Research article

Some algebraic properties on rough neutrosophic matrix and its application to multi-criteria decision-making

  • Received: 17 April 2023 Revised: 19 June 2023 Accepted: 23 June 2023 Published: 09 August 2023
  • MSC : 60L70, 90B50

  • Rough set theory is a method of information processing for database systems. The neutrosophic matrix is a generalization of the fuzzy matrix, especially in handling indeterminacy situations. The concept of matrix theory and its energy in the neutrosophic environment help to determine the value of the uncertain matrix. In this paper, we correlate the rough set theory with the neutrosophic matrix theory to introduce the rough neutrosophic matrix (RNM). In this structure, lower and upper approximation neutrosophic matrices are used to deal with uncertain situations. We demonstrate that the given matrix plays a different role in decision-making situations and defined the proposed matrix's determinant, adjoint, algebraic properties and operations. Finally, derived the ranking function for a rough neutrosophic matrix's energy. The new multi-criteria decision-making (MCDM) approach was presented with the ranking formula, which was utilized to rank the alternatives, and numerical examples were provided to show how the proposed matrix and its energy could be applied to an MCDM problem.

    Citation: D. Jeni Seles Martina, G. Deepa. Some algebraic properties on rough neutrosophic matrix and its application to multi-criteria decision-making[J]. AIMS Mathematics, 2023, 8(10): 24132-24152. doi: 10.3934/math.20231230

    Related Papers:

  • Rough set theory is a method of information processing for database systems. The neutrosophic matrix is a generalization of the fuzzy matrix, especially in handling indeterminacy situations. The concept of matrix theory and its energy in the neutrosophic environment help to determine the value of the uncertain matrix. In this paper, we correlate the rough set theory with the neutrosophic matrix theory to introduce the rough neutrosophic matrix (RNM). In this structure, lower and upper approximation neutrosophic matrices are used to deal with uncertain situations. We demonstrate that the given matrix plays a different role in decision-making situations and defined the proposed matrix's determinant, adjoint, algebraic properties and operations. Finally, derived the ranking function for a rough neutrosophic matrix's energy. The new multi-criteria decision-making (MCDM) approach was presented with the ranking formula, which was utilized to rank the alternatives, and numerical examples were provided to show how the proposed matrix and its energy could be applied to an MCDM problem.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
    [3] Z. Pawlak, Rough sets and fuzzy sets, Fuzzy Sets Syst., 17 (1985), 99–102. https://doi.org/10.1016/S0165-0114(85)80029-4 doi: 10.1016/S0165-0114(85)80029-4
    [4] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst., 17 (1990), 191–209. https://doi.org/10.1080/03081079008935107 doi: 10.1080/03081079008935107
    [5] M. Kryszkiewicz, Rough set approach to incomplete information systems, Inf. Sci., 112 (1998), 39–49. https://doi.org/10.1016/S0020-0255(98)10019-1 doi: 10.1016/S0020-0255(98)10019-1
    [6] F. Smarandache, A unifying field in logics: neutrosophic logic, neutrosophy, neutrosophic set, neutrosophic probability and statistics, American Research Press, 1998.
    [7] F. Smarandache, $n$-valued refined neutrosophic logic and its applications to physics, arXiv, 2014. https://doi.org/10.48550/arXiv.1407.1041
    [8] S. Broumi, F. Smarandache, M. Dhar, Rough neutrosophic sets, Neutrosophic Theory Appl., 3 (2014), 60–65. http://doi.org/10.5281/zenodo.30310 doi: 10.5281/zenodo.30310
    [9] S. Broumi, F. Smarandache, Interval neutrosophic rough set, Neutrosophic Sets Syst., 7 (2015), 23–31. http://doi.org/10.5281/zenodo.30195 doi: 10.5281/zenodo.30195
    [10] K. Mondal, S. Pramanik, Rough neutrosophic multi-attribute decision-making based on grey relational analysis, Neutrosophic Sets Syst., 7 (2015), 8–17. http://doi.org/10.5281/zenodo.22629 doi: 10.5281/zenodo.22629
    [11] S. Alias, D. Mohamad, A. Shuib, Rough neutrosophic multisets, Neutrosophic Sets Syst., 16 (2017), 80–88.
    [12] H. L. Yang, C. L. Zhang, Z. L. Guo, Y. L. Liu, X. Liao, A hybrid model of single valued neutrosophic sets and rough sets: single valued neutrosophic rough set model, Soft Comput., 21 (2017), 6253–6267. http://doi.org/10.1007/s00500-016-2356-y doi: 10.1007/s00500-016-2356-y
    [13] C. Bo, X. Zhang, S. Shao, F. Smarandache, New multigranulation neutrosophic rough set with applications, Symmetry, 10 (2018), 578. https://doi.org/10.3390/sym10110578 doi: 10.3390/sym10110578
    [14] A. E. Samuel, R. Narmadhagnanam, Rough neutrosophic sets in medical diagnosis, Int. J. Pure Appl. Math., 120 (2018), 79–87.
    [15] C. Zhang, D. Li, S. Broumi, A. K. Sangaiah, Medical diagnosis based on single-valued neutrosophic probabilistic rough multisets over two universes, Symmetry, 10 (2018), 213. https://doi.org/10.3390/sym10060213 doi: 10.3390/sym10060213
    [16] A. E. Samuel, R. Narmadhagnanam, Pi-distance of rough neutrosophic sets for medical diagnosis, Neutrosophic Sets Syst., 28 (2019), 51–57.
    [17] M. Das, D. Mohanty, K. C. Parida, On the neutrosophic soft set with rough set theory, Soft Comput., 25 (2021), 13365–13376. https://doi.org/10.1007/s00500-021-06089-2 doi: 10.1007/s00500-021-06089-2
    [18] Q. Jin, K. Hu, C. Bo, L. Li, A new single-valued neutrosophic rough sets and related topology, J. Math., 2021 (2021), 5522021. https://doi.org/10.1155/2021/5522021 doi: 10.1155/2021/5522021
    [19] V. S. Subha, G. Rajaseka, S. Soundaravalli, Rough neutrosophic ideals in a ring, Neutrosophic Sets Syst., 50 (2022), 504–514. https://doi.org/10.5281/zenodo.6774906 doi: 10.5281/zenodo.6774906
    [20] M. Pal, S. K. Khan, A. K. Shyamal, Intuitionistic fuzzy matrices, Notes Intuitionistic Fuzzy Sets., 8 (2002), 51–62.
    [21] W. B. V. Kandasamy, F. Smarandache, Fuzzy relational maps and neutrosophic relational maps, Hexis Church Rock, 2004.
    [22] M. Dhar, S. Broumi, F. Smarandache, A note on square neutrosophic fuzzy matrices, Neutrosophic Sets Syst., 3 (2014), 37–41. https://doi.org/10.5281/zenodo.571264 doi: 10.5281/zenodo.571264
    [23] M. Abobala, A. Hatip, N. Olgun, S. Broumi, A. A. Salama, H. E. Khalid, The algebraic creativity in the neutrosophic square matrices, Neutrosophic Sets Syst., 40 (2021), 1–11. https://doi.org/10.5281/zenodo.4549301 doi: 10.5281/zenodo.4549301
    [24] M. Poonia, R. K. Bajaj, Complex neutrosophic matrix with some algebraic operations and matrix norm convergence, Neutrosophic Sets Syst., 47 (2021), 165–178. https://doi.org/10.5281/zenodo.5775110 doi: 10.5281/zenodo.5775110
    [25] D. J. S. Martina, G. Deepa, Operations on multi-valued neutrosophic matrices and its application to neutrosophic simplified-TOPSIS method, Int. J. Inf. Technol. Decis. Making, 22 (2023), 37–56. https://doi.org/10.1142/S0219622022500572 doi: 10.1142/S0219622022500572
    [26] D. Bravo, F. Cubría, J. Rada, Energy of matrices, Appl. Math. Comput., 312 (2017), 149–157. http://doi.org/10.1016/j.amc.2017.05.051 doi: 10.1016/j.amc.2017.05.051
    [27] S. Vijayabalaji, P. Balaji, Rough matrix theory and its decision making, Int. J. Pure Appl. Math., 87 (2013), 845–853. http://doi.org/10.12732/ijpam.v87i6.13 doi: 10.12732/ijpam.v87i6.13
    [28] M. Khan, M. Zeeshan, S. Iqbal, Neutrosophic soft metric matrices with applications in decision-making, J. Algebraic Hyperstrucres Logical Algebras, 2 (2021), 63–81. http://dx.doi.org/10.52547/HATEF.JAHLA.2.4.6 doi: 10.52547/HATEF.JAHLA.2.4.6
    [29] P. SheebaMaybell, M. M. Shanmugapriya, A significant factor of fuzzy neutrosophic soft matrices in decision making, Webology, 19 (2022), 5777–5784.
    [30] J. S. M. Donbosco, D. Ganesan, The energy of rough neutrosophic matrix and its application to MCDM problem for selecting the best building construction site, Decis. Making, 5 (2022), 30–45. https://doi.org/10.31181/dmame0305102022d doi: 10.31181/dmame0305102022d
    [31] R. Şahin, Multi-criteria neutrosophic decision making method based on score and accuracy functions under neutrosophic environment, arXiv, 2014. https://doi.org/10.48550/arXiv.1412.5202
    [32] Nancy, H. Garg, An improved score function for ranking neutrosophic sets and its application to decision-making process, Int. J. Uncertainty Quantif., 6 (2016), 377–385. https://doi.org/10.1615/int.j.uncertaintyquantification.2016018441 doi: 10.1615/int.j.uncertaintyquantification.2016018441
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(962) PDF downloads(64) Cited by(1)

Article outline

Figures and Tables

Figures(1)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog