The analysis of algebraic invariants of algebras induced by appropriated multiset systems called Brauer configurations is a Brauer analysis of the data defining the multisets. Giving a complete description of such algebraic invariants (e.g., giving a closed formula for the dimensions of algebras induced by significant classes of Brauer configurations) is generally a tricky problem. Ringel previously proposed an analysis of this type in the case of Dynkin algebras, for which so-called Dynkin functions were used to study the numerical behavior of invariants associated with such algebras. This paper introduces two additional tools (the entropy and the covering graph of a Brauer configuration) for Brauer analysis, which is applied to Dynkin and Euclidean diagrams to define Dynkin functions associated with Brauer configuration algebras. Properties of graph entropies defined by the corresponding covering graphs are given to establish relationships between the theory of Dynkin functions, the Brauer configuration algebras theory, and the topological content information theory.
Citation: Agustín Moreno Cañadas, Pedro Fernando Fernández Espinosa, José Gregorio Rodríguez-Nieto, Odette M Mendez, Ricardo Hugo Arteaga-Bastidas. Extended Brauer analysis of some Dynkin and Euclidean diagrams[J]. Electronic Research Archive, 2024, 32(10): 5752-5782. doi: 10.3934/era.2024266
The analysis of algebraic invariants of algebras induced by appropriated multiset systems called Brauer configurations is a Brauer analysis of the data defining the multisets. Giving a complete description of such algebraic invariants (e.g., giving a closed formula for the dimensions of algebras induced by significant classes of Brauer configurations) is generally a tricky problem. Ringel previously proposed an analysis of this type in the case of Dynkin algebras, for which so-called Dynkin functions were used to study the numerical behavior of invariants associated with such algebras. This paper introduces two additional tools (the entropy and the covering graph of a Brauer configuration) for Brauer analysis, which is applied to Dynkin and Euclidean diagrams to define Dynkin functions associated with Brauer configuration algebras. Properties of graph entropies defined by the corresponding covering graphs are given to establish relationships between the theory of Dynkin functions, the Brauer configuration algebras theory, and the topological content information theory.
[1] | P. Fahr, C. M. Ringel, Categorification of the Fibonacci numbers using representations of quivers, preprint, arXiv: 1107.1858. |
[2] | P. Fahr, C. M. Ringel, A partition formula for Fibonacci numbers, J. Integer Sequences, 11 (2008). |
[3] | C. M. Ringel, Catalan combinatorics of the hereditary Artin algebras, Contemp. Math., 673 (2016), 51–177. https://doi.org/10.1090/conm/673/13490 doi: 10.1090/conm/673/13490 |
[4] | I. Assem, A. Skowronski, D. Simson, Elements of the Representation Theory of Associative Algebras, Cambridge University Press: Cambridge UK, (2006). https://doi.org/10.1017/CBO9780511614309 |
[5] | E. L. Green, S. Schroll, Brauer configuration algebras: A generalization of Brauer graph algebras, Bull. Sci. Mathématiques, 141 (2017), 539–572. https://doi.org/10.1016/j.bulsci.2017.06.001 doi: 10.1016/j.bulsci.2017.06.001 |
[6] | S. Schroll, Brauer graph algebras: a survey on Brauer graph algebras, associated gentle algebras and their connections to cluster theory, Homological methods, representation theory, cluster algebras, (2018), 177–223. https://doi.org/10.1007/978-3-319-74585-5-6 doi: 10.1007/978-3-319-74585-5-6 |
[7] | R. P. Stanley, Enumerative Combinatorics, Cambridge University Press, Cambridge, UK, (1999). https://doi.org/10.1017/CBO9781139058520 |
[8] | G. E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, UK, (2010). https://doi.org/10.1017/CBO9780511608650 |
[9] | A. M. Cañadas, M. A. O. Angarita, Brauer configuration algebras for multimedia based cryptography and security applications, Multimed. Tools. Appl., 80 (2021), 23485–23510. https://doi.org/10.1007/s11042-020-10239-3 doi: 10.1007/s11042-020-10239-3 |
[10] | A. M. Cañadas, I. Gutierrez, O. M. Mendez, Brauer analysis of some cayley and nilpotent graphs and its application in quantum entanglement theory, Symmetry, 16 (2024), 570. https://doi.org/10.3390/sym16050570 doi: 10.3390/sym16050570 |
[11] | P. F. F. Espinosa, Categorification of Some Integer Sequences and its Applications, Ph.D. Thesis, Universidad Nacional de Colombia, BTA, Colombia, 2020. |
[12] | N. Rashevsky, Life, information theory, and topology, Bull. Math. Biophys., 17 (1955), 229–235. https://doi.org/10.1007/BF02477860 doi: 10.1007/BF02477860 |
[13] | E. Trucco, A note on the information content of graphs, Bull. Math. Biol., 18 (1956), 129–135. https://doi.org/10.1007/BF02477836 doi: 10.1007/BF02477836 |
[14] | M. A. A. Obaid, S. K. Nauman, W. M. Fakieh, C. M. Ringel, The number of support-tilting modules for a Dynkin algebra, preprint, arXiv: 1403.5827. |
[15] | N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, http://oeis.org. Sequence A009766. |
[16] | N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, http://oeis.org. Sequence A059481. |
[17] | N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, http://oeis.org. Sequence A029635. |
[18] | G. B. Ríos, Dynkin Functions and Its Applications, Ph.D. Thesis, Universidad Nacional de Colombia, BTA, Colombia, 2020. |
[19] | A. Mowshowitz, M. Dehmer, Entropy and the complexity of graphs revisited, Entropy, 14 (2012), 559–570. https://doi.org/10.3390/e14030559 doi: 10.3390/e14030559 |
[20] | S. Kulkarni, S. U. David, C. W. Lynn, D. S. Bassett, Information content of note transitions in the music of JS Bach, Phys. Rev. Res., 6 (2024), 013136. https://doi.org/10.1103/PhysRevResearch.6.013136 doi: 10.1103/PhysRevResearch.6.013136 |
[21] | C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Springer-Verlag, Berlin Heidelberg, Germany, 1984. https://doi.org/10.1007/BFb0072870 |
[22] | D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Gordon and Breach, London, UK, 1993. |
[23] | R. Diestel, Graph Theory, Springer-Verlag, New York, USA, 2017. https://doi.org/10.1007/978-3-662-53622-3 |
[24] | D. O. Haryeni, E. T. Baskoro, S. W. Saputro, A method to construct graphs with certain partition dimension, Electron. J. Graph Theory Appl., 7 (2019), 251–263. https://doi.org/10.5614/ejgta.2019.7.2.5 doi: 10.5614/ejgta.2019.7.2.5 |
[25] | J. A. Drozd, Tame and wild matrix problems, in Representation Theory II: Proceedings of the Second International Conference on Representations of Algebras Ottawa, Carleton University, August 13–25, 1979, Berlin, Heidelberg: Springer Berlin Heidelberg, (2006). |
[26] | P. Gabriel, Unzerlegbare darstellungen I, Manuscripta Math., 6 (1972), 71–103. https://eudml.org/doc/154087 |
[27] | V. Dlab, C. M. Ringel, Indecomposable Representations of Graphs and Algebras, Memoirs of the American Mathematical Society, (1976). |
[28] | L. da F. Costa, An introduction to multisets, preprint, arXiv: 2110.12902. |
[29] | A. Sierra, The dimension of the center of a Brauer configuration algebra, J. Algebra, 510 (2018), 289–318. https://doi.org/10.1016/j.jalgebra.2018.06.002 doi: 10.1016/j.jalgebra.2018.06.002 |
[30] | M. Dehmer, A. Mowshowitz, A history of graph entropy measures, Inf. Sci., 181 (2011), 57–78. https://doi.org/10.1016/j.ins.2010.08.041 doi: 10.1016/j.ins.2010.08.041 |