finding samples of the posterior distributions and thus we were able to estimate the parameters of the
model. In this work, both the direct and inverse problems were considered for a Fisher-type diffusion
equation where a solution for the direct problem was given via the Fourier method and, by applying
Bayesian theory, we solved the inverse problem; that is, the traces and estimated posterior distributions
of the parameters were obtained through experimental data, as can be seen in the Figure 4. This helped
to satisfactorily describe the behavior of cell density from the data obtained in the wound closure
migration assay, as shown in Figure 5.
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Figure 4. Trace and density functions of the estimated parameters a, b, and α. We observe
that the distribution of the trace retains a stationary value and has a constant variance, which
indicates good convergence.

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5826–5837.



5835

Figure 5. The lines represent the fitted model of (3.1), and the points are the cell density
observations of the wound closure assay.
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