Research article Special Issues

Single acceptance sampling plans based on truncated lifetime tests for two-parameter Xgamma distribution with real data application

  • Recently, the two-parameter Xgamma distribution (TPXGD) is suggested as a new lifetime distribution for modeling some real data. The TPXGD is investigated in different areas and generalized to other forms by many of the researchers. The acceptance sampling plans are one of the main important statistical tools in production and engineering fields. In this paper, modified acceptance sampling plans for the TPXGD are proposed with the assumption that the lifetime is truncated at a predetermined level. The mean of the TPXGD model is utilized as a quality parameter. The variables of the acceptance sampling plans including the acceptance numbers, the minimum sample sizes, operating characteristic function and the producer's risk are investigated for various values of the model parameters. Numerical examples are offered to illustrate the process of the proposed plans. Also, a real data is fitted to the TPXGD and an application based on the suggested acceptance sampling plans is considered for explanation.

    Citation: Ghadah Alomani, Amer I. Al-Omari. Single acceptance sampling plans based on truncated lifetime tests for two-parameter Xgamma distribution with real data application[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13321-13336. doi: 10.3934/mbe.2022624

    Related Papers:

    [1] Said G. Nassr, Amal S. Hassan, Rehab Alsultan, Ahmed R. El-Saeed . Acceptance sampling plans for the three-parameter inverted Topp–Leone model. Mathematical Biosciences and Engineering, 2022, 19(12): 13628-13659. doi: 10.3934/mbe.2022636
    [2] Manal M. Yousef, Rehab Alsultan, Said G. Nassr . Parametric inference on partially accelerated life testing for the inverted Kumaraswamy distribution based on Type-II progressive censoring data. Mathematical Biosciences and Engineering, 2023, 20(2): 1674-1694. doi: 10.3934/mbe.2023076
    [3] M. G. M. Ghazal, H. M. M. Radwan . A reduced distribution of the modified Weibull distribution and its applications to medical and engineering data. Mathematical Biosciences and Engineering, 2022, 19(12): 13193-13213. doi: 10.3934/mbe.2022617
    [4] Amal S. Hassan, Najwan Alsadat, Christophe Chesneau, Ahmed W. Shawki . A novel weighted family of probability distributions with applications to world natural gas, oil, and gold reserves. Mathematical Biosciences and Engineering, 2023, 20(11): 19871-19911. doi: 10.3934/mbe.2023880
    [5] Walid Emam, Ghadah Alomani . Predictive modeling of reliability engineering data using a new version of the flexible Weibull model. Mathematical Biosciences and Engineering, 2023, 20(6): 9948-9964. doi: 10.3934/mbe.2023436
    [6] Jing Cai, Jianfeng Yang, Yongjin Zhang . Reliability analysis of s-out-of-k multicomponent stress-strength system with dependent strength elements based on copula function. Mathematical Biosciences and Engineering, 2023, 20(5): 9470-9488. doi: 10.3934/mbe.2023416
    [7] M. Nagy, Adel Fahad Alrasheedi . The lifetime analysis of the Weibull model based on Generalized Type-I progressive hybrid censoring schemes. Mathematical Biosciences and Engineering, 2022, 19(3): 2330-2354. doi: 10.3934/mbe.2022108
    [8] DongMei Li, Rui-xue Zhang, Qian Xie, Qi Wang . Mathematical model for treatment of neonatal hyperbilirubinemia. Mathematical Biosciences and Engineering, 2021, 18(6): 8758-8782. doi: 10.3934/mbe.2021432
    [9] Xinyan Chen, Zhaohui Jiang, Qile Tai, Chunshan Shen, Yuan Rao, Wu Zhang . Construction of a photosynthetic rate prediction model for greenhouse strawberries with distributed regulation of light environment. Mathematical Biosciences and Engineering, 2022, 19(12): 12774-12791. doi: 10.3934/mbe.2022596
    [10] Arni S.R. Srinivasa Rao, Masayuki Kakehashi . Incubation-time distribution in back-calculation applied to HIV/AIDS data in India. Mathematical Biosciences and Engineering, 2005, 2(2): 263-277. doi: 10.3934/mbe.2005.2.263
  • Recently, the two-parameter Xgamma distribution (TPXGD) is suggested as a new lifetime distribution for modeling some real data. The TPXGD is investigated in different areas and generalized to other forms by many of the researchers. The acceptance sampling plans are one of the main important statistical tools in production and engineering fields. In this paper, modified acceptance sampling plans for the TPXGD are proposed with the assumption that the lifetime is truncated at a predetermined level. The mean of the TPXGD model is utilized as a quality parameter. The variables of the acceptance sampling plans including the acceptance numbers, the minimum sample sizes, operating characteristic function and the producer's risk are investigated for various values of the model parameters. Numerical examples are offered to illustrate the process of the proposed plans. Also, a real data is fitted to the TPXGD and an application based on the suggested acceptance sampling plans is considered for explanation.



    The single acceptance sampling plans (SASP) are very important in the production sector to assert the acceptability of a lot based on its lifetime. The manufacturers are interested in producing a good product with less cost, while the customers are welling to get a suitable product with high quality which may survive for a long time. Indeed, compared to low-quality products, high-quality products have a greater acceptance rate. By inspecting a small sample of the entire batch, quality can be checked in accordance with the ASP rule. The plan known as the acceptance sampling plan specifies sampling policies as well as the standards for accepting or rejecting a lot. This ASP strategy can be used to test initial materials used in processes, or completed goods. There are two types of acceptance sampling plans: attribute acceptance sampling plans and variable acceptance sampling plans.

    The SASP in terms of truncated lifetime tests is investigated by several researchers, presuming that a product's life span follows a particular probability distribution. For example, see reference [1] for SASP under the Ishita distribution and reference [2] for SASP for the Rama model. Al-Omari and Al-Nasser [3] considered the two parameters quasi Lindley model in SASP. Al-Omari et al. [4] considered SASP based on truncated life tests for Akash model. In [5] attribute chain sampling plans for Darna distribution are discussed. Al-Omari et al. [6] introduced SASP for two-parameter Quasi Shanker distribution. Reference [7] offered SASP for Tsallis q-exponential distribution. Reference [8] for SASP when the lifetime follows the exponential distribution. Gui and Aslam [9] considered ASP for weighted exponential distribution, and Al-Omaari [10] for the transmuted generalized inverse Weibull distribution.

    Also, for other types and extensions of the ASP see Srinivasa [11] for double ASP (DASP) under the Marshall-Olkin extended exponential model. Ramaswamy and Sutharani [12] considered DASP based on truncated lifetime follows Rayleigh model. Reference [13] studied the odd generalized exponential log-logistic distribution in group ASP (GASP). In [14], two-sided group chain ASP for Pareto distribution of the 2nd kind is investigated. ASP based on percentiles for odds exponential log logistic distribution is proposed by [15]. Reference [16] investigated group ASP for generalized exponential distribution. Reference [17] studied single ASP to the new Weibull–Pareto distribution. Teh et al. [18] offered group chain ASP for log logistic distribution. Reference [19] evolved SASP for two-parameter Quasi Shanker distribution. When data are coming from a complex process or from an unpredictable environment, neutrosophic statistics, an extension of classical statistics, is used. Aslam et al. [20] offered variable ASP plan for Pareto distribution based on neutrosophic statistical interval method. Reference [21] studied ASP process loss index for multiple dependent state sampling under neutrosophic statistics. Aslam [22] proposed a modified attribute ASP with implementation of neutrosophic statistical interval method. In [23] fuzzy ASP for the Birnbaum-Saunders distribution is studied.

    To our knowledge, this is the first study to suggest SASP for the two-parameter Xgamma distribution. The TPXGD is a well-known in the literature of lifetime distributions and it is generalized to other distribution with numerous applications.

    The structure of this paper is as follows. In Section 2, the TPXGD with some of its statistical properties are introduced. The designation and the parameters of the suggested SASP are explained in Section 3. Section 4 is devoted to the minimum sample sizes, operating characteristic function (OC) function values and the minimum ratio of true mean lifetime to the specified mean lifetime for acceptability of a lot tables as well as some illustrated examples are discussed. An application of a real data set is offered in Section 5 to assert the importance of the suggested ASP. Conclusions and future work suggestions are given in Section 6.

    This section describes the TPXGD which is proposed by [24] as a modification to the well-known Xgamma distribution by adding a new parameter to the base distribution. The distribution function of the TPXGD is given by

    F(x)=1α+θ+αθx+αθ2x22α+θeθx,x>0,θ>0,α>0, (1)

    with corresponding probability density function

    f(x)=θ2α+θ(1+αθ2x2)eθx,x>0,θ>0,α>0. (2)

    Plots of the distribution pdf are presented in Figure 1 which shows that the model is positively skewed.

    Figure 1.  The plots of f(x) when α=8 and θ=2.1,3.5,4.5.

    The hazard rate and survival functions of the TPXG distributed random variable, respectively, are

    H(x)=g(x)1G(x)=θ2(1+12αθ2x2)α+θ+αθx+12αθ2x2, (3)

    and

    S(x)=α(α+θ+αθx+12αθ2x2)α+θeθx. (4)

    Figure 2 consists of the hazard and survival functions of the TPXGD for some parameters.

    Figure 2.  The plots of H(x) and S(x) for some parameters.

    The rth moment the distribution is given by

    E(Xr)=r!(2θ+α(r+1)(r+2))2θr(α+θ),r=1,2,3,..., (5)

    with mean and variance, respectively, are given by

    E(X)=θ+3αθ(θ+α), andVar(X)=2(θ2+8αθ+3α2)θ2(α+θ)2. (6)

    This section describes the single acceptance sampling plans suggested in the current study proposing that the lifetime tests follows the TPXGD. Here, the minimum sample size (MSS), operating characteristic function (OC), and the producer's risk (PR) are introduced. The method for implementing the SASP to get at a decision about the product can be explained as follows:

    1) Draw a sample of size m randomly from the lot collected from the supplier or the final production.

    2) The sample size m that is drawn from the lot to be tested and distinguish it to good or defective.

    3) The test duration time, t.

    4) An acceptance number of defective items, c such that if c or less failures occurred within the test time t, the lot is not rejected.

    5) The minimum ratio t/μ0, where μ0 is the identified average lifetime.

    To explain the process, let the consumer's risk is preassigned to be at most 1P. That is, the probability of the actual average lifetime of the quality parameter μ is not larger than 1P. For a given c, ratio of t/μ0 and 0<P<1, we are concerned in finding the optimum minimum sample size m provided that μμ0, and μ0=θ0+3α0θ0(θ0+α0). Therefore, the desired sample size is the smallest positive integer satisfying the inequality

    ci=0(mi)pi(1p)mi1P, (7)

    where (mi)=m!i!(m1)! and p=F(t;μ0) defined in (2) is the probability that the lifetime does not more than t for the true mean μ0. The above equation is based on the assumption that the size of the lot is large as possible to use the binomial distribution theory.

    When the number of failures up to the time t is found to be c or less, then based on (7) we have F(t;μ)F(t;μ0) with probability P, that emphasize μμ0. For the proposed ASP, the minimum sample sizes that satisfying (7) are summarized in Table 1 for t/μ0=0.628, 0.942, 1.257, 1.571, 2.356, 3.141, 3.927, 4.712 with P=0.75, 0.90, 0.95, 0.99 and c=0,1,2,...,10.

    Table 1.  Minimum sample sizes required to the TPXG distribution SASP with θ=3 and α=2.
    P t/μ0
    c 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712
    0.75 0 3 2 2 1 1 1 1 1
    1 6 4 3 3 2 2 2 2
    2 8 6 5 4 3 3 3 3
    3 11 8 7 6 5 4 4 4
    4 13 10 8 7 6 5 5 5
    5 16 12 10 9 7 6 6 6
    6 18 14 11 10 8 7 7 7
    7 21 15 13 11 9 8 8 8
    8 23 17 14 13 10 10 9 9
    9 25 19 16 14 12 11 10 10
    10 28 21 17 15 13 12 11 11
    0.90 0 4 3 2 2 1 1 1 1
    1 7 5 4 4 3 2 2 2
    2 10 8 6 5 4 3 3 3
    3 13 10 8 7 5 5 4 4
    4 16 12 9 8 6 6 5 5
    5 18 14 11 10 8 7 6 6
    6 21 16 13 11 9 8 7 7
    7 24 17 14 12 10 9 8 8
    8 26 19 16 14 11 10 9 9
    9 29 21 17 15 12 11 11 10
    10 31 23 19 17 13 12 12 11
    0.95 0 5 4 3 2 2 1 1 1
    1 9 6 5 4 3 3 2 2
    2 12 9 7 6 4 4 3 3
    3 15 11 9 7 6 5 4 4
    4 18 13 10 9 7 6 6 5
    5 20 15 12 10 8 7 7 6
    6 23 17 14 12 9 8 8 7
    7 26 19 15 13 11 9 9 8
    8 28 21 17 15 12 10 10 9
    9 31 23 19 16 13 11 11 10
    10 34 25 20 18 14 13 12 11
    0.99 0 8 6 4 3 2 2 2 1
    1 12 8 7 5 4 3 3 2
    2 15 11 9 7 5 4 4 4
    3 19 13 10 9 7 5 5 5
    4 22 16 12 10 8 7 6 6
    5 25 18 14 12 9 8 7 7
    6 28 20 16 14 10 9 8 8
    7 30 22 18 15 12 10 9 9
    8 33 24 19 17 13 11 10 10
    9 36 26 21 18 14 12 11 11
    10 39 28 23 20 15 13 12 12

     | Show Table
    DownLoad: CSV

    In actuality, the OC is a crucial indicator of how well the sampling plan performed. The OC function contributes in finding the probability of acceptance the lot and it is defined as

    OC(p)=ci=0(mi)pi(1p)mi=1Ip(c+1,mc), (8)

    where Ip(c+1,mc)=m!c!(mc1)!p0zc(1z)mc1dz is known as the incomplete beta function. Table 2 is devoted to the OC values for the suggested SASP.

    Table 2.  OC values for SASP (m,c=2,t/μ0) under the TPXG distribution for θ=3,α=2.
    P* m t/μ0 μ/μ0
    2 4 6 8 10 12
    0.75 8 0.628 0.635837 0.896581 0.958435 0.979440 0.988392 0.992823
    6 0.942 0.616989 0.887124 0.953547 0.976676 0.986698 0.991716
    5 1.257 0.595297 0.877578 0.948621 0.973858 0.984952 0.990565
    4 1.571 0.653745 0.901958 0.959528 0.979527 0.988245 0.992638
    3 2.356 0.698753 0.921130 0.967825 0.983694 0.990594 0.994082
    3 3.141 0.526805 0.857826 0.938762 0.967833 0.980956 0.987778
    3 3.927 0.371298 0.782106 0.901644 0.946804 0.967819 0.978997
    3 4.712 0.247912 0.698753 0.857796 0.921130 0.951406 0.967825
    0.90 10 0.628 0.456480 0.812994 0.918907 0.958235 0.975823 0.984796
    8 0.942 0.374378 0.759977 0.890120 0.941580 0.965472 0.977966
    6 1.257 0.425782 0.791478 0.905933 0.950255 0.970669 0.981305
    5 1.571 0.441512 0.801533 0.910567 0.952600 0.971981 0.982101
    4 2.356 0.386176 0.774694 0.895740 0.943527 0.966050 0.978025
    3 3.141 0.515125 0.850139 0.934710 0.965526 0.979534 0.986844
    3 3.927 0.361353 0.772235 0.895728 0.943208 0.965511 0.977438
    3 4.712 0.240445 0.687488 0.850108 0.916147 0.948079 0.965517
    0.95 12 0.628 0.321593 0.726308 0.873051 0.932185 0.959837 0.974344
    9 0.942 0.286085 0.694325 0.853205 0.919872 0.951849 0.968920
    7 1.257 0.301402 0.705925 0.858723 0.922662 0.953393 0.969843
    6 1.571 0.287089 0.695685 0.851883 0.918102 0.950274 0.967641
    4 2.356 0.386176 0.774694 0.895740 0.943527 0.966050 0.978025
    4 3.141 0.203275 0.639358 0.817711 0.895763 0.934930 0.956693
    3 3.927 0.361353 0.772235 0.895728 0.943208 0.965511 0.977438
    3 4.712 0.240445 0.687488 0.850108 0.916147 0.948079 0.965517
    0.99 15 0.628 0.178534 0.592205 0.791945 0.882826 0.928246 0.953100
    11 0.942 0.159108 0.563370 0.770407 0.868125 0.918140 0.945964
    9 1.257 0.138739 0.534669 0.748625 0.852972 0.907563 0.938407
    7 1.571 0.178516 0.588600 0.784643 0.875954 0.922689 0.948770
    5 2.356 0.192501 0.615615 0.801609 0.885884 0.928722 0.952623
    4 3.141 0.203275 0.639358 0.817711 0.895763 0.934930 0.956693
    4 3.927 0.095355 0.506229 0.730147 0.838322 0.895722 0.928879
    4 4.712 0.040839 0.386176 0.639300 0.774694 0.850426 0.895740

     | Show Table
    DownLoad: CSV

    The producer's risk is defined as the probability of rejecting the lot if μ>μ0, and it given as

    P(p)=mi=c+1(mi)pi(1p)mi=Ip(c+1,mc). (9)

    For the offered ASP with a given value of the PR, say β, it is essential to find the value of the ratio μ/μ0, that keeps the PR at most β. Since p=F(t;μ) can be gained as a function of μ/μ0, hence μ/μ0 is the minimum positive number under which

    F(xμ0;μμ0,α,θ)=1α+θ+αxμ0μ0μ(θ+3αθ+α)+α2(xμ0μ0μ(θ+3αθ+α))2α+θexμ0μ0μ(θ+3αθ+α), (10)

    satisfies the

    PR(p)=mi=c+1(mi)pi(1p)miβ. (11)

    For the suggested plan (m,c,t/μ0) with a confidence level of P, the lowest values of μ/μ0 satisfying (10) are obtainable in Table 3.

    Table 3.  Minimum ratio of the true mean life to the specified mean lifetime for acceptability of a lot with producer's risk of 0.05 under the TPXG distribution for θ=3,α=2.
    P* c t/μ0
    0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712
    0.75 0 64.10 64.09 86.20 53.08 80.63 108.17 135.76 163.30
    1 15.34 14.39 13.39 17.28 14.47 20.06 25.66 31.24
    2 7.45 7.99 8.53 7.54 6.66 9.76 12.86 15.95
    3 5.60 5.63 6.54 6.53 7.60 6.07 8.29 10.52
    4 3.98 4.39 4.16 4.22 5.15 4.23 5.97 7.74
    5 3.48 3.62 3.75 4.12 3.73 3.25 4.62 6.08
    6 2.74 3.09 2.68 3.02 2.89 2.70 3.80 5.01
    7 2.54 2.24 2.58 2.33 2.40 2.37 3.28 4.30
    8 2.10 2.04 2.02 2.44 2.09 3.26 2.93 3.82
    9 1.78 1.89 2.01 2.03 2.49 2.88 2.68 3.47
    10 1.72 1.77 1.70 1.77 2.22 2.61 2.50 3.20
    0.90 0 86.14 97.15 86.20 108.23 80.63 108.17 135.76 163.30
    1 18.55 19.24 19.92 25.42 27.00 20.06 25.66 31.24
    2 10.27 12.26 11.42 11.23 12.51 9.76 12.86 15.95
    3 7.31 8.23 8.29 8.77 7.60 10.99 8.29 10.52
    4 5.79 6.23 5.43 5.84 5.15 7.79 5.97 7.74
    5 4.41 5.03 4.72 5.34 5.66 5.89 4.62 6.08
    6 3.87 4.23 4.22 3.99 4.35 4.65 3.80 5.01
    7 3.47 3.18 3.21 3.07 3.47 3.82 3.28 4.30
    8 2.90 2.82 3.02 3.07 2.89 3.26 2.93 3.82
    9 2.69 2.54 2.41 2.51 2.49 2.88 4.07 3.47
    10 2.32 2.32 2.34 2.56 2.22 2.61 3.65 3.20
    0.95 0 108.18 130.21 130.32 108.23 163.33 108.17 135.76 163.30
    1 24.94 24.05 26.37 25.42 27.00 36.72 25.66 31.24
    2 13.07 14.37 14.26 14.82 12.51 17.46 12.86 15.95
    3 9.00 9.51 10.02 8.77 11.03 10.99 8.29 10.52
    4 6.97 7.13 6.67 7.41 7.65 7.79 10.43 7.74
    5 5.32 5.73 5.67 5.34 5.66 5.89 8.07 6.08
    6 4.60 4.79 4.98 4.97 4.35 4.65 6.51 5.01
    7 4.08 4.13 3.85 3.87 4.70 3.82 5.42 4.30
    8 3.43 3.63 3.56 3.75 3.87 3.26 4.64 3.82
    9 3.15 3.24 3.33 3.06 3.26 2.88 4.07 3.47
    10 2.93 2.93 2.73 3.04 2.83 3.50 3.65 3.20
    0.99 0 174.30 196.33 174.43 163.37 163.33 218.42 273.59 163.30
    1 34.51 33.65 39.19 33.48 39.18 36.72 46.45 31.24
    2 17.25 18.56 19.88 18.36 17.98 17.46 22.42 27.37
    3 12.35 12.05 11.73 13.09 14.32 10.99 14.38 17.76
    4 9.32 9.80 9.09 8.93 10.02 11.06 10.43 13.05
    5 7.55 7.76 7.52 7.70 7.51 8.45 8.07 10.25
    6 6.39 6.44 6.47 6.86 5.86 6.73 6.51 8.40
    7 5.28 5.50 5.72 5.46 5.94 5.52 5.42 7.08
    8 4.71 4.81 4.63 5.11 4.91 4.64 4.64 6.11
    9 4.27 4.27 4.26 4.24 4.14 3.98 4.07 5.37
    10 3.92 3.84 3.96 4.07 3.54 3.50 3.65 4.81

     | Show Table
    DownLoad: CSV

    In this section, it is assumed that the lifetime model is the TPXG distribution with θ=3 and α=2. Table 1 involved the minimum sample size essential to assertion that the mean lifetime surpasses μ0 with a probability level at least P. Table 3 summarizes the minimum ratio of the true average lifetime to the identified mean lifetime.

    For illustration, let P=0.90, c=2, and t/μ0=0.942, the tabulated minimum sample size values in Table 1 is 8. Which means that the mean lifetime should be at least 1000 hours and the time test can be terminated at 942 hours. Hence, if out the 8 units there are more than two failures, the lot is accepted and ignored otherwise.

    The OC values under the proposed SASP are given in Table 2 with the indicated values of Pwith values of t/μ0 when c=2. From the table, it is clear that the OC increases as the average life ratio increases, implies that accepting the lot of items in case it has larger probability. This motivates the producer to increase the mean life of the product. For the SASP (m=8,c=2,t/μ0=0.942) the corresponding OC and PR values are:

    μ/μ0 2 4 6 8 10 12
    OC(p) 0.374378 0.759977 0.890120 0.941580 0.965472 0.977966
    PR 0.625622 0.240023 0.109880 0.058420 0.034528 0.022033

    Now, for the SASP given above, with the ratio μ/μ0=4, the OC value is 0.759977 and the corresponding PR is 0.240023. The PR values decrease as the values of the ratio μ/μ0 increase.

    Table 3 gives the smallest values of ratio of the true mean lifetime to the specified mean lifetime, μ/μ0 keeping that the PR is not more than 0.05. For explanation, to the SASP (m=8,c=2,t/μ0=0.942) we have μ/μ0 is 12.26 with P=0.90; that is the product must have a mean lifetime of 12.26 times the identified mean lifetime in order to accept the lot with probability of 0.90.

    In this section, a real data set is analyzed to demonstrate the practicality of the suggested ASP in practical situations. The data is given by [25] in which 20 items are tested till failure are discussed. The data values are: 11.24, 1.92, 12.74, 22.48, 9.60, 11.50, 8.86, 7.75, 5.73, 9.37, 30.42, 9.17, 10.20, 5.52, 5.85, 38.14, 2.99, 16.58, 18.92, 13.36. Some descriptive statistics of the data are given in Table 4. It is clear that the data is nonsymmetrical distributed where its positively skewed.

    Table 4.  Some descriptive statistics to the data.
    Mean Sd Median Mad Min Max Range Skew Kurtosis SE
    12.62 9.03 9.9 5.57 1.92 38.14 36.22 1.37 1.25 2.02

     | Show Table
    DownLoad: CSV

    The unknown distribution parameters are estimated using the maximum likelihood estimation method. For fitting the data, we consider the negative log-likelihood values (-LL), Anderson-Darling (AD), Cramer von Mises (CR), Akaike information criteria (AIC), consistent Akaike information criteria (CAIC), Baysian information criteria (BIC), and Hanan Quinn information criteria (HQIC) which are defined as

    AIC=LL+2w,CAIC=LL+2wmnw1,BIC=LL+wlog(m),HQIC=2log[log(m)(wLL)], where w is the number of parameters and m is the sample size.

    Also, we calculate the Kolmogorov-Smirov statistic (K-S) with the corresponding P-value where K - S=SupX|Fm(x)F(x)|, Fm(x) is empirical distribution function and F(x) is cumulative distribution function. The results are presented in Table 5. Figure 3 displays the P-P and Q-Q plots of the TPXGD to the real data, while Figure 4 represents the density and TTT plots based on the real data.

    Table 5.  Model fitting summary for the data sets.
    AIC CAIC BIC HQIC MLE
    139.4887 140.1946 141.4802 139.8775 ˆθ=0.237329ˆα=70.485903
    -2MLL Error W A KS P. Value
    67.74436 0.028931 0.058147 0.329026 0.13506 0.8123

     | Show Table
    DownLoad: CSV
    Figure 3.  P-P and Q-Q plots for the TPXGD for the data.
    Figure 4.  Density and TTT plots for the TPXGD for the data.

    For this data set the maximum likelihood estimators of the model parameters are ˆθ=0.2373291 and ˆα=70.4859029. Consequently, the mean in the quality parameter in this study and the estimated mean of the data is ˆμ=ˆθ+3ˆαˆθ(ˆθ+ˆα)=12.6124, and in Tables 68 the SASP parameters are obtained based on the estimated values ˆθ=0.2373291 and ˆα=70.4859029. Assume that the identified mean lifetime is μ0=12.6124 with testing time t0=7.921, then, whether the lot can be accepted? Hence, to the ratio t0/μ0=0.628, with P=0.90 from Table 4 we found m=20 when c=3. Therefore, the deduced SASP is (m=20,c=3,t/μ0=0.628). Now, if the number of failures earlier t0=7.921 is less than or equal 3, then the lot can be accepted to the asserted mean lifetime 12.6124, with probability of 0.90. Now, since the number of failures earlier t0=7.921 is 13, then the lot would be rejected.

    Table 6.  Minimum sample sizes for a given μ0with p for c with ˆα=70.4859029, ˆθ=0.2373291 in the TPXGD.
    p* c t/μ0
    0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712
    0.75 0 5 2 2 1 1 1 1 1
    1 9 5 3 3 2 2 2 2
    2 13 7 5 4 3 3 3 3
    3 17 9 6 5 4 4 4 4
    4 21 11 8 6 5 5 5 5
    5 25 13 9 8 6 6 6 6
    6 28 15 11 9 7 7 7 7
    7 32 17 12 10 8 8 8 8
    8 36 19 14 11 9 9 9 9
    9 40 21 15 13 11 10 10 10
    10 43 23 17 14 12 11 11 11
    0.90 0 7 3 2 2 1 1 1 1
    1 11 6 4 3 2 2 2 2
    2 15 8 6 5 3 3 3 3
    3 20 10 7 6 5 4 4 4
    4 24 13 9 7 6 5 5 5
    5 27 15 10 8 7 6 6 6
    6 31 17 12 10 8 7 7 7
    7 35 19 13 11 9 8 8 8
    8 39 21 15 12 10 9 9 9
    9 42 23 16 14 11 10 10 10
    10 46 25 18 15 12 11 11 11
    0.95 0 8 4 3 2 1 1 1 1
    1 13 7 5 4 3 2 2 2
    2 18 9 6 5 4 3 3 3
    3 22 12 8 6 5 4 4 4
    4 27 14 10 8 6 5 5 5
    5 31 16 11 9 7 6 6 6
    6 35 18 13 10 8 7 7 7
    7 39 21 14 12 9 8 8 8
    8 42 23 16 13 10 9 9 9
    9 46 25 18 14 11 10 10 10
    10 50 27 19 16 12 11 11 11
    0.99 0 13 6 4 3 2 1 1 1
    1 18 9 6 5 3 2 2 2
    2 24 12 8 6 4 4 3 3
    3 28 15 10 8 5 5 4 4
    4 33 17 12 9 7 6 5 5
    5 37 19 13 10 8 7 6 6
    6 42 22 15 12 9 8 7 7
    7 46 24 17 13 10 9 8 8
    8 50 26 18 14 11 10 9 9
    9 54 29 20 16 12 11 10 10
    10 58 31 21 17 13 12 11 11

     | Show Table
    DownLoad: CSV
    Table 7.  OC values of the sampling plan (n,c=2,t/μ0) with ˆα=70.4859029, ˆθ=0.2373291 in the TPXGD.
    p* m μ/μ0
    t/μ0 2 4 6 8 10 12
    0.75 13 0.939372 0.999374 0.999967 0.999996 0.999999 1
    7 0.898246 0.998498 0.999919 0.999990 0.999998 0.999999
    5 0.845933 0.996722 0.999804 0.999976 0.999995 0.999999
    4 0.798061 0.994127 0.999605 0.999950 0.999990 0.999998
    3 0.678702 0.982136 0.998392 0.999766 0.999952 0.999987
    3 0.389604 0.926473 0.990725 0.998393 0.999635 0.999898
    3 0.189019 0.820387 0.969014 0.993621 0.998391 0.999518
    3 0.082800 0.678702 0.926439 0.982136 0.995000 0.998392
    0.90 15 0.831980 0.990785 0.998109 0.999313 0.999671 0.999815
    8 0.802684 0.991405 0.998674 0.999599 0.999828 0.999910
    6 0.709855 0.985877 0.998109 0.999503 0.999808 0.999907
    5 0.609339 0.976570 0.997009 0.999284 0.999746 0.999885
    3 0.660133 0.976331 0.997065 0.999378 0.999808 0.999924
    3 0.375541 0.914261 0.986781 0.997067 0.999120 0.999668
    3 0.181349 0.803300 0.961114 0.990478 0.997064 0.998902
    3 0.079262 0.660133 0.914224 0.976331 0.992295 0.997065
    0.95 18 0.754915 0.984536 0.996735 0.998800 0.999421 0.999674
    9 0.745128 0.987655 0.998055 0.999407 0.999745 0.999866
    6 0.709855 0.985877 0.998109 0.999503 0.999808 0.999907
    5 0.609339 0.976570 0.997009 0.999284 0.999746 0.999885
    4 0.352073 0.925712 0.989522 0.997670 0.999267 0.999704
    3 0.375541 0.914261 0.986781 0.997067 0.999120 0.999668
    3 0.181349 0.803300 0.961114 0.990478 0.997064 0.998902
    3 0.079262 0.660133 0.914224 0.976331 0.992295 0.997065
    0.99 24 0.592506 0.966383 0.992490 0.997179 0.998623 0.999218
    12 0.567685 0.971597 0.995237 0.998516 0.999354 0.999659
    8 0.505730 0.965841 0.995070 0.998669 0.999480 0.999745
    6 0.459494 0.958091 0.994327 0.998613 0.999503 0.999773
    4 0.352073 0.925712 0.989522 0.997670 0.999267 0.999704
    4 0.103416 0.770465 0.956500 0.989527 0.996733 0.998741
    3 0.181349 0.803300 0.961114 0.990478 0.997064 0.998902
    3 0.079262 0.660133 0.914224 0.976331 0.992295 0.997065

     | Show Table
    DownLoad: CSV
    Table 8.  Minimum ratio of the true mean life to the specified mean lifetime for acceptability of a lot with producer's risk of 0.05 ˆα=70.4859029, ˆθ=0.2373291 in the TPXGD.
    p* c t/μ0
    0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712
    0.75 0 112.1651 36.9226 74.4778 15.8193 63.282 109.8698 156.0667 202.0572
    1 3.1514 3.3659 3.2710 4.2056 4.7602 6.5806 8.5596 10.7273
    2 2.2992 2.4560 2.6775 2.8750 3.3963 4.5963 5.8360 7.1149
    3 1.9979 2.1073 2.1577 2.3431 2.8260 3.8034 4.8012 5.8176
    4 1.8362 1.9161 2.0743 2.0437 2.5004 3.3571 4.2271 5.1085
    5 1.7333 1.7935 1.8545 2.1078 2.2856 3.0644 3.8532 4.6500
    6 1.6289 1.7073 1.8375 1.9365 2.1311 2.8549 3.5865 4.3243
    7 1.5802 1.6430 1.7060 1.8075 2.0136 2.6958 3.3845 4.0782
    8 1.5421 1.5930 1.7073 1.7061 1.9204 2.5699 3.2251 3.8843
    9 1.5113 1.5528 1.6158 1.7729 2.1858 2.4672 3.0951 3.7266
    10 1.4667 1.5197 1.6236 1.6944 2.0996 2.3814 2.9867 3.5951
    0.90 0 185.6924 93.3754 74.4778 111.3996 63.282 109.8698 156.0667 202.0572
    1 3.7900 3.8622 4.0304 4.2056 4.7602 6.5806 8.5596 10.7273
    2 2.5170 2.6738 3.0359 3.4020 3.3963 4.5963 5.8360 7.1149
    3 2.1986 2.2520 2.4141 2.7221 3.5724 3.8034 4.8012 5.8176
    4 1.9819 2.1294 2.2606 2.3492 3.1009 3.3571 4.2271 5.1085
    5 1.8103 1.9654 2.0127 2.1078 2.7963 3.0644 3.8532 4.6500
    6 1.7247 1.8515 1.9651 2.1337 2.5803 2.8549 3.5865 4.3243
    7 1.6615 1.7673 1.8205 1.9844 2.4175 2.6958 3.3845 4.0782
    8 1.6127 1.7021 1.8045 1.8675 2.2896 2.5699 3.2251 3.8843
    9 1.5531 1.6501 1.7055 1.9062 2.1858 2.4672 3.0951 3.7266
    10 1.5233 1.6074 1.7021 1.8186 2.0996 2.3814 2.9867 3.5951
    0.95 0 222.3988 148.7354 148.6889 111.3996 63.282 109.8698 156.0667 202.0572
    1 4.6954 4.4117 4.8231 5.3021 6.8416 6.5806 8.5596 10.7273
    2 2.8504 2.8844 3.0359 3.4020 4.4343 4.5963 5.8360 7.1149
    3 2.3295 2.5229 2.6474 2.7221 3.5724 3.8034 4.8012 5.8176
    4 2.1223 2.2295 2.4327 2.6145 3.1009 3.3571 4.2271 5.1085
    5 1.9579 2.0462 2.1581 2.3325 2.7963 3.0644 3.8532 4.6500
    6 1.8464 1.9195 2.0841 2.1337 2.5803 2.8549 3.5865 4.3243
    7 1.7651 1.8831 1.9272 2.1432 2.4175 2.6958 3.3845 4.0782
    8 1.6807 1.8043 1.8960 2.0121 2.2896 2.5699 3.2251 3.8843
    9 1.6339 1.7415 1.8698 1.9062 2.1858 2.4672 3.0951 3.7266
    10 1.5957 1.6902 1.7765 1.9324 2.0996 2.3814 2.9867 3.5951
    0.99 0 405.772 258.9609 222.3349 203.7371 203.2733 109.8698 156.0667 202.0572
    1 19.0427 5.9222 5.7521 6.5835 6.8416 6.5806 8.5596 10.7273
    2 3.6149 3.5084 3.7000 3.8830 4.4343 6.0916 5.8360 7.1149
    3 2.7226 2.9040 3.0737 3.3621 3.5724 4.8447 4.8012 5.8176
    4 2.3950 2.5122 2.7489 2.8553 3.5820 4.1837 4.2271 5.1085
    5 2.1692 2.2740 2.4229 2.5352 3.2012 3.7626 3.8532 4.6500
    6 2.0480 2.1721 2.3031 2.4742 2.9340 3.4662 3.5865 4.3243
    7 1.9366 2.0450 2.2141 2.2892 2.7341 3.2440 3.3845 4.0782
    8 1.8524 1.9475 2.0656 2.1449 2.5778 3.0699 3.2251 3.8843
    9 1.7861 1.9111 2.0193 2.1426 2.4516 2.9290 3.0951 3.7266
    10 1.7325 1.8443 1.9155 2.0384 2.3470 2.8121 2.9867 3.5951

     | Show Table
    DownLoad: CSV

    In this paper, new single ASP under truncated lifetime tests for the two parameters Xgamma distribution are offered. For different options of the distribution parameters, sample plans have been built. The essential tables of the minimum sample size required to affirm an assured mean lifetime of the test units are presented. The OC function values as well as the corresponding producer's risks are obtained for various plan parameters. A real data is fitted to the TPXGD distribution and an application to this data is discussed to illustrate the usefulness of the proposed ASP. It is indicated that the results encourage the researchers to use the advised ASP when the life duration of components follow the the TPXGD. The current study can be extended using neutrosophic statistics as future research.

    Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R226), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

    The authors declare that they have no conflicts of interest.



    [1] A. D. Al-Nasser, A. L. Al-Omari, A. Bani-Mustafa, K. Jaber, Developing single-acceptance sampling plans based on a truncated lifetime test for an Ishita distribution, Stat. Trans. New Seri., 19 (2018), 393–406. https://doi.org/10.21307/stattrans-2018-022 doi: 10.21307/stattrans-2018-022
    [2] A. I. Al-Omari, A. D. Al-Nasser, E. Ciavolino, Acceptance sampling plans based on truncated life tests for Rama distribution, Int. J. Qual. Reliab. Manage., 36 (2019), 1181–1191. https://doi.org/10.1108/IJQRM-04-2018-0107 doi: 10.1108/IJQRM-04-2018-0107
    [3] A. I. Al-Omari, A. D. Al-Nasser, A two parameter quasi Lindley distribution in acceptance sampling plans from truncated life tests, Pak. J. Stat. Oper. Res., 15 (2019), 39–47. https://doi.org/10.18187/pjsor.v15i1.1618 doi: 10.18187/pjsor.v15i1.1618
    [4] A. I. Al-Omari, N. Koyuncu, A. R. A. Al-anzi, New acceptance sampling plans based on truncated life tests for Akash distribution with an application to electric carts data, IEEE Access, 8 (2020), 201393–201403. https://doi.org/10.1109/ACCESS.2020.3034834
    [5] H. Tripathi, A. I. Al-Omari, M. Saha, A. Al-anzi, Improved attribute chain sampling plan for Darna distribution, Comput. Syst. Sci. Eng., 38 (2021), 381–392.
    [6] A. I. Al-Omari, I. M. Almanjahie, O. Kravchuk, Acceptance sampling plans with truncated life tests for the length-biased weighted Lomax distribution, Comput. Mater. Continua, 67 (2021), 385–301.
    [7] A. D. Al-Nasser, M. Obeidat, Acceptance sampling plans from truncated life test based on Tsallis q-exponential distribution, J. Appl. Stat., 47 (2020), 685–697. https://doi.org/10.1080/02664763.2019.1650254 doi: 10.1080/02664763.2019.1650254
    [8] M. Aslam, M. Azam, C. H. Jun, A new sampling plan under the exponential distribution, Commun. Stat. Theory Methods, 46 (2017), 644–652. https://doi.org/10.1080/03610926.2014.1002936 doi: 10.1080/03610926.2014.1002936
    [9] W. Gui, M. Aslam, Acceptance sampling plans based on truncated life tests for weighted exponential distribution, Commun. Stat. Simul. Comput., 46 (2017), 2138–2151. https://doi.org/10.1080/03610918.2015.1037593 doi: 10.1080/03610918.2015.1037593
    [10] A. I. Al-Omari, The transmuted generalized inverse Weibull distribution in acceptance sampling plans based on life tests, Trans. Inst. Meas. Control, 40 (2018), 4432–4443. https://doi.org/10.1177/0142331217749695 doi: 10.1177/0142331217749695
    [11] G. S. Rao, Double acceptance sampling plans based on truncated life tests for Marshall-Olkin extended exponential distribution, Aus. J. Stat., 40 (2011), 169–176. https://doi.org/10.17713/ajs.v40i3.208 doi: 10.17713/ajs.v40i3.208
    [12] A. R. S. Ramaswamy, R. Sutharani, Designing double acceptance sampling plans based on truncated life tests in Rayleigh distribution using minimum angle method, Am. J. Math. Stat., 3 (2013), 227–236.
    [13] D. C. U. Sivakumar, R. Kanaparthi, G. S. Rao, K. Kalyani, The Odd generalized exponential log-logistic distribution group acceptance sampling plan, Stat. Transit. New Ser., 20 (2019), 103–116.
    [14] M. Farouk, N. Aziz, Z. Zain, The new two-sided group chain sampling plan for Pareto distribution of the 2nd kind, Int. J. Innovative Technol. Explor. Eng., 8 (2019), 58–61.
    [15] G. S. Rao, K. Rosaiah, K. Kalyani, D. C. U. Sivakumar, A new acceptance sampling plans based on percentiles for odds exponential log logistic distribution, Open Stat. Probab. J., 7 (2016), 45–52. https://doi.org/10.2174/1876527001607010045 doi: 10.2174/1876527001607010045
    [16] M. Aslam, D. Kundu, C. Jun, M. Ahmad, Time truncated group acceptance sampling plans for generalized exponential distribution, J. Test. Eval., 39 (2011), 968–976. https://doi.org/10.1520/JTE102921 doi: 10.1520/JTE102921
    [17] M. Shrahili, A. I. Al-Omari, N. Alotaibi, Acceptance sampling plans from life tests based on percentiles of new Weibull–Pareto distribution with application breaking stress of carbon fibers data, Processes, 9 (2021), 2041. https://doi.org/10.3390/pr9112041 doi: 10.3390/pr9112041
    [18] M. A. P. Teh, N. Aziz, Z. Zain, Group Chain sampling plans on truncated life test for log-logistic distributions, Int. J. Appl. Eng. Res., 119 (2018), 8971–8974.
    [19] A. I. Al-Omari, I. M. Almanjahie, J. G. Dar, Acceptance sampling plans under two-parameter Quasi Shanker distribution assuring mean life with an application to manufacturing data, Sci. Prog., 104 (2021), 1–17. https://doi.org/10.1177/00368504211014350 doi: 10.1177/00368504211014350
    [20] M. Aslam, N. Khan, A. H. Al-Marshadi, Design of variable sampling plan for Pareto distribution using neutrosophic statistical interval method, Symmetry, 11 (2019), 80. https://doi.org/10.3390/sym11010080 doi: 10.3390/sym11010080
    [21] M. Aslam, M. Azam, M. Albassam, Sampling plan using process loss index using multiple dependent state sampling under neutrosophic statistics, IEEE Access, 7 (2019), 38568–38576. https://doi.org/10.1109/ACCESS.2019.2906408 doi: 10.1109/ACCESS.2019.2906408
    [22] M. Aslam, A new attribute sampling plan using neutrosophic statistical interval method, Complex Intell. Syst., 5 (2019), 365–370. https://doi.org/10.1007/s40747-018-0088-6 doi: 10.1007/s40747-018-0088-6
    [23] M. Z. Khan, M. F. Khan, M. Aslam, A. R. Mughal, Design of fuzzy sampling plan using the Birnbaum-Saunders distribution, Mathematics, 7 (2019), 9. https://doi.org/10.3390/math7010009 doi: 10.3390/math7010009
    [24] S. Sen, N. Chandra, S. S. Maiti, On properties and applications of a two-parameter Xgamma distribution, J. Stat. Theory Appl., 17 (2018), 674–685.
    [25] D. N. P. Murthy, M. Xie, R. Jiang, Weibull Models, John Wiley & Sons, 2004.
  • This article has been cited by:

    1. Harsh Tripathi, Mahendra Saha, Soumik Halder, Single acceptance sampling inspection plan based on transmuted Rayleigh distribution, 2023, 12, 2520-1352, 111, 10.1007/s41872-023-00221-x
    2. M. Sankara Narayanan, P. Jeyadurga, S. Balamurali, Optimal and economic design of modified double sampling plan under new Weibull–Pareto distribution, 2024, 41, 0265-671X, 1235, 10.1108/IJQRM-04-2022-0132
    3. İrhad M R, E S Muhammed AHAMMED, Radhakumari MAYA, Amer AL-OMARİ, Marshall-Olkin Bilal distribution with associated minification process and acceptance sampling plans, 2024, 53, 2651-477X, 201, 10.15672/hujms.1143156
    4. Amer Ibrahim Al-Omari, Ghadah A. Alomani, Acceptance sampling plans based on percentiles for extended generalized exponential distribution with real data application, 2024, 17, 16878507, 101081, 10.1016/j.jrras.2024.101081
    5. A. Kiapour, Harsh Tripathi, Shiba Masoumi, Repetitive acceptance sampling plan based on truncated life test for type-I half-logistic Burr X distributions, 2025, 2214-1766, 10.1007/s44199-025-00108-z
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2263) PDF downloads(119) Cited by(5)

Figures and Tables

Figures(4)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog