In this paper a time-fractional telegraph equation is considered. First the time-fractional telegraph equation is transformed into an integral-differential equation with a weakly singular kernel. Then an integral-difference discretization scheme on a graded mesh is developed to approximate the integral-differential equation. The possible singularity of the exact solution is taken into account in the convergence analysis. It is proved that the scheme is second-order convergent for both the spatial discretization and the time discretization. Numerical experiments confirm the validity of the theoretical results.
Citation: Jian Huang, Zhongdi Cen, Aimin Xu. An efficient numerical method for a time-fractional telegraph equation[J]. Mathematical Biosciences and Engineering, 2022, 19(5): 4672-4689. doi: 10.3934/mbe.2022217
In this paper a time-fractional telegraph equation is considered. First the time-fractional telegraph equation is transformed into an integral-differential equation with a weakly singular kernel. Then an integral-difference discretization scheme on a graded mesh is developed to approximate the integral-differential equation. The possible singularity of the exact solution is taken into account in the convergence analysis. It is proved that the scheme is second-order convergent for both the spatial discretization and the time discretization. Numerical experiments confirm the validity of the theoretical results.
[1] | W. Hachbusch, Integral equations theory and numerical treatments, Birkhäuser Basel, (1995), 120. |
[2] | O. Tasbozan, A. Esen, Quadratic B-spline Galerkin method for numerical solution of fractional telegraph equations, J. Math. Sci. Appl., 18 (2017), 23–29. https://doi.org/10.18052/www.scipress.com/BMSA.18.23 doi: 10.18052/www.scipress.com/BMSA.18.23 |
[3] | M. Yaseen, M. Abbas, An efficient cubic trigonometric B-spline collocation scheme for the time-fractional telegraph equation, Appl. Math. J. Chinese Univ., 35 (2020), 359–378. https://doi.org/10.1007/s11766-020-3883-y doi: 10.1007/s11766-020-3883-y |
[4] | K. Diethlm, The Analysis of Fractional Differential Equations, in: Lecture Notes in Mathematics, Springer, Berlin, 2010. |
[5] | P. Jordan, A. Puri, Digital signal propagation in dispersive media, J. Appl. Phys., 85 (1999), 1273–1282. https://doi.org/10.1063/1.369258 doi: 10.1063/1.369258 |
[6] | H. Pascal, Pressure wave propagation in a fluid flowing through a porous medium and problems related to interpretation of Stoneley wave at tenuation in acoustical well logging, Intern. J. Eng. Sci., 24 (1986), 1553–1570. https://doi.org/10.1016/0020-7225(86)90163-1 doi: 10.1016/0020-7225(86)90163-1 |
[7] | V. A. Vyawahare, P. Nataraja, Fractional order modelling of neurtron transport in a nuclear reactor, Appl. Math. Model., 37 (2013), 9747–9767. https://doi.org/10.1016/j.apm.2013.05.023 doi: 10.1016/j.apm.2013.05.023 |
[8] | A. Barletta, E. Zanchini, A thermal potential for mulation of hyperbolic heat conduction, J. Heat Transf., 121 (1999), 166–169. https://doi.org/10.1115/1.2825933 doi: 10.1115/1.2825933 |
[9] | Y. L. Wang, M. J. Du, C. L. Temuer, D. Tian, Using reproducing kernel for solving a class of time-fractional telegraph equation with initial value conditions, Int. J. Comput. Math., 95 (2018), 1609–1621. https://doi.org/10.1080/00207160.2017.1322693 doi: 10.1080/00207160.2017.1322693 |
[10] | V. R. Hosseini, W. Chen, Z. Avazzadeh, Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Bound. Elem., 38 (2014), 31–39. https://doi.org/10.1016/j.enganabound.2013.10.009 doi: 10.1016/j.enganabound.2013.10.009 |
[11] | K. Kumar, R. K. Pandey, S. Yadav, Finite difference scheme for a fractional telegraph equation with generalized fractional derivative terms, Physica A, 535 (2019), 122271. https://doi.org/10.1016/j.physa.2019.122271 doi: 10.1016/j.physa.2019.122271 |
[12] | M. Hashemi, D. Baleanu, Numerical approximation of higher-order time-fractional telegraph equation by using a combination of a geometric approach and method of line, J. Comput. Phys., 316 (2016), 10–20. https://doi.org/10.1016/j.jcp.2016.04.009 doi: 10.1016/j.jcp.2016.04.009 |
[13] | L. Wei, H. Dai, D. Zhang, Z. Si, Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation, Calcolo, 51 (2014), 175–192. https://doi.org/10.1007/s10092-013-0084-6 doi: 10.1007/s10092-013-0084-6 |
[14] | N. H. Sweilam, A. M. Nagy, A. A. El-Sayed, Solving time-fractional order telegraph equation via Sinc-Legendre collocation method, Mediterr. J. Math., 13 (2016), 5119–5133. https://doi.org/10.1007/s00009-016-0796-3 doi: 10.1007/s00009-016-0796-3 |
[15] | N. Mollahasani, M. M. Moghadam, K. Afrooz, A new treatment based on hybrid functions to the solution of telegraph equations of fractional order, Appl. Math. Model., 40 (2016), 2804–2814. https://doi.org/10.1016/j.apm.2015.08.020 doi: 10.1016/j.apm.2015.08.020 |
[16] | R. M. Hafez, Y. H. Youssri, Shifted Jacobi collocation scheme for multidimensional time-fractional order telegraph equation, Iran. J. Numer. Anal. Optim., 10 (2020), 195–223. https://doi.org/10.22067/IJNAO.V10I1.82774 doi: 10.22067/IJNAO.V10I1.82774 |
[17] | A. H. Bhrawy, M. A. Zaky, J. A. Machado, Numerical solution of the two-sided space-time fractional telegraph equation via Chebyshev tau approximation, J. Optimiz. Theory App., 174 (2017), 321–341. https://doi.org/10.1007/s10957-015-0790-1 doi: 10.1007/s10957-015-0790-1 |
[18] | Y. H. Youssri, W. M. Abd-Elhameed, Numerical spectral Legendre-Galerkin algorithm for solving time fractional telegraph equation, Rom. J. Phys., 63 (2018), 107. |
[19] | E. Doha, W. Abd-Elhameed, N. Elkot, Y. Youssri, Numerical spectral Legendre approach for solving space-time fractional advection-dispersion problems, J. Egypt. Math. Soc., 26 (2018), 167–183. https://doi.org/10.21608/JOMES.2018.9472 doi: 10.21608/JOMES.2018.9472 |
[20] | A. H. Bhrawy, M. A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 281 (2015), 876–895. https://doi.org/10.1016/j.jcp.2014.10.060 doi: 10.1016/j.jcp.2014.10.060 |
[21] | A. Sadeghian, S. Karbassi, M. Hushmandasl, M. Heydari, Numerical solution of time-fractional telegraph equation by Chebyshev wavelet method, Int. J. Theoret. Appl. Phys., 2 (2012), 163–181. |
[22] | X. Xu, D. Xu, Legendre wavelets direct method for the numerical solution of time-fractional order telegraph equations, Mediterr. J. Math., 15 (2018), 27. https://doi.org/10.1007/s00009-018-1074-3 doi: 10.1007/s00009-018-1074-3 |
[23] | A. S. Hendy, M. A. Zaky, Combined Galerkin spectral/finite difference method over graded meshes for the generalized nonlinear fractional Schrödinger equation, Nonlinear Dynam., 103 (2021), 2493–2507. https://doi.org/10.1007/s00009-018-1074-3 doi: 10.1007/s00009-018-1074-3 |
[24] | A. S. Hendy, M. A. Zaky, Graded mesh discretization for coupled system of nonlinear multi-term time-space fractional diffusion equations, Eng. Comput., in press. https://doi.org/10.1007/s00366-020-01095-8 |
[25] | H. L. Liao, D. Li, J. Zhang, Sharp error estimate of a nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1112–1133. https://doi.org/10.1137/17M1131829 doi: 10.1137/17M1131829 |
[26] | M. Stynes, E. O'Riordan, J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079. https://doi.org/10.1137/16M1082329 doi: 10.1137/16M1082329 |
[27] | P. Lyu, S. Vong, A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin-Bona-Mahony equation, J. Sci. Comput., 80 (2019), 1607–1628. https://doi.org/10.1007/s10915-019-00991-6 doi: 10.1007/s10915-019-00991-6 |
[28] | I. G. Ameen, M. A. Zaky, E. H. Doha, Singularity preserving spectral collocation method for nonlinear systems of fractional differential equations with the right-sided Caputo fractional derivative, J. Comput. Appl. Math., 392 (2021), 113468. https://doi.org/10.1016/j.cam.2021.113468 doi: 10.1016/j.cam.2021.113468 |
[29] | J. L. Gracia, E. O'Riordan, M. Stynes, A fitted scheme for a Caputo initial-boundary value problem, J. Sci. Comput., 76 (2018), 583–609. https://doi.org/10.1007/s10915-017-0631-4 doi: 10.1007/s10915-017-0631-4 |
[30] | C. de Boor, Good approximation by splines with variable knots, in A. Meir, A. Sharma (Eds.), Spline Functions and Approximation Theory, Proceedings of Symposium held at the University of Alberta, Edmonton, 1972. |
[31] | J. C. Lopez-Marcos, A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal., 27 (1990), 20–31. https://doi.org/10.1137/0727002 doi: 10.1137/0727002 |
[32] | H. Chen, D. Xu, J. Zhou, A second-order accurate numerical method with graded meshes for an evolution equation with a weakly singular kernel, J. Comput. Appl. Math., 356 (2019), 152–163. https://doi.org/10.1016/j.cam.2019.01.031 doi: 10.1016/j.cam.2019.01.031 |
[33] | C. Li, Q. Yi, A. Chen, Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316 (2016), 614–631. https://doi.org/10.1016/j.jcp.2016.04.039 doi: 10.1016/j.jcp.2016.04.039 |
[34] | J. Huang, Y. Tang, L. Vázquez, J. Yang, Two finite difference schemes for time fractional diffusion-wave equation, Numer. Algor., 64 (2013), 707–720. |