Brazil has suffered two waves of Coronavirus Disease 2019 (COVID-19). The second wave, coinciding with the spread of the Gamma variant, was more severe than the first wave. Studies have not yet reached a conclusion on some issues including the extent of reinfection, the infection fatality rate (IFR), the infection attack rate (IAR) and the effects of the vaccination campaign in Brazil, though it was reported that confirmed reinfection was at a low level.
We modify the classical Susceptible-Exposed-Infectious-Recovered (SEIR) model with additional class for severe cases, vaccination and time-varying transmission rates. We fit the model to the severe acute respiratory infection (SARI) deaths, which is a proxy of the COVID-19 deaths, in 20 Brazilian cities with the large number of death tolls. We evaluate the vaccination effect by a contrast of "with" vaccination actual scenario and "without" vaccination in a counterfactual scenario. We evaluate the model performance when the reinfection is absent in the model.
In the 20 Brazilian cities, the model simulated death matched the reported deaths reasonably well. The effect of the vaccination varies across cities. The estimated median IFR is around 1.2%.
Overall, through this modeling exercise, we conclude that the effects of vaccination campaigns vary across cites and the reinfection is not crucial for the second wave. The relatively high IFR could be due to the breakdown of medical system in many cities.
Citation: Lixin Lin, Boqiang Chen, Yanji Zhao, Weiming Wang, Daihai He. Two waves of COIVD-19 in Brazilian cities and vaccination impact[J]. Mathematical Biosciences and Engineering, 2022, 19(5): 4657-4671. doi: 10.3934/mbe.2022216
Brazil has suffered two waves of Coronavirus Disease 2019 (COVID-19). The second wave, coinciding with the spread of the Gamma variant, was more severe than the first wave. Studies have not yet reached a conclusion on some issues including the extent of reinfection, the infection fatality rate (IFR), the infection attack rate (IAR) and the effects of the vaccination campaign in Brazil, though it was reported that confirmed reinfection was at a low level.
We modify the classical Susceptible-Exposed-Infectious-Recovered (SEIR) model with additional class for severe cases, vaccination and time-varying transmission rates. We fit the model to the severe acute respiratory infection (SARI) deaths, which is a proxy of the COVID-19 deaths, in 20 Brazilian cities with the large number of death tolls. We evaluate the vaccination effect by a contrast of "with" vaccination actual scenario and "without" vaccination in a counterfactual scenario. We evaluate the model performance when the reinfection is absent in the model.
In the 20 Brazilian cities, the model simulated death matched the reported deaths reasonably well. The effect of the vaccination varies across cities. The estimated median IFR is around 1.2%.
Overall, through this modeling exercise, we conclude that the effects of vaccination campaigns vary across cites and the reinfection is not crucial for the second wave. The relatively high IFR could be due to the breakdown of medical system in many cities.
[1] | W. M. de Souza, L. F. Buss, D. da Silva Candido, J. Carrera, S. Li, A. E. Zarebski, et al., Epidemiological and clinical characteristics of the COVID-19 epidemic in Brazil, Nat. Hum. Behave., 4 (2020), 856–865. https://doi.org/10.1038/s41562-020-0928-4 doi: 10.1038/s41562-020-0928-4 |
[2] | R. M. Cotta, C. P. Naveira-Cotta, P. Magal, Mathematical parameters of the COVID-19 epidemic in Brazil and evaluation of the impact of different public health measures, Biology, 9 (2020), 220. https://doi.org/10.3390/biology9080220 doi: 10.3390/biology9080220 |
[3] | M. C. Castro, S. Kim, L. Barberia, A. F. Ribeiro, S. Gurzenda, K. B. Ribeiro, et al., Spatiotemporal pattern of COVID-19 spread in Brazil, Science, 372 (2021), 821–826. https://doi.org/10.1126/science.abh1558 doi: 10.1126/science.abh1558 |
[4] | D. S. Candido, I. M. Claro, J. G. De Jesus, W. M. Souza, F. R. Moreira, S. Dellicour, et al., Evolution and epidemic spread of SARS-CoV-2 in Brazil, Science, 369 (2020), 1255–1260. https://doi.org/10.1126/science.abd2161 doi: 10.1126/science.abd2161 |
[5] | L. Silva, D. F. Filho, A. Fernandes, The effect of lockdown on the COVID-19 epidemic in Brazil: evidence from an interrupted time series design, Cad. Saude. Publica., 36 (2020), e00213920. https://doi.org/10.1590/0102-311X00213920 doi: 10.1590/0102-311X00213920 |
[6] | L. F. Buss, C. A. Prete, C. M. Abrahim, A. Mendrone, T. Salomon, C. de Almeida-Neto, et al., Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic, Science, 371 (2021), 288–292. https://doi.org/10.1126/science.abe9728 doi: 10.1126/science.abe9728 |
[7] | P. C. Hallal, F. P. Hartwig, B. L. Horta, M. F. Silveira, C. J. Struchiner, L. P. Vidaletti, et al., SARS-CoV-2 antibody prevalence in Brazil: results from two successive nationwide serological household surveys, Lancet Glob. Health, 8 (2020), e1390–e1398. https://doi.org/10.1016/S2214-109X(20)30387-9 doi: 10.1016/S2214-109X(20)30387-9 |
[8] | P. Lalwani, B. B. Salgado, I. V. P. Filho, D. de Silva, T. de Morais, M. F. Jordão, et al., SARS-CoV-2 seroprevalence and associated factors in Manaus, Brazil: baseline results from the DETECTCoV-19 cohort study, Int. J. Infect. Dis., 110 (2021), 141–150. https://doi.org/10.1016/j.ijid.2021.07.017 doi: 10.1016/j.ijid.2021.07.017 |
[9] | R. M. Coutinho, F. Marquitti, L. S. Ferreira, M. E. Borges, R. da Silva, O. Canton, et al., Model-based estimation of transmissibility and reinfection of SARS-CoV-2 P.1 variant, Commun. Med., 1 (2021), 48. https://doi.org/10.1038/s43856-021-00048-6 doi: 10.1038/s43856-021-00048-6 |
[10] | E. T. Chagas, P. H. Barros, I. Cardoso-Pereira, I. V. Ponte, P. Ximenes, F. Figueiredo, et al., Effects of population mobility on the COVID-19 spread in Brazil, PloS one, 16 (2021), e0260610. https://doi.org/10.1371/journal.pone.0260610 doi: 10.1371/journal.pone.0260610 |
[11] | S. Dana, A. B. Simas, B. A. Filardi, R. N. Rodriguez, V. da Costa, J, Gallucci-Neto, Brazilian Modeling of COVID-19 (BRAM-COD): a Bayesian Monte Carlo approach for COVID-19 spread in a limited data set context, MedRxiv, 2020. https://doi.org/10.1101/2020.04.29.20081174 |
[12] | T. A. Mellan, H. Hoeltgebaum, S. Mishra, C. Whittaker, R. P. Schnekenberg, A. Gandy, et al., Report 21: Estimating COVID-19 cases and reproduction number in Brazil, MedRxiv, 2020. https://doi.org/10.1101/2020.05.09.20096701 |
[13] | V. Marra, M. Quartin, A Bayesian estimate of the early COVID-19 infection fatality ratio in Brazil based on a random seroprevalence survey, Int. J. Infect. Dis., 111 (2021), 190–195. https://doi.org/10.1016/j.ijid.2021.08.016 doi: 10.1016/j.ijid.2021.08.016 |
[14] | L. Santos, P. de Góis Filho, A. Silva, J. Santos, D. Santos, M. Aquino, et al., Recurrent COVID-19 including evidence of reinfection and enhanced severity in thirty Brazilian healthcare workers, J. Infect., 82 (2021), 399–406. https://doi.org/10.1016/j.jinf.2021.01.020 doi: 10.1016/j.jinf.2021.01.020 |
[15] | P. C. Resende, J. F. Bezerra, R. Vasconcelos, I. Arantes, L. Appolinario, A. C. Mendonça, et al., Spike E484K mutation in the first SARS-CoV-2 reinfection case confirmed in Brazil, 2020, Virological, 10 (2021). |
[16] | C. K. Nonaka, M. M. Franco, T. Gräf, B. de Lorenzo, R. de Ávila Mendonça, K. de Sousa, et al., Genomic evidence of SARS-CoV-2 reinfection involving E484K spike mutation, Brazil, Emerg. Infect. Dis., 27 (2021), 1522–1524. https://doi.org/10.3201/eid2705.210191 doi: 10.3201/eid2705.210191 |
[17] | Z. Li, X. Guan, N. Mao, H. Luo, Y. Qin, N. He, et al., Antibody seroprevalence in the epicenter Wuhan, Hubei, and six selected provinces after containment of the first epidemic wave of COVID-19 in China, Lancet Reg. Health West. Pac., 8 (2021), 100094. https://doi.org/10.1016/j.lanwpc.2021.100094 doi: 10.1016/j.lanwpc.2021.100094 |
[18] | E. C. Sabino, L. F. Buss, M. P. Carvalho, C. A. Prete, M. A. Crispim, N. A. Fraiji, et al., Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence, Lancet, 397 (2021), 452–455. https://doi.org/10.1016/S0140-6736(21)00183-5 doi: 10.1016/S0140-6736(21)00183-5 |
[19] | T. Fujino, H. Nomoto, S. Kutsuna, M. Ujiie, T. Suzuki, R. Sato, et al., Novel SARS-CoV-2 variant in travelers from Brazil to Japan, Emerg. Infect. Dis., 27 (2021), 1243–1245. https://doi.org/10.3201/eid2704.210138 doi: 10.3201/eid2704.210138 |
[20] | N. R. Faria, T. A. Mellan, C. Whittaker, I. M. Claro, D. Candido, S. Mishra, et al., Genomics and epidemiology of the P. 1 SARS-CoV-2 lineage in Manaus, Brazil, Science, 372 (2021), 815–821. https://doi.org/10.1126/science.abh2644 doi: 10.1126/science.abh2644 |
[21] | L. Ferrante, L. Duczmal, W. A. Steinmetz, A. Almeida, J. Leão, R. C. Vassão, et al., How Brazil's President turned the country into a global epicenter of COVID-19, J. Public Health Policy, 42 (2021), 439–451. https://doi.org/10.1057/s41271-021-00302-0 doi: 10.1057/s41271-021-00302-0 |
[22] | M. D. Hitchings, O. T. Ranzani, M. Torres, S. B. de Oliveira, M. Almiron, R. Said, et al., Effectiveness of CoronaVac in the setting of high SARS-CoV-2 P.1 variant transmission in Brazil: A test-negative case-control study, medRxiv, 2021. https://doi.org/10.1101/2021.04.07.21255081 |
[23] | C. F. Estofolete, C. A. Banho, G. R. Campos, B. Marques, L. Sacchetto, L. S. Ullmann, et al., Case study of two post vaccination SARS-CoV-2 infections with P1 variants in coronaVac vaccinees in Brazil, Viruses, 13 (2021), 1237. https://doi.org/10.3390/v13071237 doi: 10.3390/v13071237 |
[24] | F. Rovida, I. Cassaniti, E. Percivalle, A. Sarasini, S. Paolucci, C. Klersy, et al., Incidence of SARS-CoV-2 infection in health care workers from Northern Italy based on antibody status: immune protection from secondary infection-A retrospective observational case-controlled study, Int. J. Infect. Dis., 109 (2021), 199–202. https://doi.org/10.1016/j.ijid.2021.07.003 doi: 10.1016/j.ijid.2021.07.003 |
[25] | D. N. Fisman, A. R. Tuite, Evaluation of the relative virulence of novel SARS-CoV-2 variants: a retrospective cohort study in Ontario, Canada, CMAJ, 193 (2021), E1619–E1625. https://doi.org/10.1503/cmaj.211248 doi: 10.1503/cmaj.211248 |
[26] | T. Funk, A. Pharris, G. Spiteri, N. Bundle, A. Melidou, M. Carr, et al., Characteristics of SARS-CoV-2 variants of concern B.1.1.7, B.1.351 or P.1: data from seven EU/EEA countries, weeks 38/2020 to 10/2021, Euro Surveill., 26 (2021), 2100348. https://doi.org/10.2807/1560-7917.ES.2021.26.16.2100348 doi: 10.2807/1560-7917.ES.2021.26.16.2100348 |
[27] | H. Song, G. Fan, S. Zhao, H. Li, Q. Huang, D. He, Forecast of the COVID-19 trend in India: a simple modelling approach, Math. Biosci. Eng., 18 (2021), 9775–9786. https://doi.org/10.3934/mbe.2021479 doi: 10.3934/mbe.2021479 |
[28] | H. Song, G. Fan, Y. Liu, X. Wang, D. He, The second wave of COVID-19 in South and Southeast Asia and vaccination effects, Front. Med., 8 (2021), 773110. https://doi.org/10.3389/fmed.2021.773110.eCollection2021 doi: 10.3389/fmed.2021.773110.eCollection2021 |
[29] | X. Tang, S. S. Musa, S. Zhao, S. Mei, D. He, Using proper mean generation intervals in modeling of COVID-19, Front. Public Health, 9 (2021), 691262. https://doi.org/10.3389/fpubh.2021.691262.eCollection2021 doi: 10.3389/fpubh.2021.691262.eCollection2021 |
[30] | J. Griffin, M. Casey, Á. Collins, K. Hunt, D. McEvoy, A. Byrne, et al., Rapid review of available evidence on the serial interval and generation time of COVID-19, BMJ Open, 10 (2020), e040263. https://doi.org/10.1136/bmjopen-2020-040263 doi: 10.1136/bmjopen-2020-040263 |
[31] | Campanha Nacional de Vacinação contra Covid-19, 2021. Available from: https://opendatasus.saude.gov.br/dataset/covid-19-vacinacao |
[32] | R. H. Bartels, J. C. Beatty, B. A. Barsky, An introduction to splines for use in computer graphics and geometric modeling, Elsevier Science and Technology, 1995. |
[33] | W. H Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes with Source Code CD-ROM 3rd Edition: The Art of Scientific Computing, Cambridge University Press, 2007. |
[34] | R. L. Burden, J. D. Faires, Numerical analysis 8th ed, Thomson Brooks/Cole, 2005. |
[35] | C. Bretó, D. He, E. L. Ionides, A. A. King, Time series analysis via mechanistic models, Ann. Appl. Stat., 2009 (2009), 319–348. https://doi.org/10.1214/08-AOAS201 doi: 10.1214/08-AOAS201 |
[36] | E. L. Ionides, C. Bretó, A. A. King, Inference for nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA, 103 (2006), 18438–18443. https://doi.org/10.1073/pnas.0603181103 doi: 10.1073/pnas.0603181103 |
[37] | Q. Lin, A. P. Chiu, S. Zhao, D. He, Modeling the spread of Middle East respiratory syndrome coronavirus in Saudi Arabia, Stat. methods Med. Res., 27 (2018), 1968–1978. https://doi.org/10.1177/0962280217746442 doi: 10.1177/0962280217746442 |
[38] | H. Unwin, S. Mishra, V. C. Bradley, A. Gandy, T. A. Mellan, H. Coupland, et al., State-level tracking of COVID-19 in the United States, Nat. commun., 11 (2020), 1–9. https://doi.org/10.1038/s41467-020-19652-6 doi: 10.1038/s41467-020-19652-6 |
[39] | K. W. Ng, N. Faulkner, G. H. Cornish, A. Rosa, R. Harvey, S. Hussain, et al., Preexisting and de novo humoral immunity to SARS-CoV-2 in humans, Science, 370 (2020), 1339–1343. https://doi.org/10.1126/science.abe1107 doi: 10.1126/science.abe1107 |
[40] | R. Saldanha, Shapefiles of Brazilian states, 2019. Available from: https://www.kaggle.com/rodsaldanha/brazilianstatesshapefiles. |
[41] | M. Monod, A. Blenkinsop, X. Xi, D. Hebert, S. Bershan, S. Tietze, et al., Age groups that sustain resurging COVID-19 epidemics in the United States, Science, 371 (2021), eabe8372. https://doi.org/10.1126/science.abe8372 doi: 10.1126/science.abe8372 |
[42] | F. Naveca, V. Nascimento, V. Souza, A. Corado, F. Nascimento, G. Silva, et al., COVID-19 epidemic in the Brazilian state of Amazonas was driven by long-term persistence of endemic SARS-CoV-2 lineages and the recent emergence of the new Variant of Concern P.1, preprint, 2021. https://doi.org/10.21203/rs.3.rs-275494/v1 |
[43] | D. He, Y. Artzy-Randrup, S. S. Musa, T. Gräf, F. Naveca, L. Stone, The unexpected dynamics of COVID-19 in Manaus, Brazil: Was herd immunity achieved?, MedRxiv, https://doi.org/10.1101/2021.02.18.21251809 |
[44] | S. Gazit, R. Shlezinger, G. Perez, R. Lotan, A. Peretz, A. Ben-Tov, et al., Comparing SARS-CoV-2 natural immunity to vaccine-induced immunity: reinfections versus breakthrough infections, MedRxiv, 2021. https://doi.org/10.1101/2021.08.24.21262415 doi: 10.1101/2021.08.24.21262415 |
[45] | A. Singanayagam, S. Hakki, J. Dunning, K. J. Madon, M. A. Crone, A. Koycheva, et al., Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: a prospective, longitudinal, cohort study, Lancet Infect. Dis., 22 (2022), 183–195. https://doi.org/10.1016/S1473-3099(21)00648-4 doi: 10.1016/S1473-3099(21)00648-4 |