Research article Special Issues

Approximations for the von Neumann and Rényi entropies of graphs with circulant type Laplacians

  • We dedicate this paper to the memory of João da Providência, who unfortunately passed away just before the paper was published. da Providência played a crucial role in this research and he will be sorely missed
  • Received: 15 December 2021 Revised: 21 March 2022 Accepted: 28 March 2022 Published: 31 March 2022
  • In this note, we approximate the von Neumann and Rényi entropies of high-dimensional graphs using the Euler-Maclaurin summation formula. The obtained estimations have a considerable degree of accuracy. The performed experiments suggest some entropy problems concerning graphs whose Laplacians are $ g $-circulant matrices, i.e., circulant matrices with $ g $-periodic diagonals, or quasi-Toeplitz matrices. Quasi means that in a Toeplitz matrix the first two elements in the main diagonal, and the last two, differ from the remaining diagonal entries by a perturbation.

    Citation: Natália Bebiano, João da Providência, Wei-Ru Xu. Approximations for the von Neumann and Rényi entropies of graphs with circulant type Laplacians[J]. Electronic Research Archive, 2022, 30(5): 1864-1880. doi: 10.3934/era.2022094

    Related Papers:

  • In this note, we approximate the von Neumann and Rényi entropies of high-dimensional graphs using the Euler-Maclaurin summation formula. The obtained estimations have a considerable degree of accuracy. The performed experiments suggest some entropy problems concerning graphs whose Laplacians are $ g $-circulant matrices, i.e., circulant matrices with $ g $-periodic diagonals, or quasi-Toeplitz matrices. Quasi means that in a Toeplitz matrix the first two elements in the main diagonal, and the last two, differ from the remaining diagonal entries by a perturbation.



    加载中


    [1] N. Bebiano, S. Furtado, J. da Providência, W. R. Xu, J. P. da Providência, Approximations for the von Neumann and Renyi entropies of graphs using the Euler-Maclaurin formula, Electron. Trans. Numer. Anal., 48 (2018), 227–242. https://doi.org/10.1553/etna_vol48s227 doi: 10.1553/etna_vol48s227
    [2] M. Dairyko, L. Hogben, J. C. H. Lin, J. Lockhart, D. Roberson, S. Severini, et al., Note on von Neumann and Rényi entropies of a graph, Linear Algebra Appl., 521 (2017), 240–253. https://doi.org/10.1016/j.laa.2017.01.037 doi: 10.1016/j.laa.2017.01.037
    [3] V. Giovannetti, S. Severini, The Kirchhoff's matrix tree theorem revisited: counting spanning trees with the quantum relative entropy, preprint, arXiv: 1102.2398. https://doi.org/10.48550/arXiv.1102.2398
    [4] H. Lin, B. Zhou, On the von Neumann entropy of a graph, Discrete Appl. Math., 247 (2018), 448–455. https://doi.org/10.1016/j.dam.2018.04.004 doi: 10.1016/j.dam.2018.04.004
    [5] G. Minello, L. Rossi, A. Torsello, On the von Neumann entropy of graphs, J. Complex Networks, 7 (2019), 491–514. https://doi.org/10.1093/comnet/cny028 doi: 10.1093/comnet/cny028
    [6] D. E. Simmons, J. P. Coon, A. Datta, Symmetric Laplacians, quantum density matrices and their von Neumann entropy, Linear Algebra Appl., 521 (2017), 240–253. https://doi.org/10.1016/j.laa.2017.06.038 doi: 10.1016/j.laa.2017.06.038
    [7] D. E. Simmons, J. P. Coon, A. Datta, The von Neumann Theil index: characterizing graph centralization using the von Neumann index, J. Complex Networks, 6 (2018), 859–876. https://doi.org/10.1093/comnet/cnx061 doi: 10.1093/comnet/cnx061
    [8] C. Ye, R. C. Wilson, C. H. Comin, L. F. Costa, E. R. Hancock, Approximate von Neumann entropy for direct graphs, Phys. Rev. E, 89 (2014), 052804. https://doi.org/10.1103/PhysRevE.89.052804 doi: 10.1103/PhysRevE.89.052804
    [9] R. Grone, R. Merris, V. S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl., 11 (1990), 218–238. https://doi.org/10.1137/0611016 doi: 10.1137/0611016
    [10] R. A. Horn, C. R. Johnson, Matrix Analysis, 2nd edition, Cambridge University Press, Cambridge, 2013.
    [11] J. V. Neumann, Mathematical Foundations of Quantum Mechanics, Number 2, Princeton University Press, Princeton, N.J., 1955.
    [12] L. D. Landau, E. M. Lifshitz, Statistical Physics, Pergamon Press, Oxford-Edinburgh-New York, 1969.
    [13] A. Rényi, On measures of entropy and information, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, 4 (1961), 547–562.
    [14] T. M. Apostol, An elementary view of Euler's summation formula, Amer. Math. Monthly, 106 (1999), 409–418. https://doi.org/10.1080/00029890.1999.12005063 doi: 10.1080/00029890.1999.12005063
    [15] V. Lampret, The Euler–Maclaurin and Taylor formulas: twin, elementary derivations, Math. Mag., 74 (2001), 109–122. https://doi.org/10.1080/0025570X.2001.11953046 doi: 10.1080/0025570X.2001.11953046
    [16] V. Lampret, The Euler-Maclaurin Formula and Sums of Powers Revisited, Int. J. Contemp. Math. Sci., 5 (2010), 2401–2407.
    [17] M. Z. Spivey, The Euler-Maclaurin formula and sums of powers, Math. Mag., 79 (2006), 61–65. https://doi.org/10.1080/0025570X.2006.11953378 doi: 10.1080/0025570X.2006.11953378
    [18] A. Greenbaum, R. C. Li, M. L. Overton, First-order perturbation theory for eigenvalues and eigenvectors, SIAM Rev., 62 (2020), 463–482. https://doi.org/10.1137/19M124784X doi: 10.1137/19M124784X
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1705) PDF downloads(46) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog