Let $ p $ be a fixed odd prime. The Bockstein free part of the mod $ p $ Steenrod algebra, $ \mathcal{A}_p $, can be defined as the quotient of the mod $ p $ reduction of the Leibniz Hopf algebra, $ \mathcal{F}_p $. We study the Hopf algebra epimorphism $ \pi\colon \mathcal{F}_p\to \mathcal{A}_p $ to investigate the canonical Hopf algebra conjugation in $ \mathcal{A}_p $ together with the conjugation operation in $ \mathcal{F}_p $. We also give a result about conjugation invariants in the mod 2 dual Leibniz Hopf algebra using its multiplicative algebra structure.
Citation: Neşet Deniz Turgay. On the mod p Steenrod algebra and the Leibniz-Hopf algebra[J]. Electronic Research Archive, 2020, 28(2): 951-959. doi: 10.3934/era.2020050
Let $ p $ be a fixed odd prime. The Bockstein free part of the mod $ p $ Steenrod algebra, $ \mathcal{A}_p $, can be defined as the quotient of the mod $ p $ reduction of the Leibniz Hopf algebra, $ \mathcal{F}_p $. We study the Hopf algebra epimorphism $ \pi\colon \mathcal{F}_p\to \mathcal{A}_p $ to investigate the canonical Hopf algebra conjugation in $ \mathcal{A}_p $ together with the conjugation operation in $ \mathcal{F}_p $. We also give a result about conjugation invariants in the mod 2 dual Leibniz Hopf algebra using its multiplicative algebra structure.
[1] |
J. F. Adams, Lectures on generalised cohomology, in Category Theory, Homology Theory and their Applications, III, Lecture Notes in Mathematics, 99, Springer, Berlin, 1969, 1–138. doi: 10.1007/BFb0081960
![]() |
[2] |
Monomial bases in the Steenrod algebra. J. Pure Appl. Algebra (1994) 96: 215-223. ![]() |
[3] | M. G. Barratt and H. R. Miller, On the anti-automorphism of the Steenrod algebra, in Symposium on Algebraic Topology in honor of José Adem (Oaxtepec, 1981), Contemp. Math., 12, Amer. Math. Soc., Providence, RI, 1982, 47–52. |
[4] |
D. Bulacu, S. Caenepeel, F. Panaite and F. Van Oystaeyen, Quasi-Hopf Algebras, Encyclopedia of Mathematics and its Applications, 171, Cambridge University Press, Cambridge, 2019. doi: 10.1017/9781108582780
![]() |
[5] |
On the Adem relations. Topology (1982) 21: 329-332. ![]() |
[6] |
The intersection of the admissible basis and the Milnor basis of the Steenrod algebra. J. Pure Appl. Algebra (1998) 128: 1-10. ![]() |
[7] |
The Steenrod algebra and other copolynomial Hopf algebras. Bull. London Math. Soc. (2000) 32: 609-614. ![]() |
[8] |
Some Hopf algebras of words. Glasg. Math. J. (2006) 48: 575-582. ![]() |
[9] |
Conjugation invariants in the mod 2 dual Leibniz-Hopf algebra. Comm. Algebra (2013) 41: 3261-3266. ![]() |
[10] |
Conjugation invariants in the Leibniz-Hopf algebra. J. Pure Appl. Algebra (2013) 217: 2247-2254. ![]() |
[11] |
On conjugation invariants in the dual Steenrod algebra. Proc. Amer. Math. Soc. (2000) 128: 2809-2818. ![]() |
[12] |
Higher conjugation cohomology in commutative Hopf algebras. Proc. Edinb. Math. Soc. (2) (2001) 44: 19-26. ![]() |
[13] |
The antiautomorphism of the Steenrod algebra. Proc. Amer. Math. Soc. (1974) 44: 235-236. ![]() |
[14] | Quasi-Hopf algebras. Leningr. Math. J. (1990) 1: 1419-1457. |
[15] |
On posets and Hopf algebras. Adv. Math. (1996) 119: 1-25. ![]() |
[16] |
On monomial bases in the mod $p$ Steenrod algebra. J. Fixed Point Theory Appl. (2015) 17: 341-353. ![]() |
[17] |
Graphical calculus of Hopf crossed modules. Hacettepe J. Math. Statistics (2020) 49: 695-707. ![]() |
[18] |
Generalized overlapping shuffle algebras. J. Math. Sci. (New York) (2001) 106: 3168-3186. ![]() |
[19] |
The algebra of quasi-symmetric functions is free over the integers. Adv. Math. (2001) 164: 283-300. ![]() |
[20] |
Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions. Monodromy and differential equations. Acta Appl. Math. (2003) 75: 55-83. ![]() |
[21] |
Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions. II. Acta Appl. Math. (2005) 85: 319-340. ![]() |
[22] |
Explicit polynomial generators for the ring of quasisymmetric functions over the integers. Acta. Appl. Math. (2010) 109: 39-44. ![]() |
[23] | S. Kaji, A Maple Code for the Dual Leibniz–Hopf Algebra. Available from: http://www.skaji.org/files/Leibniz-Hopf.mw. |
[24] | On conjugation in the mod-$p$ Steenrod algebra. Turkish J. Math. (2000) 24: 359-365. |
[25] |
Monomial bases in the mod-$p$ Steenrod algebra. Czechoslovak Math. J. (2005) 55: 699-707. ![]() |
[26] |
(1995) Foundations of Quantum Group Theory. Cambridge: Cambridge University Press. ![]() |
[27] |
Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra (1995) 177: 967-982. ![]() |
[28] |
The Steenrod algebra and its dual. Ann. of Math. (2) (1958) 67: 150-171. ![]() |
[29] |
J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2), 81, (1965), 211–264. doi: 10.2307/1970615
![]() |
[30] |
Change of basis, monomial relations, and the $P_t^{s}$ bases for the Steenrod algebra. J. Pure Appl. Algebra (1998) 125: 235-260. ![]() |
[31] | K. G. Monks, STEENROD: A Maple package for computing with the Steenrod algebra, 1995. |
[32] |
Cohomologie modulo 2 des complexes d'Eilenberg-MacLane. Comment. Math. Helv. (1953) 27: 198-232. ![]() |
[33] |
Conjugation and excess in the Steenrod algebra. Proc. Amer. Math. Soc. (1993) 119: 657-661. ![]() |
[34] | N. E. Steenrod, Cohomology Operations, Annals of Math Studies, 50, Princeton University Press, Princeton, NJ, 1962. |
[35] | W. Stein, et al., Sage Mathematics Software (Version 5.4.1), The Sage Development Team, 2012. Available from: http://www.sagemath.org. |
[36] |
Identities for conjugation in the Steenrod algebra. Proc. Amer. Math. Soc. (1975) 49: 253-255. ![]() |
[37] |
Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. (1954) 28: 17-86. ![]() |
[38] | On the conjugation invariant problem in the mod $p$ dual Steenrod algebra. Ital. J. Pure Appl. Math. (2015) 34: 151-158. |
[39] |
A remark on the conjugation in the Steenrod algebra. Commun. Korean Math. Soc. (2015) 30: 269-276. ![]() |
[40] |
An alternative approach to the Adem relations in the mod 2 Steenrod algebra. Turkish J. Mathematics (2014) 38: 924-934. ![]() |
[41] | An alternative approach to the Adem relations in the mod $p$ Steenrod algebra. C. R. Acad. Bulgare Sci. (2017) 70: 457-466. |
[42] |
Invariants under decomposition of the conjugation in the mod 2 dual Leibniz-Hopf algebra. Miskolc Math. Notes (2018) 19: 1217-1222. ![]() |
[43] |
The mod 2 dual Steenrod algebra as a subalgebra of the mod 2 dual Leibniz-Hopf algebra. J. Homotopy Relat. Struct. (2017) 12: 727-739. ![]() |
[44] |
N. D. Turgay and I. Karaca, The Arnon bases in the Steenrod algebra, Georgian Math. J., (2018). doi: 10.1515/gmj-2018-0076
![]() |
[45] |
The nilpotence height of ${S}q^{2n}$. Proc. Amer. Math. Soc. (1996) 124: 1291-1295. ![]() |
[46] |
The nilpotence height of ${P}^{p^n}$. Math. Proc. Cambridge Philos. Soc. (1998) 123: 85-93. ![]() |
[47] |
Generators and relations for the Steenrod algebra. Ann. of Math. (2) (1960) 72: 429-444. ![]() |
[48] |
A note on bases and relations in the Steenrod algebra. Bull. London Math. Soc. (1995) 27: 380-386. ![]() |