Research article

Distance measures between interval complex neutrosophic sets and their applications in multi-criteria group decision making

  • Received: 26 May 2020 Accepted: 06 July 2020 Published: 08 July 2020
  • MSC : 28E10, 90B50

  • As an extension of neutrosophic set, interval complex neutrosophic set is a new research topic in the field of neutrosophic set theory, which can handle the uncertain, inconsistent and incomplete information in periodic data. Distance measure is an important tool to solve some problems in engineering and science. Hence, this paper presents some interval complex neutrosophic distance measures to deal with multi-criteria group decision-making problems. Firstly, this paper shows the definitions of interval complex neutrosophic set, and especially some novel set theoretic properties. Then, some new distance measures based on Hamming, Euclidean and Hausdorff metrics are proposed. Next, an approach is developed to rank the alternatives in multi-criteria group decision-making problems. Finally, a numerical example is given to demonstrate the practicality and effectiveness of these distance measures.

    Citation: Dongsheng Xu, Xiangxiang Cui, Lijuan Peng, Huaxiang Xian. Distance measures between interval complex neutrosophic sets and their applications in multi-criteria group decision making[J]. AIMS Mathematics, 2020, 5(6): 5700-5715. doi: 10.3934/math.2020365

    Related Papers:

  • As an extension of neutrosophic set, interval complex neutrosophic set is a new research topic in the field of neutrosophic set theory, which can handle the uncertain, inconsistent and incomplete information in periodic data. Distance measure is an important tool to solve some problems in engineering and science. Hence, this paper presents some interval complex neutrosophic distance measures to deal with multi-criteria group decision-making problems. Firstly, this paper shows the definitions of interval complex neutrosophic set, and especially some novel set theoretic properties. Then, some new distance measures based on Hamming, Euclidean and Hausdorff metrics are proposed. Next, an approach is developed to rank the alternatives in multi-criteria group decision-making problems. Finally, a numerical example is given to demonstrate the practicality and effectiveness of these distance measures.


    加载中


    [1] H. Garg, Some arithmetic operations on the generalized sigmoidal fuzzy numbers and its application, Granular Comput., 3 (2018), 9-25. doi: 10.1007/s41066-017-0052-7
    [2] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X
    [3] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96. doi: 10.1016/S0165-0114(86)80034-3
    [4] K. T. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets Syst., 31 (1989), 343-349. doi: 10.1016/0165-0114(89)90205-4
    [5] Z. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst., 35 (2006), 417-433. doi: 10.1080/03081070600574353
    [6] Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst., 15 (2007), 1179-1187. doi: 10.1109/TFUZZ.2006.890678
    [7] F. Smarandache, A unifying field in logic. Neutrosophy: Neutrosophic probability, set and logic, American Research Press, Rehoboth, 1999.
    [8] H. Wang, F. Smarandache, Y. Q. Zhang, et al. Single valued neutrosophic sets, Multispace Multistruct, 4 (2010), 410-413.
    [9] H. Wang, F. Smarandache, Y. Q. Zhang, et al. Interval neutrosophic sets and logic: Theory and applications in computing, Hexis: Phoenix, AZ, USA, 2005.
    [10] J. Ye, Multicriteria decision-making method using the correlation coefficient under single-value neutrosophic environment, Int. J. Gen. Syst., 42 (2013), 386-394. doi: 10.1080/03081079.2012.761609
    [11] J. Ye, Single valued neutrosophic cross-entropy for multicriteria decision making problems, Appl. Math. Model., 38 (2014), 1170-1175. doi: 10.1016/j.apm.2013.07.020
    [12] P. K. Singh, Three-way fuzzy concept lattice representation using neutrosophic set, Int. J. Mach. Learn. Cybern., 8 (2017), 69-79. doi: 10.1007/s13042-016-0585-0
    [13] V. Cetkin, H. Aygun, An approach to neutrosophic subgroup and its fundamental properties, J. Intell. Fuzzy Syst., 29 (2015), 1941-1947. doi: 10.3233/IFS-151672
    [14] D. Ramot, R. Milo, M. Friedman, et al. Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10 (2002), 171-186. doi: 10.1109/91.995119
    [15] A. Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, AIP Conf. Proc., 1482 (2012), 464-470.
    [16] H. Garg, D. Rani, Complex interval-valued intuitionistic fuzzy sets and their aggregation operators, Fund. Inform., 164 (2019), 61-101. doi: 10.3233/FI-2019-1755
    [17] M. Ali, F. Smarandache, Complex neutrosophic set, Neural. Comput. Appl., 28 (2017), 1817-1834. doi: 10.1007/s00521-015-2154-y
    [18] M. Ali, L. Q. Dat, F. Smarandache, Interval complex neutrosophic set: Formulation and applications in decision-making, Int. J. Fuzzy Syst., 20 (2018), 986-999. doi: 10.1007/s40815-017-0380-4
    [19] D. Rani, H. Garg, Distance measures between the complex intuitionistic fuzzy sets and their applications to the decision-making process, Int. J. Uncertain Quantif., 7 (2017), 423-439. doi: 10.1615/Int.J.UncertaintyQuantification.2017020356
    [20] T. Kumar, R. Bajaj, On complex intuitionistic fuzzy soft sets with distance measures and entropies, J. Math., 2014 (2014), 1-12.
    [21] M. Ali, V. Behbood, Operation properties and delta-equalities of complex fuzzy classes, IEEE Int. Conf. Intell. Syst. Knowl. Eng., (2015), 586-593.
    [22] S. Dai, L. Bi, B. Hu, Distance measures between the interval-valued complex fuzzy sets, Mathematics, 7 (2019), 549.
    [23] Y. Hong, D. Xu, K. Xiang, et al. Multi-attribute decision-making based on preference perspective with interval neutrosophic sets in venture capital, Mathematics, 7 (2019), 257.
    [24] J. C. Figueroa-García, Y. Chalco-Cano, H. Román-Flores, Distance measures for Interval Type-2 fuzzy numbers, Discret. Appl. Math., 197 (2015), 93-102. doi: 10.1016/j.dam.2014.11.016
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3536) PDF downloads(287) Cited by(3)

Article outline

Figures and Tables

Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog