In this paper, the Adomian decomposition method (ADM) and Picard technique are used to solve a class of nonlinear multidimensional fractional differential equations with Caputo-Fabrizio fractional derivative. The main advantage of the Caputo-Fabrizio fractional derivative appears in its non-singular kernel of a convolution type. The sufficient condition that guarantees a unique solution is obtained, the convergence of the series solution is discussed, and the maximum absolute error is estimated. Several numerical problems with an unknown exact solution are solved using the two techniques. A comparative study between the two solutions is presented. A comparative study shows that the time consumed by ADM is much smaller compared with the Picard technique.
Citation: M. Botros, E. A. A. Ziada, I. L. EL-Kalla. Semi-analytic solutions of nonlinear multidimensional fractional differential equations[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13306-13320. doi: 10.3934/mbe.2022623
In this paper, the Adomian decomposition method (ADM) and Picard technique are used to solve a class of nonlinear multidimensional fractional differential equations with Caputo-Fabrizio fractional derivative. The main advantage of the Caputo-Fabrizio fractional derivative appears in its non-singular kernel of a convolution type. The sufficient condition that guarantees a unique solution is obtained, the convergence of the series solution is discussed, and the maximum absolute error is estimated. Several numerical problems with an unknown exact solution are solved using the two techniques. A comparative study between the two solutions is presented. A comparative study shows that the time consumed by ADM is much smaller compared with the Picard technique.
[1] | S. Narayanamoorthy, D. Baleanu, K. Thangapandi, S. S. N. Perera, Analysis for fractional-order predator-prey model with uncertainty, IET Syst. Biol., 13 (2019), 277–289. https://doi.org/10.1049/iet-syb.2019.0055 doi: 10.1049/iet-syb.2019.0055 |
[2] | D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional Dynamics and Control, Springer New York, NY, 2012. https://doi.org/10.1007/978-1-4614-0457-6 |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Application of Fractional Differential Equations, Elsevier, Amsterdam, 204 (2006), 1–523. |
[4] | A. M. A. El-Sayed, I. L. El-Kalla, E. A. A.Ziada, Analytical and numerical solutions of nonlinear fractional differentail equations, Appl. Numer. Math., 60 (2010), 788–797. https://doi.org/10.1016/j.apnum.2010.02.007 doi: 10.1016/j.apnum.2010.02.007 |
[5] | I. L. El-Kalla, Error Estimate of the series solution to a class of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1408–1413. https://doi.org/10.1016/j.cnsns.2010.05.030 doi: 10.1016/j.cnsns.2010.05.030 |
[6] | H. Ye, R. Huang, On the nonlinear fractional differential equations with Caputo sequential fractional derivative, Adv. Math. Phys., 2015 (2015). https://doi.org/10.1155/2015/174156 |
[7] | C. Cesarano, Generalized special functions in the description of fractional diffusive equations, Commun. Appl. Ind. Math., 10 (2019), 31–40. https://doi.org/10.1515/caim-2019-0010 doi: 10.1515/caim-2019-0010 |
[8] | K. Oldham, J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Elsevier, Amsterdam, The Netherlands, 111 (1974), 1–234. |
[9] | K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, Hoboken, NJ, USA, 1993. |
[10] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integral and Derivatives: Theory and Applications, Taylor & Francis: Oxfordshire, UK, 1993. |
[11] | J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027 |
[12] | M. Hosseininia, M. H. Heydari, Z. Avazzadeh, F. M. Ghaini, A hybrid method based on the orthogonal Bernoulli polynomials and radial basis functions for variable order fractional reaction-advection-diffusion equation, Eng. Anal. Boundary Elem., 127 (2021), 18–28. https://doi.org/10.1016/j.enganabound.2021.03.006 doi: 10.1016/j.enganabound.2021.03.006 |
[13] | M. Inc, M. Partohaghighi, M. A. Akinlar, P. Agarwal, Y. M. Chu, New solutions of fractional-order Burger-Huxley equation, Results Phys., 18 (2020), 103290. https://doi.org/10.1016/j.rinp.2020.103290 doi: 10.1016/j.rinp.2020.103290 |
[14] | R. L. Magin, Fractional calculus in bioengineering, part 1, Crit. Rev. Biomed. Eng., 32 (2004). https://doi.org/10.1615/CritRevBiomedEng.v32.i1.10 |
[15] | A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer Vienna, 378 (2014). https://doi.org/10.1007/978-3-7091-2664-6 |
[16] | H. Bulut, T. A. Sulaiman, H. M. Baskonus, H. Rezazadeh, M. Eslami, M. Mirzazadeh, Optical solitons and other solutions to the conformable space–time fractional Fokas–Lenells equation, Optik, 172 (2018), 20–27. https://doi.org/10.1016/j.ijleo.2018.06.108 doi: 10.1016/j.ijleo.2018.06.108 |
[17] | H. Rudolf, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. https://doi.org/10.1142/3779 |
[18] | I. Dassios, T. Kerci, D. Baleanu, F. Milano, Fractional-order dynamical model for electricity markets, Math. Methods Appl. Sci., 2021 (2021). https://doi.org/10.1002/mma.7892 |
[19] | I. Dassios, F. Milano, Singular dual systems of fractional-order differential equations, Math. Methods Appl. Sci., 2021 (2021). https://doi.org/10.1002/mma.7584 |
[20] | I. Dassios, G. Tzounas, F. Milano, Generalized fractional controller for singular systems of differential equations, J. Comput. Appl. Math., 378 (2020), 112919. https://doi.org/10.1016/j.cam.2020.112919 doi: 10.1016/j.cam.2020.112919 |
[21] | I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. |
[22] | A. Akgül, I. Siddique, Analysis of MHD couette flow by fractal-fractional differential operators, Chaos Solitons Fractals, 146 (2021). https://doi.org/10.1016/j.chaos.2021.110893 |
[23] | S. Ahmad, A. Ullah, A. Akgül, Investigating the complex behaviour of multiscroll chaotic system with Caputo fractal-fractional operator, Chaos Solitons Fractals, 146 (2021), 110900. https://doi.org/10.1016/j.chaos.2021.110900 doi: 10.1016/j.chaos.2021.110900 |
[24] | B. S. T. Alkahtani, A. Atangana, Controlling the wave movement on the surface of shallow water with the Caputo-Fabrizio derivative with fractional order, Chaos Solitons Fractals, 89 (2016), 539–546. https://doi.org/10.1016/j.chaos.2016.03.012 doi: 10.1016/j.chaos.2016.03.012 |
[25] | A. Atangana, J. J. Nieto, Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, Adv. Mech. Eng., 7 (2015), 1–7. https://doi.org/10.1177/1687814015613758 doi: 10.1177/1687814015613758 |
[26] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[27] | J. Hristov, Transient heal diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey's kernel to the Caputo-Fabrizio time-fractional derivative, Therm. Sci., 20 (2016), 757–762. https://doi.org/10.2298/TSCI160112019H doi: 10.2298/TSCI160112019H |
[28] | G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Springer Dordrecht, 1995. https://doi.org/10.1007/978-94-015-8289-6 |
[29] | E. A. Az-Zobi, K. Al-Khaled, A new convergence proof of the Adomian decomposition method for a mixed hyperbolic elliptic system of conservation laws, Appl. Math. Comput., 217 (2010), 4248–4256. https://doi.org/10.1016/j.amc.2010.10.040 doi: 10.1016/j.amc.2010.10.040 |
[30] | G. Adomian, R. Rach, Modified adomian polynomials, Math. Comput. Modell., 24 (1996), 39–46. https://doi.org/10.1016/S0895-7177(96)00171-9 |
[31] | X. G. Luo, A two-step Adomian decomposition method, Appl. Math. Comput., 170 (2005), 570–583. https://doi.org/10.1016/j.amc.2004.12.010 doi: 10.1016/j.amc.2004.12.010 |
[32] | I. L. El-Kalla, New results on the analytic summation of Adomian series for some classes of differential and integral equations, Appl. Math. Comput., 217 (2010), 3756–3763. https://doi.org/10.1016/j.amc.2010.09.034 doi: 10.1016/j.amc.2010.09.034 |
[33] | M. Al-Refai, K. Pal, New aspects of Caputo–Fabrizio fractional derivative, Prog. Fract. Differ. Appl., 5 (2019), 157–66. https://doi.org/10.18576/pfda/050206 doi: 10.18576/pfda/050206 |
[34] | I. L. El-Kalla, Error estimate for series solutions to a class of nonlinear integral equations of mixed type, J. Appl. Math. Comput., 38 (2012), 341–351. https://doi.org/10.1007/s12190-011-0482-3 doi: 10.1007/s12190-011-0482-3 |
[35] | E. E. Ziada, Solution of some fractional order differential and integral equations, Lambert Academic Publishing GmbH & Co. KG, 2012. |
[36] | A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Springer Verlag, 378 (1997), 223–276. https://doi.org/10.1007/978-3-7091-2664-6 |
[37] | D. Assante, C. Cesarano, C. Fornaro, L. Vázquez, Higher order and fractional diffusive equations, J. Eng. Sci. Technol. Rev., 8 (2015), 202–204. https://doi.org/10.25103/JESTR.085.25 doi: 10.25103/JESTR.085.25 |
[38] | W. W. Mohammed, M. Alshammari, C. Cesarano, S. Albadrani, M. El-Morshedy, Brownian motion effects on the stabilization of stochastic solutions to fractional diffusion equations with polynomials, Mathematics, 10 (2022). https://doi.org/10.3390/math10091458 |