Calculations under conjugation operation | ||||
4 |
||||
Let p be a fixed odd prime. The Bockstein free part of the mod p Steenrod algebra, Ap, can be defined as the quotient of the mod p reduction of the Leibniz Hopf algebra, Fp. We study the Hopf algebra epimorphism π:Fp→Ap to investigate the canonical Hopf algebra conjugation in Ap together with the conjugation operation in Fp. We also give a result about conjugation invariants in the mod 2 dual Leibniz Hopf algebra using its multiplicative algebra structure.
Citation: Neşet Deniz Turgay. On the mod p Steenrod algebra and the Leibniz-Hopf algebra[J]. Electronic Research Archive, 2020, 28(2): 951-959. doi: 10.3934/era.2020050
[1] | Neşet Deniz Turgay . On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28(2): 951-959. doi: 10.3934/era.2020050 |
[2] | Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214 |
[3] | Quanguo Chen, Yong Deng . Hopf algebra structures on generalized quaternion algebras. Electronic Research Archive, 2024, 32(5): 3334-3362. doi: 10.3934/era.2024154 |
[4] | Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063 |
[5] | Yanni Yang, Quanguo Chen . The criteria for automorphisms on finite-dimensional algebras. Electronic Research Archive, 2024, 32(11): 6140-6152. doi: 10.3934/era.2024285 |
[6] | Dong Su, Shilin Yang . Representation rings of extensions of Hopf algebra of Kac-Paljutkin type. Electronic Research Archive, 2024, 32(9): 5201-5230. doi: 10.3934/era.2024240 |
[7] | Yaguo Guo, Shilin Yang . Projective class rings of the category of Yetter-Drinfeld modules over the $ 2 $-rank Taft algebra. Electronic Research Archive, 2023, 31(8): 5006-5024. doi: 10.3934/era.2023256 |
[8] | Doston Jumaniyozov, Ivan Kaygorodov, Abror Khudoyberdiyev . The algebraic classification of nilpotent commutative algebras. Electronic Research Archive, 2021, 29(6): 3909-3993. doi: 10.3934/era.2021068 |
[9] | Ming Ding, Zhiqi Chen, Jifu Li . The properties on F-manifold color algebras and pre-F-manifold color algebras. Electronic Research Archive, 2025, 33(1): 87-101. doi: 10.3934/era.2025005 |
[10] | Liqian Bai, Xueqing Chen, Ming Ding, Fan Xu . A generalized quantum cluster algebra of Kronecker type. Electronic Research Archive, 2024, 32(1): 670-685. doi: 10.3934/era.2024032 |
Let p be a fixed odd prime. The Bockstein free part of the mod p Steenrod algebra, Ap, can be defined as the quotient of the mod p reduction of the Leibniz Hopf algebra, Fp. We study the Hopf algebra epimorphism π:Fp→Ap to investigate the canonical Hopf algebra conjugation in Ap together with the conjugation operation in Fp. We also give a result about conjugation invariants in the mod 2 dual Leibniz Hopf algebra using its multiplicative algebra structure.
From a topological view, the mod
The Leibniz-Hopf algebra
Δ(Sn)=∑im+jk=nSim⊗Sjk. |
We can give
The conjugation is a useful tool for studying many problems in the Steenrod algebra. Conjugation map in
There are many descriptions of bases for the Steenrod algebra in literature. There are bases developed by Milnor [28], Wall [47], D. Arnon [2], R. Wood [48], in the Steenrod algebra. One of the traditional ones is the admissible basis. In [32], Serre showed that the set of admissible monomials forms a vector space basis for the Steenrod algebra. After that many researches have investigated relationships between the admissible basis and the other bases. Milnor [28,Lemma 8] showed that the admissible basis is related to the Milnor basis. Monks [30,Section 3] expressed an admissible monomial in the Milnor basis using the Milnor product formula. In 1998, Carlisle [6] et al proved a conjecture of Monks [30] on the relation between the admissible basis and the Milnor basis of the mod 2 Steenrod algebra. In the same article the results are also generalised to odd prime cases. In [2], Arnon expressed admissible monomials in
The Steenrod algebra has many relations among its elements. The complexity in the structure of the Steenrod algebra makes calculations without the aid computer programs time consuming. Examples of such computer-based aid are Monk's and Kaji's Maple packages [23,31] for
Calculations under conjugation operation | ||||
4 |
||||
Now we give the organization of this work with the motivations. The problem of explicitly computing conjugates of monomials in terms of the admissible monomials in the Steenrod algebra is an open problem. Motivated by this in section 3, we investigate if we can have a better understanding of conjugation operation in
In section 4, we consider the decomposition of the conjugation operation in the mod 2 dual Leibniz Hopf algebra,
Steenrod operations,
Pi:Hq(X;Zp)⟶Hq+2i(p−1)(X;Zp) |
for all integers
PaPb=[ap]∑j=0(−1)a+j((p−1)(b−j)−1a−pj)Pa+b−jPj |
if
PaβPb=[ap]∑j=0(−1)a+j((p−1)(b−j)a−pj)βPa+b−jPj+[a−1p]∑j=0(−1)a+j−1((p−1)(b−j)−1a−pj−1)Pa+b−jβPj |
if
Remark 2.1.
Definition 2.1. The mod
In
βε0Pr1βε1⋯Prkβεk |
where
I=(ε0,r1,ε1,r2,…,rk,εk,0,0,…). |
d(PI)=d(I)=k∑i=0εi+2(p−1)k∑i=1ri. |
Remark 2.2. If
d(I)>1+p+p2+⋯+pk+ε0+⋯+εk=pk+1−1p−1+k∑i=0εi, |
so that finding an admissible basis for a certain degree is a finite problem which gives rise to a computer algorithm.
In [28], Milnor has showed that
ψ(Pi)=i∑k=0Pk⊗Pi−k, and ψ(β)=β⊗1+1⊗β. |
As
χ(P0)=1, and r∑i=0Piχ(Pr−i)=0 r>0. |
Example 2.1. If
P0χ(P1)+P1χ(P0)=0. | (1) |
By Eq. (1) it is easily seen that:
χ(P1)=2P1. |
Moreover we can generalize the above equality to all primes as follow.
Proposition 2.3.
We also have Davis's useful conjugation formula as follows.
Theorem 2.4 ([13,Theorem 1]).
χ(Ppn−1+⋯+p+1)=(−1)nPpn−1⋯PpP1. | (2) |
Lastly we give
The algebra
χ′(Si1,…,ik)=∑(−1)mSb1,…,bm | (3) |
where the summation is over all refinements
χ′(S2,3)=S3,2−S3,1,1−S1,2,2+S1,2,1,1−S2,1,2+S2,1,1,1+S1,1,1,2−S1,1,1,1,1. |
We now interested in the graded Hopf algebra homomorphism
χ∘π=π∘χ′. | (4) |
Let us work on mod 3 and use the above equation for computing
Example 3.1. Applying (4) with the OLP
χ(π(S4))=π(χ′(S4)). | (5) |
Since
χ′(S4)=−S4+S3,1+S2,2−S1,2,1+S1,3−S2,1,1−S1,1,2+S1,1,1,1, |
we have
π(χ′(S4))=−P4+P3,1+P2,2−P1,2,1+P1,3−P2,1,1−P1,1,2+P1,1,1,1. |
The Adem relations gives us that
P2,2=P1,2,1=P2,1,1=P1,1,2=P1,1,1,1=0, |
and
Example 3.2. Applying (4) with the HLP
χ(π(S3,1))=π(χ′(S3,1)). | (6) |
Since
χ′(S3,1)=S1,3−S1,2,1−S1,1,2+S1,1,1,1, |
it follows that
π(χ′(S3,1))=P1,3−P1,2,1+P1,1,1,1. |
By the Adem relations, we have:
Using (4) we now reprove a property of the conjugation operation in
χ(Ppn)=π(∑(−1)mSj1,…,jm), | (7) |
where the summation is over all refinements
χ(Ppn)=−Ppn+K, | (8) |
where
Recall from [42,Section 2] that, conjugation operation in
C(Sb1,…,bp)=∑Sl1,…,ln | (9) |
summed over all coarsening
We now reprove the following result using combinatorics
Theorem 4.1.
The above equality is already given in [42,Section 2]. We give a combinatoric proof for this identity. For this we first give the following.
Proposition 4.2. Let
∑C(Sr1,…,rm)=Sb1,…,bp, | (10) |
where the summation is over all coarsenings
Proof. Let
On the other hand, each coarsening is obtained by turning some of the
Hence, in case
Proof of Theorem 4.1. Applying the function
In recent literature the dual Leiniz-Hopf algebra is also called the overlapping shuffle algebra [18]. Let
Theorem 4.3. Let
Proof. We know
ⅰ. If
ⅱ. If
ⅲ. If
ⅳ. If
By ⅰ, ⅱ, ⅲ and ⅳ
I would like to thank anonymous reviewers for their valuable comments and helpful suggestions for improvement of this work.
[1] |
J. F. Adams, Lectures on generalised cohomology, in Category Theory, Homology Theory and their Applications, III, Lecture Notes in Mathematics, 99, Springer, Berlin, 1969, 1–138. doi: 10.1007/BFb0081960
![]() |
[2] |
Monomial bases in the Steenrod algebra. J. Pure Appl. Algebra (1994) 96: 215-223. ![]() |
[3] | M. G. Barratt and H. R. Miller, On the anti-automorphism of the Steenrod algebra, in Symposium on Algebraic Topology in honor of José Adem (Oaxtepec, 1981), Contemp. Math., 12, Amer. Math. Soc., Providence, RI, 1982, 47–52. |
[4] |
D. Bulacu, S. Caenepeel, F. Panaite and F. Van Oystaeyen, Quasi-Hopf Algebras, Encyclopedia of Mathematics and its Applications, 171, Cambridge University Press, Cambridge, 2019. doi: 10.1017/9781108582780
![]() |
[5] |
On the Adem relations. Topology (1982) 21: 329-332. ![]() |
[6] |
The intersection of the admissible basis and the Milnor basis of the Steenrod algebra. J. Pure Appl. Algebra (1998) 128: 1-10. ![]() |
[7] |
The Steenrod algebra and other copolynomial Hopf algebras. Bull. London Math. Soc. (2000) 32: 609-614. ![]() |
[8] |
Some Hopf algebras of words. Glasg. Math. J. (2006) 48: 575-582. ![]() |
[9] |
Conjugation invariants in the mod 2 dual Leibniz-Hopf algebra. Comm. Algebra (2013) 41: 3261-3266. ![]() |
[10] |
Conjugation invariants in the Leibniz-Hopf algebra. J. Pure Appl. Algebra (2013) 217: 2247-2254. ![]() |
[11] |
On conjugation invariants in the dual Steenrod algebra. Proc. Amer. Math. Soc. (2000) 128: 2809-2818. ![]() |
[12] |
Higher conjugation cohomology in commutative Hopf algebras. Proc. Edinb. Math. Soc. (2) (2001) 44: 19-26. ![]() |
[13] |
The antiautomorphism of the Steenrod algebra. Proc. Amer. Math. Soc. (1974) 44: 235-236. ![]() |
[14] | Quasi-Hopf algebras. Leningr. Math. J. (1990) 1: 1419-1457. |
[15] |
On posets and Hopf algebras. Adv. Math. (1996) 119: 1-25. ![]() |
[16] |
On monomial bases in the mod p Steenrod algebra. J. Fixed Point Theory Appl. (2015) 17: 341-353. ![]() |
[17] |
Graphical calculus of Hopf crossed modules. Hacettepe J. Math. Statistics (2020) 49: 695-707. ![]() |
[18] |
Generalized overlapping shuffle algebras. J. Math. Sci. (New York) (2001) 106: 3168-3186. ![]() |
[19] |
The algebra of quasi-symmetric functions is free over the integers. Adv. Math. (2001) 164: 283-300. ![]() |
[20] |
Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions. Monodromy and differential equations. Acta Appl. Math. (2003) 75: 55-83. ![]() |
[21] |
Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions. II. Acta Appl. Math. (2005) 85: 319-340. ![]() |
[22] |
Explicit polynomial generators for the ring of quasisymmetric functions over the integers. Acta. Appl. Math. (2010) 109: 39-44. ![]() |
[23] | S. Kaji, A Maple Code for the Dual Leibniz–Hopf Algebra. Available from: http://www.skaji.org/files/Leibniz-Hopf.mw. |
[24] | On conjugation in the mod-p Steenrod algebra. Turkish J. Math. (2000) 24: 359-365. |
[25] |
Monomial bases in the mod-p Steenrod algebra. Czechoslovak Math. J. (2005) 55: 699-707. ![]() |
[26] |
(1995) Foundations of Quantum Group Theory. Cambridge: Cambridge University Press. ![]() |
[27] |
Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra (1995) 177: 967-982. ![]() |
[28] |
The Steenrod algebra and its dual. Ann. of Math. (2) (1958) 67: 150-171. ![]() |
[29] |
J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2), 81, (1965), 211–264. doi: 10.2307/1970615
![]() |
[30] |
Change of basis, monomial relations, and the Pst bases for the Steenrod algebra. J. Pure Appl. Algebra (1998) 125: 235-260. ![]() |
[31] | K. G. Monks, STEENROD: A Maple package for computing with the Steenrod algebra, 1995. |
[32] |
Cohomologie modulo 2 des complexes d'Eilenberg-MacLane. Comment. Math. Helv. (1953) 27: 198-232. ![]() |
[33] |
Conjugation and excess in the Steenrod algebra. Proc. Amer. Math. Soc. (1993) 119: 657-661. ![]() |
[34] | N. E. Steenrod, Cohomology Operations, Annals of Math Studies, 50, Princeton University Press, Princeton, NJ, 1962. |
[35] | W. Stein, et al., Sage Mathematics Software (Version 5.4.1), The Sage Development Team, 2012. Available from: http://www.sagemath.org. |
[36] |
Identities for conjugation in the Steenrod algebra. Proc. Amer. Math. Soc. (1975) 49: 253-255. ![]() |
[37] |
Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. (1954) 28: 17-86. ![]() |
[38] | On the conjugation invariant problem in the mod p dual Steenrod algebra. Ital. J. Pure Appl. Math. (2015) 34: 151-158. |
[39] |
A remark on the conjugation in the Steenrod algebra. Commun. Korean Math. Soc. (2015) 30: 269-276. ![]() |
[40] |
An alternative approach to the Adem relations in the mod 2 Steenrod algebra. Turkish J. Mathematics (2014) 38: 924-934. ![]() |
[41] | An alternative approach to the Adem relations in the mod p Steenrod algebra. C. R. Acad. Bulgare Sci. (2017) 70: 457-466. |
[42] |
Invariants under decomposition of the conjugation in the mod 2 dual Leibniz-Hopf algebra. Miskolc Math. Notes (2018) 19: 1217-1222. ![]() |
[43] |
The mod 2 dual Steenrod algebra as a subalgebra of the mod 2 dual Leibniz-Hopf algebra. J. Homotopy Relat. Struct. (2017) 12: 727-739. ![]() |
[44] |
N. D. Turgay and I. Karaca, The Arnon bases in the Steenrod algebra, Georgian Math. J., (2018). doi: 10.1515/gmj-2018-0076
![]() |
[45] |
The nilpotence height of Sq2n. Proc. Amer. Math. Soc. (1996) 124: 1291-1295. ![]() |
[46] |
The nilpotence height of Ppn. Math. Proc. Cambridge Philos. Soc. (1998) 123: 85-93. ![]() |
[47] |
Generators and relations for the Steenrod algebra. Ann. of Math. (2) (1960) 72: 429-444. ![]() |
[48] |
A note on bases and relations in the Steenrod algebra. Bull. London Math. Soc. (1995) 27: 380-386. ![]() |
Calculations under conjugation operation | ||||
4 |
||||
Calculations under conjugation operation | ||||
4 |
||||