Research article

The criteria for automorphisms on finite-dimensional algebras

  • Received: 06 September 2024 Revised: 05 November 2024 Accepted: 07 November 2024 Published: 15 November 2024
  • In this paper, we will establish a criterion for automorphisms of finite-dimensional algebras. As an application, we will describe all automorphisms of the single-parameter generalized quaternion algebra. Additionally, we will obtain all automorphisms of Sweedler's 4-dimensional Hopf algebra.

    Citation: Yanni Yang, Quanguo Chen. The criteria for automorphisms on finite-dimensional algebras[J]. Electronic Research Archive, 2024, 32(11): 6140-6152. doi: 10.3934/era.2024285

    Related Papers:

  • In this paper, we will establish a criterion for automorphisms of finite-dimensional algebras. As an application, we will describe all automorphisms of the single-parameter generalized quaternion algebra. Additionally, we will obtain all automorphisms of Sweedler's 4-dimensional Hopf algebra.



    加载中


    [1] K. Baclawski, Automorphisms and derivations of incidence algebras, Proc. Amer. Math. Soc., 36 (1972), 351–356. https://doi.org/10.2307/2039158 doi: 10.2307/2039158
    [2] W. Scharlau, Automorphisms and involutions of incidence algebras, in Representations of Algebras, Springer-Verlag, (1975), 340–350. https://doi.org/10.1007/BFb0081233
    [3] N. Andruskiewitsch, F. Dumas, On the automorphisms of $U^{+}_{q}(g)$, preprint, arXiv: math/0301066.
    [4] J. Gomez-Torrecillas, L. El Kaoutit, The group of automorphisms of the coordinate ring of quantum symplectic space, Beitr. Algebra Geom., 43 (2002), 597–601.
    [5] S. Launois, T. H. Lenagan, Primitive ideals and automorphisms of quantum matrices, Algebras Represent. Theory, 10 (2007), 339–365. https://doi.org/10.1007/s10468-007-9059-0 doi: 10.1007/s10468-007-9059-0
    [6] T. Li, Q. W. Wang, Structure preserving quaternion biconjugate gradient method, SIAM J. Matrix Anal. Appl., 45 (2024), 306–326. https://doi.org/10.1137/23M1547299 doi: 10.1137/23M1547299
    [7] T. Li, Q. W. Wang, Structure preserving quaternion full orthogonalization method with applications, Numer. Linear Algebra Appl., 30 (2023), e2495. https://doi.org/10.1002/nla.2495 doi: 10.1002/nla.2495
    [8] H. Pottman, J. Wallner, Computational Line Geometry, Springer-Verlag, 2001. https://doi.org/10.1007/978-3-642-04018-4
    [9] M. Suárez-Alvarez, Q. Vivas, Automorphisms and isomorphisms of quantum generalized Weyl algebras, J. Algebra, 424 (2015), 540–552. https://doi.org/10.1016/j.jalgebra.2014.08.045 doi: 10.1016/j.jalgebra.2014.08.045
    [10] X. F. Zhang, W. Ding, T. Li, Tensor form of GPBiCG algorithm for solving the generalized Sylvester quaternion tensor equations, J. Franklin Inst., 360 (2023), 5929–5946. https://doi.org/10.1016/j.jfranklin.2023.04.009 doi: 10.1016/j.jfranklin.2023.04.009
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(241) PDF downloads(29) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog