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description of such algebraic invariants (e.g., giving a closed formula for the dimensions of algebras
induced by significant classes of Brauer configurations) is generally a tricky problem. Ringel previ-
ously proposed an analysis of this type in the case of Dynkin algebras, for which so-called Dynkin
functions were used to study the numerical behavior of invariants associated with such algebras. This
paper introduces two additional tools (the entropy and the covering graph of a Brauer configuration) for
Brauer analysis, which is applied to Dynkin and Euclidean diagrams to define Dynkin functions asso-
ciated with Brauer configuration algebras. Properties of graph entropies defined by the corresponding
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configuration algebras theory, and the topological content information theory.
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1. Introduction

This paper establishes relationships between the theory of Dynkin functions, the theory of Brauer
configuration algebras (BCAs), and the topological content information theory (graph entropy theory).
On the one hand, Ringel and Fahr [1] introduced the notion of categorification of a set of numbers,
which means considering suitable objects in a category instead of these numbers (e.g., representation
of quivers) so that the numbers in question occur as invariants of the objects.

According to Ringel and Fahr [1], the equality of such numbers may be visualized by isomor-
phisms of objects and functional relations by functorial ties. For instance, they proved that cer-
tain formulas for Fibonacci numbers can be interpreted via filtrations of some Fibonacci modules
[2]. In this line, Ringel [3] introduced Dynkin functions which assign to a given Dynkin diagram
∆ ∈ {An,Bn,Cn,Dn,E6,E7,E8,F4,G2} an integer, or, more generally, a real number, and sometimes
even a set or a sequence of real numbers (see Figure 2). Thus, a Dynkin function f consists of four se-
quences f (An), f (Bn), f (Cn), f (Dn) as well as five additional single values f (E6), f (E7), f (E8), f (F4),
and f (G2).

The number of indecomposable modules and the number of tilting modules over the corresponding
Dynkin algebras are examples of Dynkin functions. We remind that a module T over an algebra A is
said to be a tilting module if the projective dimension of T denoted pdA T is less than or equal to 1.
Furthermore, Ext1

A(T,T ) = 0, and there exists a short exact sequence 0 → T ′
A
→ T ′′

A
→ 0, where T ′

A

and T ′′
A

are objects of the category and add T generated by the module T [4].
Ringel [3] also suggested the creation of an online encyclopedia of Dynkin functions (OEDF) with

the same goals as the online Encyclopedia of integer sequences (OEIS).
Brauer configuration algebras are examples of the application of combinatorial tools in the theory

of representation of algebras. Such algebras arise from multisets and their induced bounded directed
graphs called Brauer quivers [5–8].

It is worth noting that the confluence between the theory of representation of algebras and combi-
natorics realized by the Brauer configuration algebras allows for finding applications of these algebras
in several fields of mathematics and science [9–11].

Since graphs are examples of systems or collections of multisets, they naturally induce Brauer
configuration algebras. Green and Schroll explored this point of view [6] and defined Brauer graph al-
gebras, a particular case of Brauer configuration algebras. Moreover, Brauer analysis allowed Cañadas
et al. [10] to give formulas for the dimension of Brauer configuration algebras induced by particular
kinds of graphs used to build quantum entanglements.

Rashevsky [12] and Trucco [13] introduced the concept of graph entropy to measure complexity of
networks. The construction of such measures was originally called topological content information of
a graph.

It is worth pointing out that most of the Brauer analyses have been focused on using the structure
of indecomposable projective modules and the dimension of the Brauer configuration algebras induced
by the data underlying a finite collection of multisets without paying attention to the amount of infor-
mation arising from these data [9–11]. This paper fills the gap by introducing the entropy associated
with a Brauer configuration.

We are focused on constructing some Dynkin functions based on algebraic invariants associated
with Brauer configuration algebras (induced by Dynkin and Euclidean diagrams) and the topological
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content information arising from their corresponding covering graphs. Such use of algebraic invariants
and graph entropies is said to be an extended Brauer analysis of the diagrams.

1.1. Contributions

This paper extends Brauer analysis by introducing the covering graph of a Brauer configuration (see
(2.14)) and its entropy (see (2.21)). Some of the main results of this paper are Theorems 7, 8, 10–14,
and Corollaries 1–3.

Theorems 7 and 8 give some properties of the covering graph of a Brauer configuration. Theorem
11 gives bounds for the entropy associated with a Brauer configuration algebra with the length grad-
ing property, and Theorem 12 compares some degree-based entropies with the entropy of the Brauer
configuration induced by Dynkin and Euclidean diagrams.

Theorem 10 and Corollaries 1–3 define Dynkin functions based on algebraic invariants, for instance,
admissible ideals that define Brauer configuration algebras, covering graphs, the dimension of Brauer
configuration algebras, and degree-based entropies.

Theorem 13 provides results similar to Euclidean diagrams, as those presented for Dynkin diagrams.
Theorem 14 gives relationships between dimensions of Brauer configuration algebras and entropies.

Tables 4–7 summarize the results obtained.
The organization of this paper goes as follows: Background, main definitions and notations are

given in Section 2; we give definitions of multisets (Section 2.4), Brauer configuration algebras (Sec-
tion 2.4.1), graph entropies (Section 2.5), and some of their properties. We present the main results in
Section 3. Discussions regarding the results obtained are given in Section 4. Concluding remarks are
given in Section 5.

2. Preliminaries

This section describes the research development of Dynkin functions, Brauer configuration alge-
bras, and graph entropy. It also recalls basic notations and definitions.

2.1. Background

Ringel and Fahr introduced the notion of categorification of a set of numbers [1]; as a consequence
of this work, the sequence A132262={1, 2, 7, 29, 130, . . . } was introduced in the OEIS. They used
the theory of representation of the 3-Kronecker quiver to obtain an integer partition for even-index
Fibonacci numbers. Moreover, they introduced Fibonacci modules to categorify the sequence of Fi-
bonacci numbers [2].

Dynkin functions associated with Dynkin algebras were introduced by Ringel [3]. He gave the num-
ber of indecomposable modules r(∆) over the corresponding algebras as an example of a Dynkin func-
tion (see Table 1). In [3] Ringel proposes to define new Dynkin functions and to create an OEDF. This
paper introduces Dynkin functions associated with Brauer configuration algebras induced by Dynkin
and Euclidean diagrams.

Ringel et al. [14] proved that the nonzero numbers as(∆) (the number of support-tilting modules
with support rank s) is a Dynkin function and that the Dynkin diagrams A,B, and D yield three tri-
angles having similar properties as the Catalan triangle (A009766 in the OEIS, [15]), Pascal’s triangle
(A059481 in the OEIS, [16]) and Lucas triangle (A029635 in the OEIS, [17]), respectively.
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Table 1. Example of a Dynkin function.

Dynkin diagrams r(∆)
An tn =

(
n+1

2

)
Bn n2

Dn n(n − 1)
E6 36
E7 63
E8 120
F4 24
G2 6

Green and Schroll introduced Brauer configuration algebras and Brauer graph algebras [5,6] to deal
with research regarding the classification of algebras of wild representation type. Since then, these
algebras and their combinatorial nature have been used by Espinosa et al. [11] to investigate fields in
mathematics and different sciences. They were used to give multimedia security in cryptography and
to establish relationships between quantum entanglement theory and Brauer configuration algebras
[9, 10]. Relationships between Brauer configuration algebras and Dynkin functions of type ADE were
given by Bravo in [18].

Rashevsky and Trucco [12, 13] introduced the concept of graph entropy to measure the structural
complexity of several graph invariants. It is worth noting that the construction of entropy-based
measures was originally called the topological information content of a graph. According to Mow-
showitz [19], the probabilistic and deterministic categories are the main approaches to measuring the
complexity of graphs. The probabilistic category deals with applying an entropy function to a prob-
ability distribution associated with a graph. The deterministic category embraces the encoding, sub-
structure count, and generative approaches. Graph entropies were used recently by Kulkarni et al. [20]
to study networks induced by note transitions in Bach’s work.

2.2. Path algebras

This section recalls basic notations and definitions regarding the theory of representation of alge-
bras. The authors refer the interested reader to [4, 21] and [22] for more insights on the development
of the theory and a detailed explanation of the notions described.

A graph is a pair G = (VG, EG) of sets satisfying EG ⊆ VG × VG. Thus, the elements of EG are
2-element subsets of VG. It is assumed that VG∩EG = ∅. The elements of VG are the vertices (or nodes,
or points), and the elements of EG are its edges (or lines). The number of vertices of a graph G is its
order written as |VG| = |G|, and its number of edges is denoted ||G|| [23].

A vertex v is incident with an edge e if v ∈ e. The edge e is an edge at v.
The two vertices incident with an edge are its endvertices or ends, and an edge joins its ends. An

edge {x, y} is usually written as a word of the form w(e) = xy (or w(e) = yx).
A path is a nonempty graph P = (VP, EP) with VP = {x0, x1, . . . , xm}, and EP =

{x0x1, x1x2, . . . , xm−1xm}, where the xi are all distinct. The vertices x0 and xm are linked by P and
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are called its ends; the vertices x1, x2, . . . , xm−1 are the inner vertices of P. The sequence of vertices
can be used to denote a path, say P = x0x1 . . . xm and calling P a path from x0 to xm [23].

If P = x0 . . . xm−1 is a path and m ≥ 3, then the graph C = P + xm−1x0 is called a cycle.
A nonempty graph G is called connected if any two of its vertices are linked by a path in G. A

maximal connected subgraph of G is called a component.
An acyclic graph (a graph without cycles) is called a forest. A connected forest is a tree, i.e., a forest

is a graph whose components are trees [23].
Let G be a graph and A = (a1, a2, ..., ak) be an ordered subset of vertices of G. A hair graph of G

with respect to A, denoted by G[(a1, a2, ..., ak); (n1, n2, ..., nk)] is the graph obtained from G by attaching
a path Pni with ni (≥ 1) vertices to vertex ai at the first (or last) vertex of Pni , for all i = 1, ..., k [24].
Furthermore, the set of all hair graphs obtained from the graph G are denoted by Hair(G). Figure 1
shows a hair graph C4[(v1, v2, v3, v4); (1, 2, 1, 3)] of the 4-point cycle C4 = {v1, v2, v3, v4}.

Figure 1. Hair graph C4[(v1, v2, v3, v4); (1, 2, 1, 3)].

A quiver is a directed graph Q = (Q0,Q1, s, t), where Q0 (Q1) is the set of vertices (arrows) of the
quiver whereas s, t : Q1 → Q0 are maps assigning the source s(α) and the target t(α) of an arrow
α ∈ Q1.

If k is an algebraically closed field, then the paths of a quiver Q generate a corresponding path
algebra kQ, for which each vertex a ∈ Q0 has associated a stationary path ea = a||a. The set {ea | a ∈
Q0} constitutes a system of primitive orthogonal idempotents of the algebra kQ [4].

Ideals in path algebras are generated by a set of relations ρ which are paths with the same ends and
length ≥ 1. For l ≥ 1, we let Rl

Q denote the ideal consisting of paths of length l.
If Q is a finite quiver and RQ is the arrow ideal of the path algebra kQ, then a two-sided ideal I of

kQ is said to be admissible if there exists m ≥ 2 such that Rm
Q ⊆ I ⊆ R2

Q. The pair (Q, I) is said to be a
bound quiver and the quotient algebra kQ/I is said to be a bound quiver algebra [4].

Since the category mod kQ of finitely generated kQ-modules is abelian, the main problem regarding
the theory of representation of algebras consists of giving a complete description of the indecomposable
kQ-modules (or indecomposable representations of Q) and the irreducible morphisms [4].

Drozd [25] proved that the algebras over an algebraically closed field are either of tame or wild
representation type, and not both. We remind that a quiver Q is of finite (tame) representation type if it
has finitely many isomorphism clases of indecomposable representations (it is of infinite type and the
indecomposable representations occur in families of at least two parameters).
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Gabriel [26] proved that any finite dimensional basic algebra is isomorphic to a suitable bounded
path algebra and that a finite dimensional algebra Λ = kQ is of finite representation type, if and only
if, the underlying undirected graph Q is a Dynkin diagram of type An,Dm,E6,E7,E8, n ≥ 1 and m ≥ 4.
Dlab and Ringel [27] proved that a connected hereditary Artin algebra is representation-finite, if and
only if, the underlying undirected graph Q is one of the Dynkin diagrams An,Bn,Cn,Dm,E6,E7, E8,F4,
or G2 (the new diagrams Bn,Cn,F4, and G2 appear for finite type when the field k is not algebraically
closed).

Path algebras Λ = kQ defined by a quiver Q whose underlying graph Q is a Euclidean diagram
of the form Ãn, D̃m, Ẽ6, Ẽ7, Ẽ8 are of tame representation type. Figure 2 shows Dynkin and Euclidean
diagrams.

Figure 2. Dynkin and Euclidean diagrams.

2.3. Dynkin functions

As described in the introduction, any Dynkin function f consists of four sequences f (An), f (Bn),
f (Cn), f (Dn) and five single values f (Es), s ∈ {6, 7, 8}, f (F4), and f (G2) (see [3] and [14]). The
counting problems for which f arises deal with invariants of Dynkin algebras.

Given any Dynkin algebra Λ an exceptional sequence for Λ is a sequence (M1,M2, . . . ,Mt) of
indecomposable Λ-modules such that Hom(Mi,M j) = 0 = Ext1(Mi,M j) for i > j. It is well-known
that if h(∆) is the Coxeter number (the order of a Coxeter element) of the Dynkin diagram ∆ and
W(∆) is the corresponding Weyl group (for a quiver Q = (Q0,Q1, s, t) the Weyl group is the group of
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automorphisms of E = Qn generated by a set of refections {si | i ∈ Q0} its elements are said to be
Coxeter elements), then the number of exceptional sequences of the associated Dynkin algebra Λ is
given by the identity e(∆) = n!h(∆)n

|W(∆)| . Table 2 shows the Dynkin functions defined by e(∆), h(∆), and
|W(∆)|.

Table 2. Dynkin functions defined by the number of exceptional sequences, the Coxeter
number, and the size of the corresponding Weyl group [3].

Dynkin diagrams Dynkin functions
e(∆) h(∆) |W(∆)|

An (n + 1)n−1 n + 1 (n + 1)!
Bn nn 2n 2nn!
Dn 2(n − 1)n 2(n − 1) 2(n−1)n!
E6 2934 (2)2(3) (2)7(3)4(5)
E7 2(3)12 (2)(3)2 (2)10(3)4(5)(7)
E8 2(3)5(5)7 (2)(3)(5) (2)14(3)5(5)2(7)
F4 (2)4(3)3 (2)2(3) (2)7(3)2

G2 (2)(3) (2)(3) (2)2(3)

This paper introduces Dynkin functions defined by Brauer configuration algebras Λ∆ induced by
Dynkin and Euclidean diagrams. The construction of such functions is said to be the extended Brauer
analysis of the corresponding Brauer configuration.

2.4. Multisets

This section reminds basic definitions regarding multisets. Authors referred the interested reader
to [7,8,11], and [28] for more details dealing with multisets and their messages. We also introduce
basic constructions as multiset systems of type M which can be considered Brauer configurations in
the sense of Green and Schroll [5]. Thus, we will see that multiset systems of type M induce suitable
Brauer configuration algebras, for which the analysis of their invariants is said to be a Brauer analysis.

A multiset is a pair (M, f ) where M is a set and f : M → N is a map from M to the nonnegative
integers set. Roughly speaking, multisets allow repeated elements [8, 28].

According to Andrews [8], a permutation of a multiset (M, f ) is determined by a word w whose
letters are the elements of M with letter occurrences given by the map f . In this paper, we assume that
words associated with multisets are given by fixed permutations of the following form:

w(M) = m f (m1)
1 m f (m2)

2 . . .m f (ms)
s . (2.1)

Note that there are ( f (m1) + f (m2) + · · · + f (ms))! permutations associated with the multiset (M, f ).
Operations between multisets are defined by da Fontoura in [28]. According to him, if (M1, f1) and

(M2, f2) are multisets with M1 = {m1,1, . . . ,m1,r} and M2 = {m2,1, . . . ,m2,s}, then

(M1, f1) ∪ (M2, f2) = (M1 ∪ M2, f1,2) with f1,2(x) = max{ f1(x), f2(x)} if x < M j, then f j(x) = 0 for j ∈ {1, 2}.
(M1, g1) ∩ (M2, g2) = (M1 ∩ M2, g1,2) with g1,2(x) = min{ f1(x), f2(x)}.

(2.2)
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Let M = {(M1, f1), (M2, f2), . . . , (Mh, fh)} be a finite collection of multisets satisfying the following
condition (2.3).

If w(Mi) = (mi,1) fi(mi,1)(mi,2) fi(mi,2) . . . (mi,si)
fi(mi,si ), then

si∑
j=1

fi(mi, j) > 1. (2.3)

If M =
h⋃

i=1
Mi, with (Mi, fi) ∈ M,

⋂
x∈I

Mx gives the intersection of all multisets containing an element

y ∈ M with I ⊆ {1, 2, . . . , h} a fixed set of indices, and fx(y) is the frequency of y in Mx, then
∑
x∈I

fx(y) is

said to be the valency of y denoted val(y) [5].

For each y ∈ M, the set Iy = {Mx | x ∈ I} is endowed with a linear order ≺ in such a way that if
I = {i1, i2, . . . , in} and i1 < i2 < · · · < in with the usual order of natural numbers then Mi1 ≺ Mi2 ≺ · · · ≺ Min .

(2.4)

For each y ∈ M, it holds that any fixed Mx ∈ Iy, with fx(y) ≥ 1 has associated a subchainMx,y with
the form Mx,y = M(1)

x ≺ M(2)
x ≺ · · · ≺ M fx(y)

x , named the expansion of Mx induced by y, where Mi
x is

associated with a unique copy of Mx. M(1)
x = Mx if fx(y) = 1.

According to Stanley [7] if x and y are points in a poset (P,≤) then y covers x if x < y and if no
element z ∈ P satisfies x < z < y. Thus, y covers x if and only if x < y and [x, y] = {x, y}.

For any y ∈ M, we assume that if Mx ≺ Mx′ is a covering in Iy, thenMx,y ≺ Mx′,y is also a covering
and M(1)

x ≺ M(2)
x ≺ · · · ≺ M fx(y)

x ≺ M(1)
x′ ≺ M(2)

x′ ≺ · · · ≺ M fx′ (y)
x′ .

Let {M1,M2, . . . ,Mh} be a collection of nonempty finite sets and M =
h⋃

i=1

Mi with Mi = {mi, j | 1 ≤ j ≤ si}

then a collection of multisets M = {(M1, f1), . . . , (Mh, fh)} is said to be a multiset system of type M, if
si∑

j=1

fi(mi, j) > 1 for each 1 ≤ i ≤ h. Furthermore, for all y ∈ M, there exists a poset (Iy,≺) of type (2.4),

which is a linearly ordered set or chain with corresponding expansions associated with sets Mx ∈ Iy,

and there exists a map, ν : M → N+ × N+ such that ν(m) = ( j, val(m)), for each m ∈ M.
(2.5)

Green and Schroll [5] named vertices the elements of M, if they are associated with a so-called
Brauer configuration. The positive integer j in a pair ( j, val(m)) associated with a vertex m is the
multiplicity value µ(m) according to them. It is worth pointing out that µ(m) does not deal with the
multiplicity of m as an element of a multiset. In particular, m ∈ M is said to be nontruncated (truncated)
provided that µ(m)val(m) > 1 (µ(m)val(m) = 1). Thus, the multiplicity function µ allows them to
classify the set of vertices M into the set of truncated and nontruncated vertices. In this paper, if
val(m) = 1, it is assumed that µ(m) = 2, otherwise µ(m) = 1. Therefore, the considered vertices are
nontruncated.

Every y ∈ M in a multiset system of type M defines a successor sequence S y of type M. In such a
case, if Iy = {Mi1 ,Mi2 , . . . ,Mit}, then the successor sequence S y at vertex y is a chain of type (2.4) with
the following forms:

Electronic Research Archive Volume 32, Issue 10, 5752–5782.



5760

M(1)
i1
≺ · · · ≺ M

( fi1 (y))
i1

≺ M(1)
i2
≺ · · · ≺ M

( fi2 (y))
i2

≺ · · · ≺ M(1)
it
≺ · · · ≺ M( fit (y))

it
. (2.6)

Successor sequences of type (2.6) at vertices y ∈ M give rise to circular orderings by adding a
relation of the form M( fit (y))

it
≺ M(1)

i1
(see (2.8)). In such a case, M

( fis′ (y))
is′

is the successor of M( fis (y))
is

in a

covering of the form M( fis (y))
is

≺ M
( fis′ (y))
is′

. Furthermore, M(1)
i1

is the successor of M( fit (y))
it

.

Remark 1. In this paper, we assume that in successor sequences, it holds that (M(r)
i , fi) ≺ (M(s)

j , f j) if
i < j for any r, s ≥ 1, (M(r)

i , fi) ≺ (M(s)
i , fi) if r < s. If no confusion arises we will omit the use of super

indices in successor sequences.

A compressed version of the successor sequence (2.6) is obtained if the expansions are not consid-
ered. In such a case we use the ordered sequence (2.7) to denote the compressed successor sequence.

Mi1,y ≺ Mi2,y ≺ · · · ≺ Mit ,y. (2.7)

Note that a circular order of type (2.6) at a vertex y ∈ M is equivalent to one of the following form:

M( j)
is
≺ · · · ≺ M( f (i1,y))

i1
≺ · · · ≺ M( f (it ,y))

it
≺ M( j)

i1
≺ M( j)

i2
· · · ≺ M( j)

is
. 1 ≤ s ≤ t, 1 ≤ j ≤ fis(y). (2.8)

Henceforth, if no confusion arises we will use the symbol < instead of the symbol ≺ to denote
relations in a multiset system of type M.

Example 1. As a toy example, let us consider a multiset system MG of type M induced by a graph
G = (VG, EG) with {m1,m2,m3,m4} as the set VG of vertices and set of edges EG = {M1,M2,M3,M4}

defining the multisets of MG such that

(M1, f1) = {m1,m2 | f1(mi) = 1, i ∈ {1, 2}},
(M2, f2) = {m2,m3 | f2(mi) = 1, i ∈ {2, 3}},
(M3, f3) = {m3,m4 | f3(mi) = 1, i ∈ {3, 4}},
(M4, f4) = {m2,m4 | f4(mi) = 1, i ∈ {2, 4}},

M =
4⋃

j=1

Mi = VG,

M1 ∩ M2 ∩ M4 = {m2}, M2 ∩ M3 = {m3}, M3 ∩ M4 = {m4}.

(2.9)

In this case, vertices mi ∈ M are nontruncated. Note that,

val(m1) = 1, val(m2) = 3, val(mi) = 2, for i ∈ {3, 4},
µ(m1) = 2, µ(mi) = 1, for i ∈ {2, 3, 4}.

(2.10)

The successor sequences of type M, S mi associated with the set M = {m1,m2,m3,m4} are
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S m1 = M(1)
1 , Im1 = {M1}

S m2 = M(1)
1 < M(1)

2 < M(1)
4 , Im2 = {M1 < M2 < M4},

S m3 = M(1)
2 < M(1)

3 , Im3 = {M2 < M3},

S m4 = M(1)
3 < M(1)

4 , Im4 = {M3 < M4}.

(2.11)

2.4.1. Brauer configuration algebras induced by multiset systems of type M

This section recalls basic definitions and notation regarding Brauer configurations and their induced
Brauer configuration algebras see [5,6,10] and [11] for more details dealing with Brauer graph algebras
and Brauer configuration algebras.

According to Green and Schroll [5], a Brauer configuration is a combinatorial data Γ = (Γ0,Γ1, µ,O),
where Γ0 is the (finite) set of vertices of Γ, Γ1 is a finite collection of finite labeled multisets called
polygons, whose elements are in Γ0, µ is function called multiplicity and O is called the orientation of
Γ. In such a case, every vertex in Γ0 is a vertex in at least one polygon, every polygon in Γ1 has at least
two vertices, and every polygon in Γ1 has at least one nontruncated vertex α such that val(α)µ(α) > 1.
The role of the multiplicity function µ was described in Section 2.4 of this paper.

An orientation O for Γ is a choice, for each vertex α ∈ Γ0, of a cycling ordering of the polygons in
which α occurs as a vertex, including repetitions. In such a case, if α occurs in polygons or multisets
of the form (V1, f1), . . . , (Vu, fu) then the polygon (Vi, fi) occurs fi(α) times in the list. The cyclic order
at vertex α is obtained by linearly ordering the list, say (Vi1 , fi1) < (Vi2 , fi2) < · · · < (Viu , fiu) and by
adding (Viu , fiu) < (Vi1 , fi1), u = val(α).

According to Green and Schroll [5], the cyclically ordered list of polygons (V1, f1), . . . , (Vu, fu) or
simply V1,V2, . . . ,Vu is the successor sequence at α. In such a case, if V1 < V2 < · · · < Vu is the
successor sequence at some nontruncated vertex α with val(α) = u, then Vi+1 is the successor of Vi at
α, for 1 ≤ i ≤ u, where Vu+1 = V1. If α is a vertex in polygon V and val(α) = 1 then the successor
sequence at α is just V .

The definitions described in this section allow us to conclude that multiset systems of type M are
Brauer configurations, named Brauer configurations of type M (or simply Brauer configurations, if no

confusion arises) whose set of vertices is given by a set M =
u⋃

j=1
M j, where {(M1, f1), . . . (Mu, fu)} is the

set of polygons. The multiplicity function µ is given by the first coordinate of the function ν (see (2.5)).
The orientation in this case is given by successor sequences (2.6) and their compressed versions (2.7)
of type M.

Since function ν associated with multiset systems of type M includes the multiplicity function µ
then we can assume the notation (2.12) for Brauer configurations of type M.

M = (M,M1, µ,O) (2.12)

The message or Brauer message M(M) of a Brauer configuration is the concatenation of the fixed
words w(Mi) [11], i.e.,

M(M) = w(M1)w(M2) . . .w(Mh). (2.13)

Remark 2. The Brauer configurations considered in this paper are multiset systems of type M with
successor sequences defined as in (2.6), (2.7), and Remark 1.
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Example 2. As an example, we note that the Brauer message M(MG) = w(M1)w(M2)w(M3)w(M4)
induced by the Brauer configuration (2.9) described in Example 1 can be graphically represented by
assigning a labeled line of the form given in Figure 3 to each word w(Mi) = mi1mi2 , i, i j ∈ {1, 2, 3, 4}.

mi1
w(Mi) mi2

Figure 3. Graphical representation of a word w(Mi) = mi1mi2 .

Figure 4 shows words, w(Mi), i ∈ {1, 2, 3, 4}.

Figure 4. Graphical representations of words w(Mi), i ∈ {1, 2, 3, 4}.

Word concatenation is obtained by gluing lines with the same ends represented by labeled circles.
Figure 5 shows concatenations w(M1)w(M2), w(M1)w(M2)w(M3), and the Brauer message M(MG) =
G = C3[(m2,m3,m4); (2, 1, 1)] = w(M1)w(M2)w(M3)w(M4).

m1
w(M1) m2

w(M2)

m1
w(M1) m2

w(M2)

G = m1
w(M1) m2

w(M2)

m3 m3
w(M3)

m4 m3
w(M3)

m4

w(M4)

Figure 5. A hair graph G = C3[(m2,m3,m4); (2, 1, 1)] of a 3-point cycle C3 = {m2,m3,m4}

viewed as a Brauer message w(M1)w(M2)w(M3)w(M4) (see Figure 1).

The Brauer quiver QM = (Q0,Q1, s, t) (or simply Q, if no confusion arises) induced by a Brauer
configuration M = (M,M1, µ,O) is defined in such a way that there is a bijective correspondence
between its set of vertices Q0 and the collection of polygons M1. In other words, vertices in a Brauer
quiver are given by the multisets in M1. If (M j, f j) is a successor to (Mi, fi) in the successor sequence
at the nontruncated vertex m ∈ M then there is a unique arrow a ∈ Q1 such that s(a) = (Mi, fi) and
t(a) = (M j, f j). In particular, each covering (Mi, fi) < (M j, f j) in a circular ordering defines an arrow
from (Mi, fi) to (M j, f j) in Q1. The cycles defined by equivalent circular orderings associated with
nontruncated vertices y ∈ M starting and ending at a given vertex M ∈ Q0 are named special cycles by
Green and Schroll [5].

Since in this paper, it is assumed that µ(v) = 2 for any vertex v ∈ M with valency val(v) = 1, then
circular orderings associated with vertices with valency 1 define an arrow (loop) αv from the polygon
containing it to itself [5]. In such a case (αv)2 is the unique special cycle associated with v ∈ M.

Example 3. Figure 6 shows the Brauer quiver induced by graph G (see Figure 5) and the Brauer
configuration (2.9) defined in Example 1.
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QMG
= M1

α
m2
1 //

α
m1
1

��
M2

α
m3
1

��

α
m2
2

ww
M4

α
m4
2 //

α
m2
3

OO

M3

α
m4
1

jj

α
m3
2

GG

Figure 6. Brauer quiver QMG
induced by graph G (see Figure 5).

The covering graph or nerve of a Brauer quiver QM induced by a fixed Brauer configuration M

(or the covering graph of a Brauer configuration M) is a graph c(QM) = (Vc(QM), Ec(QM)) whose set of
vertices Vc(QM) consists of polygons in M1, and there exists an edge Mi − M j ∈ Ec(QM) connecting two
polygons Mi,M j ∈ M1 if and only if eitherMi,y < M j,y orM j,y < Mi,y is a covering in the compressed
successor sequence of type (2.7) at some vertex y ∈ M. Note that c(QM) has no multiple edges or
loops. So, we write just one edge to represent all the coverings of a given form. We provide alternative
conditions for vertices and edges of a covering graph in (2.14).

Vc(QM) =M1.

{Mi,M j} ∈ Ec(QM), if and only if, either Mi < M j or M j < Mi is a covering for some Mi,M j ∈ Iy

and some y ∈ M.
(2.14)

Graph G (see Figure 5) is the covering graph of the Brauer quiver QMG
(see Figure 6). If no con-

fusion arises, we also write c(QG) instead of c(QMG
) to denote the covering graph induced by a graph

G.
A Brauer configuration M = (M,M1, µ,O) is said to be reduced if the set M has only nontruncated

vertices. It is connected if the corresponding Brauer quiver is.
A Brauer configuration algebra ΛM (or simply Λ if no confusion arises) is a bound quiver algebra

ΛM = kQM/IM induced by a Brauer quiver QM bounded by an admissible ideal IM = ⟨ρ⟩ generated by
a set of relations ρ of the following types [5, 6]:

(ρ1) Cµ(i)i −Cµ( j)
j if i and j are vertices in the same polygon (Mi, fi) and Cx is a special cycle x-cycle at

the polygon (Mi, fi).
(ρ2) Cµ(i)i a if a is the first arrow of a special cycle Ci associated with a vertex i. In particular, C3

i ∈ IM
if val(i) = 1 and µ(i) = 2.

(ρ3) ab if a, b ∈ Q1 are arrows of different special cycles and ab is an element of the path algebra
induced by QM.
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We let IM denote the minimum set of generators of the admissible ideal IM named the fundamental
set of relations of IM.

IM = {r1, r2, . . . , rιM | ιM ≥ 1 and ri is a relation of type (ρ j), j ∈ {1, 2, 3}}, such that any other

relation r ∈ IM can be written as a sum of the form r =
∑

h,h′∈ΛM

ιM∑
j=1

hr jh′.

It is worth noting that giving ιM = |IM| for any Brauer configuration algebra is a hard problem.
We say that a Brauer configuration algebra is indecomposable (as an algebra) and reduced if it is

induced by a connected and reduced Brauer configuration.

Example 4. As an example the Brauer configuration algebraΛMG
induced by the Brauer configuration

M defined by identities (2.9) and the Brauer quiver QMG
shown in Figure 6 is bounded by an admissible

ideal IMG
. The following are examples of relations contained in IMG

(see Examples 1–3):

1) (αm1
1 )2 − αm2

1 α
m2
2 α

m2
3 , αm2

2 α
m2
3 α

m2
1 − α

m3
1 α

m3
2 , αm3

2 α
m3
1 − α

m4
1 α

m4
2 , αm2

3 α
m2
1 α

m2
2 − α

m4
2 α

m4
1 .

2) αm2
1 α

m2
2 α

m2
3 α

m2
1 , αm3

2 α
m3
1 α

m3
2 , αm4

1 α
m4
2 α

m4
1 , (αm1

1 )3.

3) αm2
1 α

m3
1 , αm1

1 α
m2
1 , αm3

1 α
m4
1 , αm2

2 α
m4
2 , αm2

3 α
m1
1 , αm4

1 α
m2
3 , αm4

2 α
m3
2 , αm3

2 α
m2
2 .

We remind [5] that a multiserial algebra is defined to be a finite dimensional algebra A such that,
for every indecomposable projective left and right A-module P, the corresponding radical rad P is a
sum of uniserial modules (an A- module M is said to be uniserial if it has a unique composition series),

i.e., rad P =
m∑

j=1
V j, where for some integer m and uniserial modules V j, it holds that if i , j, then

Vi ∩ V j is either 0 or a simple A-module.

Remark 3. Green, Schroll, and Sierra proved the following results regarding the structure of a Brauer
configuration algebra ΛM induced by a Brauer configuration M (see [5] Theorem B, Proposition 2.7,
Theorem 3.10, Corollary 3.12. And [29] Theorem 4.9):

(B1) There is a bijective correspondence between the set of indecomposable projective ΛM-modules
and the polygons in M.

(B2) If P is an indecomposable projective ΛM-module corresponding to a polygon V in M1, then rad P
is a sum of r indecomposable uniserial modules, where r is the number of (nontruncated) vertices
of V and where the intersection of any two of the uniserial modules is a simple ΛM-module.

(B3) A Brauer configuration algebra is a multiserial algebra.

(B4) The number of summands in the heart ht(P) = rad P/soc P of an indecomposable projective ΛM-
module P such that rad2 P , 0 equals the number of nontruncated vertices of the polygons in M

corresponding to P counting repetitions.

(B5) Let ΛM be the Brauer configuration algebra induced by a connected Brauer configuration M.
The algebra ΛM has a length grading induced from the path algebra kQM, if and only if, there is
an N ∈ Z>0 such that for each nontruncated vertex m ∈ M val(m)µ(m) = N. In such a case, we
say that the algebra ΛM satisfies the length grading property.
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(B6) Equation (2.15) gives the dimension of a Brauer configuration algebra Λ = kQM/IM induced by
a Brauer configuration M (see (2.12)).

dimk ΛM = 2|M| +
∑
mi∈M

val(mi)(µ(mi)val(mi) − 1) (2.15)

(B7) The dimension of the center Z(ΛM) of a Brauer configuration algebra ΛM induced by a connected
and reduced Brauer configuration M is given by the formula

dimk Z(ΛM) = 1 +
∑
m∈M

µ(m) + |(QM)0| − |M| + #(Loops QM) − |CM|, (2.16)

where CM = {m ∈ M | val(m) = 1, and µ(m) > 1} and the number of vertices |(QM)0| of the
Brauer quiver QM is given by the number of multisets in M1.

Example 5. According to Remark 3 the analysis of the data (known as Brauer analysis) inducing
the Brauer configuration algebra ΛMG

and the Brauer quiver QMG
(see Figure 6) gives the following

information (see Examples 1–4):

(BG
1 ) ΛMG

is biserial. Particularly, if P is an indecomposable projective ΛMG
-module then its radical

rad P is a sum of two indecomposable uniserial modules.

(BG
2 ) ΛMG

does not satisfy the length grading property.

(BG
3 ) The Brauer quiver QMG

is connected and has four vertices, val(m1) = 1, val(m2) = 3, val(m j) = 2,
µ(m1) = 2, and µ(mi) = 1, i ∈ {2, 3, 4}, j ∈ {3, 4}.

(BG
4 ) dimk ΛMG

= 2(4) + 1(2 − 1) + 2(2(1)) + 3(2) = 19.

(BG
5 ) #(Loops QMG

) = 1.

(BG
6 ) dimk Z(ΛMG

) = 1 + 5 + 4 − 4 + 1 − 1 = 6.

2.5. Entropy of a graph

Entropy is a measure of the complexity of a network or graph. Rashevsky introduced the notion of
topological information content, which was generalized and studied by Mowshowitz [12, 13, 19, 30].

If a random discrete variable X takes values in the set {x1, x2, . . . , xn} and
n∑

i=1
p(xi) = 1, where p(xi)

denotes the probability that X takes the value xi, then the Shannon’s entropy H(X) of X is given by the
following expression:

−

n∑
i=1

p(xi) log2(p(xi)). (2.17)

Shannon’s entropy is the most commonly used network complexity measure. However, several
different families of graph-based entropy functions have been considered. For instance, if G = (VG, EG)
is an arbitrary invariant graph, and τ is an equivalence relation defined on the set of vertices VG of the
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graph G, then τ induces a partition {G1, . . . ,Gg} of VG and the resulting graph entropy H(G, τ) is given
by the following identity [19, 30]:

H(G, τ) = −
g∑

i=1

|Gi|

|VG|
log2(

|Gi|

|VG|
). (2.18)

Kulkarni et al. [20] defined the entropy of undirected and unweighed networks in their work regard-
ing information content of note transitions in the music of J.S. Bach as follows:

Hδv(G) =
1

2||G||

∑
v∈VG

δv log2(δv). (2.19)

Another graph entropy is the vertex degree equality-based information measure Hd(G). It is given
by the following identity:

Hd(G) = −
δv∑

i=1

|Nδvi |

|VG|
log2(

|Nδvi |

|VG|
), where |Nδvi | denotes the number of vertices with degree equal to i and

δv = max
v∈VG

δv, δv is the degree of v ∈ VG.

(2.20)

The entropy H(M) of a Brauer configuration M (see 2.12) is given by the following identity:

H(M) = −
∑
α∈M

µ(α)val(α)
v

log2(
µ(α)val(α)
v

), where v =
∑
α∈M

µ(α)val(α). (2.21)

Example 6. The following Table 3 gives an extended Brauer analysis of the Brauer configuration
MG (see Examples 1–5). In this case, we add degree-based entropies and the entropy H(MG) of the
Brauer configuration to the Brauer analysis BG

1 − B
G
6 realized before. We let κ denote the number of

connected components of the covering graph c(QG) = G. Note that |2H(MG)+2.25 − dimk ΛMG
| < 1. This

approximation type will be explored more for Brauer configuration algebras induced by Dynkin and
Euclidean diagrams.

Table 3. Extended Brauer analysis of the Brauer configuration MG induced by the graph G

(see Examples 1–5).

Extended Brauer analysis of the Brauer configuration MG

MG Hδv(G) Hd(G) H(MG) dimk ΛMG
dimk Z(ΛMG

) κ c(QG)
G 1.09436 1.5 1.9749 19 6 1 G

3. Main results

This section provides our main results regarding Dynkin functions based on the data provided by
Brauer configurations and graph entropies.
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3.1. Covering graphs and Dynkin functions induced by Brauer configurations

This section establishes which conditions satisfies a covering graph that is a Dynkin or Euclidean
diagram and defines Dynkin functions based on Brauer configurations.

The following result gives examples of Brauer configurations whose induced covering graphs are
Dynkin diagrams.

Theorem 7. If M1 = {M1,M2, . . . ,Mn} is the collection of all polygons or multisets of a Brauer
configuration M = (M,M1, µ,O) (see Remark 2), Mi ∩ Mi+1 , ∅, for 1 ≤ i ≤ n − 1, and Mi ∩ M j = ∅

for any j , i + 1, then the covering graph or nerve c(QM) induced by the Brauer configuration M is
isomorphic to a Dynkin diagram of type An (see Figure 2).

Proof. If M1 = {M1,M2, . . . ,Mn}, then for each i, 1 ≤ i ≤ n − 1, there exists a vertex yi and a
linearly ordered set of type (2.4) with the form Iyi = Mi < Mi+1, then the covering graph c(QM) is a
path of the form {M1M2,M2M3, . . . ,Mn−1Mn} defined by the sequence of coverings Iyi . We are done.

Remark 4. In this paper, we assume that the Brauer configuration MG = (MG
0 ,M

G
1 , µ,O) induced by a

graph G = (VG, EG) is such that MG
0 = VG, MG

1 = EG, µ(α) = 1 (µ(α) = 2) if val(α) > 1 (val(α) = 1).
The orientation O is defined as in Example 1. That is, if VG = {v1, v2, . . . , vt}, EG = {e1, e2, . . . , en},
and ei1 , ei2 , . . . , eih are edges at vertex v j, {i1, i2, . . . , ih} ⊆ {1, 2, . . . , n}, i1 < i2 < · · · < ih, then the
successor sequence S v j at v j has the form ei1 < ei2 < · · · < eih (S v j = ei1 , if δv j = 1).

Henceforth, we will assume a numbering of the form {1, 2, 3, . . . , n} (left to right and top to bottom)
for vertices and edges of an n-point Dynkin or Euclidean diagram ∆. The orientation O associated
with their Brauer configurations M∆ = (M∆0 = V∆,M∆1 = E∆, µ,O) is given bearing in mind that these
diagrams are graphs.

For example, in the case ∆ = Dn, we have that VDn = {v1, v2, . . . , vn−2, vn−1, vn}, EDn =

{e1, e2, . . . , en−1}, with δv1 = δvn−1 = δvn = 1, δvn−2 = 3, and δv j = 2 for the remaining vertices v j ∈ VDn .
Furthermore, e j = {v j, v j+1}, if 1 ≤ j ≤ n − 2 and en−1 = {vn−2, vn}. The successor sequence at v j is
S v j = e j, if j ∈ {1, n − 1, n}, and the successor sequence at vh is S vh = eh−1 < eh, if 2 ≤ h ≤ n − 3.
Finally the successor sequence at vn−2 is S vn−2 = en−3 < en−2 < en−1.

If ∆ = E6, we assume that VE6 = {v1, v2, v3, v4, v5, v6}, EE6 = {e1, e2, e3, e4, e5}, δvi = 1, if i ∈
{1, 3, 6}, δv4 = 3, δv j = 2 for j ∈ {2, 5}. ei = {i, i + 1}, if i ∈ {1, 3, 4, 5}, e2 = {2, 4}. The successor
sequence at vi is S vi = vi, if i ∈ {1, 3, 6}, S v4 = e2 < e3 < e4, S v2 = e1 < e2, S v5 = e4 < e5.

Similar procedures can be used to construct successor sequences associated with Brauer configu-
rations of the remaining Dynkin and Euclidean diagrams.

The following result gives conditions for graphs isomorphic to their induced covering graphs.

Theorem 8. Let c(QG) be the covering graph of a Brauer configuration MG induced by a graph
G, then c(QG) is isomorphic to G, if and only if, G is a finite disjoint union of hair graphs of type
Cn[(v1, v2, . . . , vn), (s1, s2, . . . , sn)] where Cn is an n-point cycle, n ≥ 3 and si ≥ 1, 1 ≤ i ≤ n.

Proof. Suppose that H is a fixed component of graph G, which is a hair graph of a cycle Cn =

{v1, v2, ..., vn}, with n ≥ 3, then

H = Cn[(v1, . . . , vn); (s1, . . . , sn)].

Thus, the set of vertices VPs j
of each path Ps j has the form VPs j

= {v j, v
j
1, v

j
2, . . . , v

j
s j−1}, j = 1, . . . , n.

Thereby, the set of edges EH of H is the union EH = EH0 ∪ EH1 ∪ · · · ∪ EHn , where
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(i) EH0 = {{vi, vi+1} | i = 1, ..., n with vn+1 = v1} and

(ii) EH j = {{v j, v
j
1}, {v

j
1, v

j
2}, . . . , {v

j
s j−2, v

j
s j−1}}, if s j > 1, and j = 1, . . . , n. EH j = ∅ if s j = 1.

Let us consider the following labeling of edges in H for s j > 1:

ei = {vi, vi+1}, i = 1, . . . , n, with vn+1 = v1.

e j
1 = {v j, v

j
1}, j = 1, . . . , n.

e j
i = {v

j
i−1, v

j
i }, i = 2, · · · , s j − 1, j = 1, . . . , n.

(3.1)

Thereby, the successor sequences defined by vertices of graph H are defined as follows:

S v1 = en < e1,

S vi = ei−1 < ei, i ∈ {2, . . . , n}.

S vi = ei−1 < ei < e j
1, if svi > 1.

S v j
i
= e j

i < e j
i+1, i = 1, . . . , s j − 2.

S v j
s j−1
= e j

s j−1.

(3.2)

By the definition of the covering graph, it holds that c(QH) = Cn[(e1, ..., en); (s1, ..., sn)], where
Cn = {e1, ..., en} is an n-point cycle. Similar arguments can be applied to the remaining components
of graph G, viewed as hair graphs of cycles, to prove that an isomorphism exists between G and its
corresponding covering graph c(QG). In particular, we note that the covering graph c(QCn) of an n-point
cycle Cn is also an n-point cycle whose set of vertices Vc(QCn ) is in bijective correspondence with ECn ,
i.e., c(QCn) = Cn[(e1, e2, . . . , en); (1, 1, . . . , 1)], if ECn = {e1, e2, . . . , en}. Thus, the 3-point cycle C3 is the
minimum graph satisfying the condition posed by the theorem.

Conversely, suppose that G is isomorphic to its covering graph c(QG). Since the isomorphism of
non-connected graphs implies isomorphism between their respective components and vice-versa, then
it is possible to suppose that graphs G and c(QG) are also connected without loss of generality.

The isomorphism between G and its covering graph allows us to conclude that |VG| = |Vc(QG)| = |EG|

and that G contains a unique cycle, say Cn = {v1, ..., vn}. Thus, G is obtained from Cn by attaching a
suitable tree Tvi to each of the vertices vi ∈ Cn.

Suppose now that |VG| = 4 and that G is isomorphic to c(QG), then either G is a 4-point cycle
{v1, v2, v3, v4} or G contains a 3-point cycle C3 = {v1, v2, v3} with ei = {vi, vi+1}, e3 = {v1, v3}. Fur-
thermore, there is an edge ei,4 connecting one of these vertices vi, 1 ≤ i ≤ 3 to v4. We can assume
that ei,4 = {v3, v4}. Thus, G is a hair graph of the form C3[(v1, v2, v3); (1, 1, 2)] which is the minimum
nontrivial hair graph defined by the vertices of the cycle C3.

If |VG| = 5 and G is isomorphic to its covering graph, then either G is a 5-point cycle, G con-
tains a 4-point cycle, or G contains a 3-point cycle. In the first case, G is the trivial hair graph
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C5[(v1, v2, v3, v4, v5); (1, 1, 1, 1, 1)], and in the second case, G contains a cycle C4 = {v1, v2, v3, v4}

with edges ei = {vi, vi+1 | 1 ≤ i ≤ 3} ∪ {v1, v4}. It is assumed that v4 is the only vertex in C4 for
which the degree δv4 = 3, otherwise δvi = 2, 1 ≤ i ≤ 3. In such a case, G is a hair graph of type
[(v1, v2, v3, v4); (1, 1, 1, 2)]. In the third case, we assume that {v1, v2, v3} is a 3-point cycle C3 contained
in G. Therefore, C3 has attached a 5-point forest Fn(5,3), where n(5, 3) = 2 is the number of vertices in
the forest F2 without taking into account the initial vertices of its trees.

The attaching process does not give rise to ramifications in G with a root vertex vi ∈ C3 and two
leaves v j < C3. Otherwise G and its corresponding covering graph would not be isomorphic pro-
vided that such a ramification gives rise to a hair graph of the form C3[(v1, v2, v3); (1, 1, 3)] = c(QG).
Therefore, in the third case, G is a hair graph of one of the following types: C3[(v1, v2, v3); (1, 1, 3)],
C3[(v1, v2, v3); (1, 2, 2)].

Suppose that G is a connected graph isomorphic to its covering graph c(QG) with |VG| = m > 5, then
G contains a j-point cycle C j = {v1, v2, . . . , v j}, 3 ≤ j ≤ m which has attached an m-point forest Fn(m, j).
Each vertex vi ∈ C j has attached a tree Tvi ⊆ Fn(m, j) with |VTvi

| ≥ 1.
According to the previous arguments (cases, m = 3, 4, 5), we note that for each i, 1 ≤ i ≤ j, the

attached tree Tvi ⊆ Fn(m, j) has no ramifications with n ≥ 2 leaves provided that they give rise to (n− 1)-
linear paths in the covering graph. Particularly, the degree δvi ≤ 3 for any vi ∈ C j, then we conclude
that G is a hair graph of type C j[(v1, v2, v3, . . . , v j); (λ1, λ2, . . . , λ j)], where {λ1, λ2, . . . , λ j} is an integer
partition of m into j parts. We are done.

Example 9. Figure 7 shows a hair graph of type G = C4[(v4,1, v3,1, v2,1, v1,1); (4, 3, 2, 1)] described in the
proof of Theorem 8. Note that λ = {4, 3, 2, 1} is a partition of m = 10 = |VG|. The forest Fn(10,4) consists
of trees or paths Tv1,1 = {v1,1}, Tv2,1 = {v2,1, v2,2}, Tv3,1 = {v3,1, v3,2, v3,3}, Tv4,1 = {v4,1, v4,2, v4,3, v4,4}.

v1,1 v2,1 v2,2

v4,1 v3,1 v3,2 v3,3

v4,2

v4,3

v4,4

Figure 7. Hair graph G of type C4[(v4,1, v3,1, v2,1, v1,1); (4, 3, 2, 1)].

Remark 4 allows us to prove the following result regarding Dynkin functions and their relationships
with Brauer configuration algebras.
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Theorem 10. The sequences {5(n − 1) | n ≥ 3}, {5n | n ≥ 3}, {5(m − 1) | m ≥ 4}, and the set
{25, 30, 35, 20, 15} give the values of the Dynkin function defined by map Dι : ∆ → ι∆, which assigns
each Dynkin diagram ∆ ∈ {An,Bn,Cn,Dm,E j,F4,G2 | n ≥ 3,m ≥ 4, 6 ≤ j ≤ 8} the size ι∆ of the
fundamental set of relations I∆.

Proof. Each Dynkin diagram ∆ ∈ {An,Bn,Cn,Dn,E6,E7,E8,F4,G2} is a graph which induces a
Brauer quiver QM∆ taking into account conditions given in Remark 4. Thus, vertices of the induced
Brauer configurations are nontruncated. Therefore, there is a bijective correspondence between edges
in E∆ and vertices in the Brauer quiver QM∆ whose arrows (denoted αvi

i j
, where vi ∈ V∆, i j is a suitable

index, and for some ei, e j ∈ E∆, it holds that s(αvi
i j

) = ei, t(αvi
i j

) = e j) are given by inequalities of type
ei < e j in a suitable successor sequence as defined in Remark 4.

Brauer configuration algebras ΛMΛ induced by Dynkin diagrams are bounded path algebras k∆/I∆,
where I∆ is an appropriate admissible ideal generated by relations of the following forms:

(I∆0) α
vi1
i1
α

vi1
i1
α

vi1
i1
= (α

vi1
i1

)3, if δvi = 1.

(I∆1) (αvi
r )2 − α

v j

1 α
v j

2 or (αvi
r )2 − α

v j

2 α
v j

1 , if δvi = 1, δv j = 2, and {vi, v j} ∈ E∆.

(I∆2) α
vi
r α

vi
s − α

v j

r′α
v j

s′ , r , s, r′ , s′, r, s ∈ {1, 2}, if δvi = δv j = 2, and {vi, v j} ∈ E∆.

(I∆3) (αvi
1 )2 −α

v j

i1
α

v j

i2
α

v j

i3
, indices is are pairwise different s ∈ {1, 2, 3}, if δvi = 1, δv j = 3, and {vi, v j} ∈ E∆.

(I∆4) α
vi
h1
αvi

h2
− α

v j

i1
α

v j

i2
α

v j

i3
if h1 , h2, h j ∈ {1, 2}, indices is are pairwise different, s ∈ {1, 2, 3}, δvi = 2,

δv j = 3, and {vi, v j} ∈ E∆.

(I∆5) α
vi
h1
αvi

h2
αvi

h3
− α

v j

i1
α

v j

i2
α

v j

i3
if indices is, hs are pairwise different, s ∈ {1, 2, 3}, δvi = δv j = 3, and

{vi, v j} ∈ E∆.

(I∆6) Cvi f , if f is the first arrow of a special vi-cycle Cvi , at a given edge em, and δvi > 1.

(I∆7) α
vi
h1
α

v j

h2
, if i , j.

(ι∆0) There are |{vi ∈ V∆ | δvi = 1}| relations of type (I∆0) in I∆.

(ι∆1) There are ||E∆|| relations of type (I∆h), 1 ≤ h ≤ 5 in I∆.

(ι∆2) There are 2||E∆|| relations of type (I∆6 ∪ I∆0) in I∆.

(ι∆3) Since V∆ = {v1, v2, . . . ,V|∆|}, then for each i ≥ 1 fixed there is a unique j > i, such that
αvi

m1α
v j
m2 , α

v j
m2α

vi
m1 ∈ I∆, m1 , m2, 1 ≤ m1,m2 ≤ 3. Thus, there are 2||E∆|| relations of type (I∆7)

in I∆.

Thus the following identities hold:

ιAn = 5(n − 1), n ≥ 3.
ιBn = ιCn = 5n, n ≥ 3.
ιDn = 5(n − 1), n ≥ 4.
ιE6 = 25, ιE7 = 30, ιE8 = 35.
ιF4 = 20.
ιG2 = 15.

(3.3)

Electronic Research Archive Volume 32, Issue 10, 5752–5782.



5771

Figures 8 and 9 show Brauer quivers QM∆ for each Dynkin diagram ∆. We are done.

QMAn
= e1

α
v2
1 //

α
v1
1

LL e2
α

v3
1 //

α
v2
2

aa e3
α

v4
1 //

α
v3
2

aa e4

α
v4
2

aa . . . en−2
α

vn−1
1 // en−1

αvn
1

RR

α
vn−1
2

cc

QMBn
= e1

α
v2
1 //

α
v1
1

LL e2
α

v3
1 //

α
v2
2

aa e3
α

v4
1 //

α
v3
2

aa e3

α
v4
2

aa . . . en−3
α

vn−1
1 // en−2

α
vn−1
2 // en−1

αvn
2

cc

α
vn−1
3

[[

αvn
1

{{

QMDn
= e1

α
v2
1 //

α
v1
1

LL e2
α

v3
1 //

α
v2
2

aa e3
α

v4
1 //

α
v3
2

aa e3

α
v4
2

aa . . . en−3
α

vn−2
1 // en−2

α
vn−2
2 //

α
vn−1
1

RR en−1

α
vn−2
3

[[

αvn
1

RR

QME6
= e1

α
v2
1 //

α
v1
1

LL e2
α

v4
1 //

α
v2
2

aa e3
α

v4
2 //

α
v3
1

LL e4
α

v5
1 //

α
v4
3

YY e5

α
v6
1

kk

α
v5
2

aa

QME7
= e1

α
v2
1 //

α
v1
1

LL e2
α

v4
1 //

α
v2
2

aa e3
α

v4
2 //

α
v3
1

LL e4
α

v5
1 //

α
v4
3

YY e5

α
v5
2

aa
α

v6
1 // e6

α
v6
2

bb

α
v7
1

kk

QME8
= e1

α
v2
1 //

α
v1
1

LL e2
α

v4
1 //

α
v2
2

aa e3
α

v4
2 //

α
v3
1

LL e4
α

v5
1 //

α
v4
3

YY e5

α
v5
2

aa
α

v6
1 // e6

α
v6
2

bb
α

v7
1 // e7

α
v7
2

cc

α
v8
1

kk

Figure 8. Brauer quivers QM∆ induced by Dynkin diagrams ∆.
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QMF4
= e1

α
v2
1 //

α
v1
1

LL e2
α

v2
2 //

α
v3
1

��
e3

α
v3
2 //

α
v2
3

��
e4

α
v3
3

WW

QMG2
= e1

α
v1
1 //

α
v2
1

AAe2
α

v1
2 //

α
v2
2

@@e3

α
v1
3

��

α
v2
3

WW

Figure 9. Brauer quivers QMF4
and QMG2

induced by Dynkin diagrams F4 and G2 respec-
tively.

The following results are consequences of Remarks 3 and 4.

Corollary 1. For n ≥ 3, the sequence An gives the values of the Dynkin function defined by the map c,
which assigns each Dynkin diagram ∆ its covering graph c(Q∆).

Proof. According to Remark 4, it holds that for n ≥ 3, c(∆) = An−h, where h = 0, if ∆ ∈ {Bn,Cn};
h = 1, if ∆ ∈ {An,Dn}. c(Es) = As−1, if s ∈ {6, 7, 8}. c(F4) = A4, and c(G2) = A3. We are done.

The following result gives values of Dynkin functions defined by dimensions of Brauer configura-
tion algebras.

Corollary 2. The Dynkin functions dim and dim Z, which assign the dimensions dimk Λ∆ and
dimk Z(Λ∆) to each Dynkin diagram, take the following values

1) dimk ΛAn = 4n − 4, dimk Z(ΛAn) = n + 2.

2) dimk ΛBn = dimk ΛCn = 4n + 3, dimk Z(ΛBn) = dimk Z(ΛCn) = n + 2.

3) dimk ΛDn = 4n − 1, dimk Z(ΛDn) = n + 3.

4) dimk ΛE6 = 23, dimk Z(ΛE6) = 9.

5) dimk ΛE7 = 27, dimk Z(ΛE7) = 10.

6) dimk ΛE8 = 31, dimk Z(ΛE7) = 11.

7) dimk ΛF4 = 22, dimk Z(ΛF4) = 7.

8) dimk ΛG2 = 18, dimk Z(ΛG2) = 4.

Proof. Given a Dynkin diagram ∆, we note that the degree δvi of each vertex vi ∈ V∆ gives its
valency as vertex of the corresponding Brauer configuration M∆ in the following form:
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1) If ∆ = An then δv1 = δvn = 1 and δvi = 2, for the remaining vertices vi ∈ VAn .

2) If ∆ = Bn or ∆ = Cn then δv1 = 1, δvn = 2, δvn−1 = 3 and δvi = 2, for the remaining vertices vi ∈ VBn

or vi ∈ VCn .

3) If ∆ = Dn then δv1 = δvn−1 = δvn = 1, δvn = 2, for the remaining vertices vi ∈ VDn .

4) If ∆ = Es then δv1 = δv3 = δv|Es |
= 1, δv4 = 3, and δvi = 2 for the remaining vertices vi ∈ VEs ,

s ∈ {6, 7, 8}.

5) If ∆ = F4 then δv1 = δv4 = 1, δv2 = δv3 = 2.

6) If ∆ = G2 then δv1 = δv2 = 3.

Since for each Dynkin diagram ∆, it holds that the number of edges ||E∆|| gives the number of
polygons in the Brauer configuration M∆ and the loops in the induced Brauer quiver QM∆ are given by
vertices vi with δvi = 1. We are done.

3.2. Graph entropies and their use to define Dynkin functions

This section compares the entropies of different graph families with the entropy defined by a Brauer
configuration (see (2.21)) and uses them to construct Dynkin functions.

The following result establishes relationships between Brauer configuration algebras that satisfy the
length grading property (see Remark [5]) and graph entropy.

Theorem 11. If the Brauer configuration M = (M,M1, µ,O) induces a Brauer configuration algebra
ΛM which satisfies the length grading property then H(M) ≤ log2 |M|, where H(M) is the entropy
defined by the Brauer configuration M.

Proof. We note that by definition there exists a positive integer N such that val(m)µ(m) = N for any
m ∈ M, provided that vertices in Γ0 are nontruncated. Therefore, H(M) = −

∑
m∈M

val(m)µ(m)
N |M| log2

val(m)µ(m)
N|M| =

−
∑

m∈M

1
|M| log2

1
|M| ≤ log2

∑
m∈M

|M|
|M| = log2 |M|.

For the next results, we assume the notation H(G1), H(G2), and H(G3) for entropies of type Hδv(G),
Hd(G), and H(M), respectively (see identities 2.19, 2.20, and 2.21).

Lemma 1. If G is a regular finite connected graph, then H(G2) = 0.

Proof. If G is an r-regular finite connected graph, then |Nδvr | = |VG|. □

Theorem 12. If ∆ is a Dynkin or Euclidean diagram then H(∆ j) < H(Ẽ3
8) < 3.2, with j ∈ {1, 2}. In

particular, the following identities hold:

Lim
n→∞

H(A1
n) = Lim

n→∞
H(B1

n) = Lim
n→∞

H(C1
n) = Lim

n→∞
H(D1

n) = Lim
n→∞

H(Ã1
n) = Lim

n→∞
H(D̃1

n) = 1. (3.4)

Furthermore,

Lim
n→∞

H(A2
n) = Lim

n→∞
H(B2

n) = Lim
n→∞

H(C2
n) = Lim

n→∞
H(D2

n) = Lim
n→∞

H(D̃2
n) = 0. (3.5)
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Lim
n→∞

H(A3
n) = Lim

n→∞
H(B3

n) = Lim
n→∞

H(C3
n) = Lim

n→∞
H(D̃3

n) = ∞. (3.6)

Lim
n→∞

H(A3
n) − H(D3

n) = Lim
n→∞

H(A3
n) − H(B3

n) = Lim
n→∞

H(A3
n) − H(C3

n) =

Lim
n→∞

H(B3
n) − H(D3

n) = Lim
n→∞

H(Ã3
n) − H(D̃3

n) = Lim
n→∞

H(Ã3
n) − H(A3

n) = 0.
(3.7)

Proof. We note that 2.5 ≤ H(X j) < 3.2 if X j ∈ {E j, Ẽ j | 6 ≤ j ≤ 8}. The result follows from the
following identities and inequalities:

H(A1
n) = 1 −

1
n − 1

.

H(B1
n) = H(C1

n) =
n − 2

n
+

3 log2(3)
2n

.

H(D1
n) =

n − 4
n − 1

+
3

n − 1
log2(3)

H(A2
n) = log2(n) −

n − 2
n

log2(n − 2) −
2
n
.

H(B2
n) = H(C2

n) =
2
n

log2(n) −
n − 2

n
log2(

n − 2
n

).

H(D2
n) = −[

3
n

log2(
3
n

) +
n − 4

n
log2(

n − 4
n

) +
1
n

log2(
1
n

)].

(3.8)

H(A3
n) = log2(n).

H(B3
n) = H(C3

n) = −[
2n − 2
2n + 1

log2(2) +
3

2n + 1
log2(3)] + log2(2n + 1).

H(D3
n) = −[

2n − 2
2n + 1

log2(2) +
3

2n + 1
log2(3)] + log2(2n + 1).

H(E1
j) ≤ H(E2

j) ≤ H(E3
j) ≤ H(E3

8) ≤ 2.98424.

(3.9)

Furthermore,

H(Ã1
n) = 1.

H(D̃1
n) =

1
2(n + 1)

[6 log2(3) + 2(n − 4)].

H(Ã2
n) = 0.

H(D̃2
n) = −[

4
n + 2

+
6

n + 2
log2(

2
n + 2

) +
n − 4
n + 2

log2(
n − 4
n + 2

)].

H(Ã3
n) = log2(n + 1).

H(D̃3
n) = −[

2n
2n + 6

log2(
2

2n + 6
) +

6
2n + 6

log2(
3

2n + 6
)].

H(Ẽ1
j) ≤ H(E2

j) ≤ H(Ẽ3
j) ≤ H(Ẽ3

8) ≤ 3.15558.

(3.10)
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The following result proves that entropies Hδv = H(∆1), Hd(∆) = H(∆2), and H(M∆) = H(∆3)
define Dynkin functions.

Corollary 3. Table 4 gives the values of the Dynkin functions defined by maps Hi, i ∈ {1, 2, 3} which
assign to each Dynkin diagram ∆ the entropy H(∆i).

Table 4. Dynkin functions defined by functions Hi, i ∈ {1, 2, 3}.

Dynkin diagrams Extended Brauer analysis

Hδv(∆) Hd(∆) H(M∆)

An 1 − 1
n−1 log2(n) − n−2

n log2(n − 2) − 2
n log2(n)

Bn
n−2

n +
3 log2(3)

2n
2
n log2(n) − n−2

n log2( n−2
n ) −[2n−2

2n+1 log2(2) + 3
2n+1 log2(3)] + log2(2n + 1)

Dn
1

2(n−1) [3 log2(3) + 2(n − 4)] −[3
n log2( 3

n ) + n−4
n log2( n−4

n ) + 1
n log2(1

n )] −[2n−2
2n+1 log2(2) + 3

2n+1 log2(3)] + log2(2n + 1)

E6 0.875489 1.45915 2.56545

E7 0.896241 1.44882 2.7899

E8 0.911063 1.40564 2.98423

F4 1.18872 1 1.56128

G2 1.68496 0 1

Proof. The sequences H(∆i) with ∆ ∈ {An,Bn,Cn,Dn} shown in Table 4 are given in the proof of
Theorem 12 (see identities (3.8) and (3.9)) since straight computations give rise to the remaining values
of H(∆i). We are done.

The following theorem proves that Euclidean diagrams give rise to similar results as those presented
for Dynkin diagrams.

Theorem 13. Let Λ∆̃ be the Brauer configuration algebra induced by a Euclidean diagram which is
built according to Remark 4, then the following results hold:

(E1) dimk ΛÃn
= 4(n + 1), dimk ΛD̃n

= 4n + 10, dimk ΛẼi
= 4i + 3, 6 ≤ i ≤ 8.

(E2) dimk Z(ΛÃn
) = n + 2, dimk Z(ΛD̃n

) = n + 6, dimk Z(ΛẼi
) = i + 4, 6 ≤ i ≤ 8.

(E3) If c(Q∆̃) denotes the covering graph of a Euclidean diagram, then c(QÃi
) = Ãi, i ≥ 1; c(QD̃ j

) =
A j+1, j ≥ 4; c(QẼ6

) = E6, and c(QẼi
) = Ai, i ∈ {7, 8}.

Proof.

(E1), (E2) According to the numbering defined in Remark 4, it holds that

|{vi ∈ V∆ | δvi = val(vi) = 1}| = #Loops(Q∆) =


0, if ∆ = Ãn,

4, if ∆ = D̃n,

3, if ∆ ∈ {Ẽs | s = 6, 7, 8}.

|{vi ∈ V∆ | δvi = val(vi) = 3}| =


0, if ∆ = Ãn,

2, if ∆ = D̃n,

1, if ∆ ∈ {Ẽs | s = 6, 7, 8}.
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Moreover, for any vertex vi ∈ V∆̃ and any Euclidean diagram, it holds that if δvi , 1 and δvi , 3,
then δvi = 2. Thus,

∑
vi∈V∆

µ(vi) =


n + 1, if ∆ = Ãn,

n + 4, if ∆ = D̃n,

|Es| + 3, if ∆ ∈ {Ẽs | s = 6, 7, 8}.

dimk Λ∆ and dimk Z(Λ∆) can be easily obtained by applying these data to the corresponding for-
mulas (2.15) and (2.16) in Remark 3).

(E3) The successor sequence S vi induced by a vertex vi ∈ V∆, where ∆ is a fixed Euclidean diagram ∆
has one of the following forms:

e j, if vi ∈ ei, for some edge ei ∈ E∆ and δvi = 1.
e j−1 < e j, if vi ∈ e j−1 ∩ e j for some edges ei, e j ∈ E∆, and δvi = 2.
e j1 < e j2 < e j3 , if vi ∈ e j1 ∩ e j2 ∩ e j3 , for some edges e j1 , e j2 , e j3 ∈ E∆, and δvi = 3,

(3.11)

then, it holds that c(QÃn
) = Ãn as a consequence of Theorem 8. c(QD̃n

) arises from successor
sequences (3.12) induced by D̃n. Bearing in mind the numbering described in Remark 4,

S v1 = e1, S v3 = e2, S vn−1 = en−1, S vn = en.

S v2 = e1 < e2 < e3, S vn = en−1 < en < en+1.

S vi = ei < ei+1, for 4 ≤ i ≤ n − 1.
(3.12)

Therefore, the covering sequence e1 < e2 < e3 < e4 < e5 < . . . en−3 < en−1 < en < en+1 induces the
Dynkin diagram An+1.

Since similar constructions can be adapted to construct the covering graphs c(QẼs
) induced by Eu-

clidean diagrams Ẽs, s ∈ {6, 7, 8} (Figure 10 shows Brauer quivers Q∆̃ induced by Euclidean diagrams).
We are done.
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Figure 10. Brauer quivers QM
∆̃

induced by Euclidean diagrams ∆̃.
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The following result establishes a straight connection between algebras and entropies induced by
Brauer configurations.

Theorem 14. For Brauer configuration algebras Λ∆ induced by diagrams ∆ ∈ {An,Bn,Cn,Dn, Ãn, D̃n},
it holds that

d∆ = Lim
n→∞

log2(dimk Λ∆) − H(∆3) = 2. (3.13)

Proof.

1) log2(dimk ΛAn) = log2(4n − 4) and H(A3
n) = log2(n), then dAn = Lim

n→∞
log2( 4n−4

n ) = 2.

2) log2(dimk ΛBn) = log2(4n + 3) and H(B3
n) = −[ 2n−2

2n+1 log2( 2
2n+1 ) + 3

2n+1 log2( 3
2n+1 )] = −[2n−2

2n+1 log2(2) +
3

2n+1 log2(3)] + log2(2n + 1), then dBn = Lim
n→∞

log2( 4n+3
2n+1 ) + 1 = 2.

3) log2(dimk ΛDn) = log2(4n − 1) and H(D3
n) = −[ 2n−2

2n+1 log2(2) + 3
2n+1 log2(3)] + log2(2n + 1), then

dDn = Lim
n→∞

log2(4n−1
2n+1 ) + 1 = 2.

4) log2(dimk ΛÃn
) = log2(4n) and H(Ã3

n) = log2(n + 1), then dÃn
= Lim

n→∞
log2( 4n

n+1 ) = 2.

5) log2(dimk ΛD̃n
) = log2(4n+ 10) and H(D̃3

n) = −[ 2n
2n+6 log2( 2

2n+6 )+ 6
2n+6 log2( 3

2n+6 )], then dD̃n
= Lim

n→∞
−

2n
2n+6 log2( 2

2n+6 ) + log2(4n + 10) = 2.

Since computations for Bn are the same for Cn, we are done. Similar results can be found for the
remaining Dynkin and Euclidean diagrams (see Tables 7 and 4).

4. Discussion

Tables 4–7 make extended Brauer analysis to Dynkin and Euclidean diagrams. They show the
Dynkin functions c (Corollary 1), dim, dim Z (Corollary 2), Dι (Theorem 10), and Hi, i ∈ {1, 2, 3}
(Corollary 3) defined in this paper.

As a consequence of Theorems 8, 12, and Corollary 2, we note that the covering graph induced by
a Dynkin diagram ∆ is isomorphic to a suitable Dynkin diagram A j, and that since κ = 1, the induced
Brauer configuration algebras are indecomposable as algebras. Similar conclusions are obtained for
covering graphs induced by Euclidean diagrams (see Theorem 8). Identities (4.2) give the asymptotic
behavior of the entropy values Hδv(∆) = H(∆1), Hd(∆) = H(∆2), and H(M∆) = H(∆3) for Dynkin and
Euclidean diagrams ∆ and ∆̃. Note that,

dimk ΛMΨ ∼ 2H(MΨ)+2, for any Dynkin or Euclidean diagram Ψ ∈ {∆, ∆̃}. (4.1)

Identities (4.2) show the asymptotic behavior of entropies H(∆ j), for Dynkin and Euclidean dia-
grams.
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Lim
n→∞

Hδv(An) = Lim
n→∞

Hδv(Dn) = 1.

Lim
n→∞

Hd(Ãn) = Lim
n→∞

Hd(D̃n) = 0.

Lim
n→∞

Hd(An) = Lim
n→∞

Hd(Dn) = 0.

Lim
n→∞

H(MAn) = Lim
n→∞

H(MDn) = ∞.

Lim
n→∞

H(MÃn
) = Lim

n→∞
H(MD̃n

) = ∞.

(4.2)

5. Concluding remarks and future work

Since its introduction, Brauer analysis has been a helpful tool for investigating different fields of
mathematics and science. To date, such analysis has been focused on using the structure of the inde-
composable projective modules and the dimensions of the algebra and its center without paying atten-
tion to the entropy of the graphs involved in the procedures, i.e., in the topological content information
of the graphs involved in the procedures.

This paper adds two new tools to Brauer analysis. On the one hand, it introduces the entropy of
a Brauer configuration and compares its values with degree-based entropies of Dynkin and Euclidean
diagrams. Such analysis gives rise to Dynkin functions associated with Brauer configuration algebras
induced by Dynkin diagrams. The introduced covering graphs of a Brauer configuration is another way
to define Dynkin functions.

The following are interesting problems to be addressed in the future:

1) Our aim in the future is to establish additional properties of covering graphs and determine the
bounds of the entropy of the Brauer configurations induced by significant family of graphs or net-
works distinct from Dynkin and Euclidean diagrams (e.g. Butterfly, star, and pancake networks).

2) To define new Dynkin functions based on Brauer configurations associated with Dynkin or Eu-
clidean diagrams.

3) To give the size ιG of the fundamental set of relations induced by any graph G in a significant class
of graphs.

4) To study the behavior of the entropy H(c3(QM)) of the covering graph induced by a Brauer config-
uration M. Establishing for which of its values it holds that 2H(G3) = dimk ΛM, where ΛM denotes
the induced Brauer configuration algebra.
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Table 5. Extended Brauer analysis of Dynkin diagrams.

Dynkin diagrams Extended Brauer analysis
dimk ΛM∆ dimk Z(ΛM∆) ι∆ κ c(Q∆)

An 4n − 4 n + 2 5(n − 1) 1 An−1

Bn 4n + 3 n + 2 5n 1 An

Dn 4n − 1 n + 3 5(n − 1) 1 An−1

E6 23 9 25 1 A5

E7 27 10 30 1 A6

E8 31 11 35 1 A7

F4 22 7 20 1 A4

G2 18 4 15 1 A3

Table 6. Extended Brauer analysis of Euclidean diagrams.

Euclidean diagrams Extended Brauer analysis
dimk ΛM

∆̃
dimk Z(ΛM

∆̃
) κ c(Q∆̃)

Ãn 4n + 4 n + 2 1 An

D̃n 4n + 10 n + 6 1 An+1

Ẽ6 27 10 1 E6

Ẽ7 31 11 1 A7

Ẽ8 35 12 1 A8

Table 7. Graph entropies given by an extended Brauer analysis of Euclidean diagrams.
Euclidean diagrams Extended Brauer analysis

Hδv(∆̃) Hd(∆̃) H(M∆̃)
Ãn 1 0 log2(n + 1)
D̃n

1
2(n+1) [6 log2(3) + 2(n − 4)] −[ 4

n+2 +
6

n+2 log2( 2
n+2 ) + n−4

n+2 log2( n−4
n+2 )] −[ 2n

2n+6 log2( 2
2n+6 ) + 6

2n+6 log2( 3
2n+6 )]

Ẽ6 0.896241 1.44882 2.7899
Ẽ7 0.911063 1.40564 2.95237
Ẽ8 0.92218 1.35164 3.15557
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