In this paper, we will establish a criterion for automorphisms of finite-dimensional algebras. As an application, we will describe all automorphisms of the single-parameter generalized quaternion algebra. Additionally, we will obtain all automorphisms of Sweedler's 4-dimensional Hopf algebra.
Citation: Yanni Yang, Quanguo Chen. The criteria for automorphisms on finite-dimensional algebras[J]. Electronic Research Archive, 2024, 32(11): 6140-6152. doi: 10.3934/era.2024285
In this paper, we will establish a criterion for automorphisms of finite-dimensional algebras. As an application, we will describe all automorphisms of the single-parameter generalized quaternion algebra. Additionally, we will obtain all automorphisms of Sweedler's 4-dimensional Hopf algebra.
[1] | K. Baclawski, Automorphisms and derivations of incidence algebras, Proc. Amer. Math. Soc., 36 (1972), 351–356. https://doi.org/10.2307/2039158 doi: 10.2307/2039158 |
[2] | W. Scharlau, Automorphisms and involutions of incidence algebras, in Representations of Algebras, Springer-Verlag, (1975), 340–350. https://doi.org/10.1007/BFb0081233 |
[3] | N. Andruskiewitsch, F. Dumas, On the automorphisms of $U^{+}_{q}(g)$, preprint, arXiv: math/0301066. |
[4] | J. Gomez-Torrecillas, L. El Kaoutit, The group of automorphisms of the coordinate ring of quantum symplectic space, Beitr. Algebra Geom., 43 (2002), 597–601. |
[5] | S. Launois, T. H. Lenagan, Primitive ideals and automorphisms of quantum matrices, Algebras Represent. Theory, 10 (2007), 339–365. https://doi.org/10.1007/s10468-007-9059-0 doi: 10.1007/s10468-007-9059-0 |
[6] | T. Li, Q. W. Wang, Structure preserving quaternion biconjugate gradient method, SIAM J. Matrix Anal. Appl., 45 (2024), 306–326. https://doi.org/10.1137/23M1547299 doi: 10.1137/23M1547299 |
[7] | T. Li, Q. W. Wang, Structure preserving quaternion full orthogonalization method with applications, Numer. Linear Algebra Appl., 30 (2023), e2495. https://doi.org/10.1002/nla.2495 doi: 10.1002/nla.2495 |
[8] | H. Pottman, J. Wallner, Computational Line Geometry, Springer-Verlag, 2001. https://doi.org/10.1007/978-3-642-04018-4 |
[9] | M. Suárez-Alvarez, Q. Vivas, Automorphisms and isomorphisms of quantum generalized Weyl algebras, J. Algebra, 424 (2015), 540–552. https://doi.org/10.1016/j.jalgebra.2014.08.045 doi: 10.1016/j.jalgebra.2014.08.045 |
[10] | X. F. Zhang, W. Ding, T. Li, Tensor form of GPBiCG algorithm for solving the generalized Sylvester quaternion tensor equations, J. Franklin Inst., 360 (2023), 5929–5946. https://doi.org/10.1016/j.jfranklin.2023.04.009 doi: 10.1016/j.jfranklin.2023.04.009 |