Research article Special Issues

Solvability of a fluid-structure interaction problem with semigroup theory

  • Received: 26 September 2023 Revised: 25 October 2023 Accepted: 25 October 2023 Published: 31 October 2023
  • MSC : 74F10, 76S05, 35B27

  • Continuous semigroup theory is applied to proof the existence and uniqueness of a solution to a fluid-structure interaction (FSI) problem of non-stationary Stokes flow in two bulk domains, separated by a 2D elastic, permeable plate. The plate's curvature is proportional to the jump of fluid stresses across the plate and the flow resistance is modeled by Darcy's law. In the weak formulation of the considered physical problem, a linear operator in space is associated with a sum of two bilinear forms on the fluid and the interface domains, respectively. One attains a system of equations in operator form, corresponding to the weak problem formulation. Utilizing the sufficient conditions in the Lumer-Phillips theorem, we show that the linear operator is a generator of a contraction semigroup, and give the existence proof to the FSI problem.

    Citation: Maxime Krier, Julia Orlik. Solvability of a fluid-structure interaction problem with semigroup theory[J]. AIMS Mathematics, 2023, 8(12): 29490-29516. doi: 10.3934/math.20231510

    Related Papers:

  • Continuous semigroup theory is applied to proof the existence and uniqueness of a solution to a fluid-structure interaction (FSI) problem of non-stationary Stokes flow in two bulk domains, separated by a 2D elastic, permeable plate. The plate's curvature is proportional to the jump of fluid stresses across the plate and the flow resistance is modeled by Darcy's law. In the weak formulation of the considered physical problem, a linear operator in space is associated with a sum of two bilinear forms on the fluid and the interface domains, respectively. One attains a system of equations in operator form, corresponding to the weak problem formulation. Utilizing the sufficient conditions in the Lumer-Phillips theorem, we show that the linear operator is a generator of a contraction semigroup, and give the existence proof to the FSI problem.



    加载中


    [1] E. Hille, Functional analysis and semi-groups, American Mathematical Society, 1957.
    [2] K. Yosida, On the differentiability and the representation of one-parameter semi-group of linear operators, J. Math. Soc. JPN, 1 (1948), 15–21. https://doi.org/10.2969/jmsj/00110015 doi: 10.2969/jmsj/00110015
    [3] G. Lumer, R. S. Phillips, Dissipative operators in a Banach space, Pac. J. Math., 11 (1961), 679–698. https://doi.org/10.2140/pjm.1961.11.679 doi: 10.2140/pjm.1961.11.679
    [4] W. Jäger, A. Mikelić, M. Neuss-Radu, Analysis of differential equations modelling the reactive flow through a deformable system of cells, Arch. Ration. Mech. Anal., 192 (2009), 331–374. https://doi.org/10.1007/s00205-008-0118-4 doi: 10.1007/s00205-008-0118-4
    [5] G. Panasenko, R. Stavre, Asymptotic analysis of a periodic flow in a thin channel with visco-elastic wall, J. Math. Pure. Appl., 85 (2006), 558–579. https://doi.org/10.1016/j.matpur.2005.10.011 doi: 10.1016/j.matpur.2005.10.011
    [6] O. Iliev, A. Mikelić, P. Popov, On upscaling certain flows in deformable porous media, Multiscale Model. Sim., 7 (2008), 93–123. https://doi.org/10.1137/06067732X doi: 10.1137/06067732X
    [7] O. Iliev, D. Iliev, R. Kirsch, On computer simulation of fluid-porous structure interaction problems for a class of filtration problems, In: Large-Scale Scientific Computing, (eds. I. Lirkov, S. Margenov and J. Waśniewski), Springer International Publishing, 2015, 30–41. https://doi.org/10.1007/978-3-319-26520-9_3
    [8] J. Orlik, G. Panasenko, R. Stavre, Asymptotic analysis of a viscous fluid layer separated by a thin stiff stratified elastic plate, Appl. Anal., 100 (2021), 589–629. https://doi.org/10.1080/00036811.2019.1612051 doi: 10.1080/00036811.2019.1612051
    [9] M. Gahn, W. Jäger, M. Neuss-Radu, Derivation of Stokes-plate-equations modeling fluid flow interaction with thin porous elastic layers, Appl. Anal., 101 (2022), 4319–4348. https://doi.org/10.1080/00036811.2022.2080673 doi: 10.1080/00036811.2022.2080673
    [10] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482–1518. https://doi.org/10.1137/0523084 doi: 10.1137/0523084
    [11] J. Orlik, G. Panasenko, V. Shiryaev, Optimization of textile-like materials via homogenization and beam approximations, Multiscale Model. Sim., 14 (2016), 637–667. https://doi.org/10.1137/15M1017193 doi: 10.1137/15M1017193
    [12] G. Griso, J. Orlik, S. Wackerle, Asymptotic behavior for textiles in von-Kármán regime, J. Math. Pure. Appl., 144 (2020), 164–193. https://doi.org/10.1016/j.matpur.2020.10.002 doi: 10.1016/j.matpur.2020.10.002
    [13] G. Griso, L. Khilkova, J. Orlik, O. Sivak, Homogenization of perforated elastic structures, J. Elast., 141 (2020), 181–225. https://doi.org/10.1007/s10659-020-09781-w doi: 10.1007/s10659-020-09781-w
    [14] A. Damlamian, D. Cioranescu, G. Griso, The periodic unfolding method, 1 Eds., Springer, Singapore, 2018. https://doi.org/10.1007/978-981-13-3032-2
    [15] O. A. Oleinik, G. A. Yosifian, A. S. Shamaev, Mathematical problems in elasticity and homogenization, Amsterdam, North-Holland, New York, 1992.
    [16] J. E. Marsden, T. J. R. Hughes, Mathematical foundations of elasticity, Unabridged, corr. republ., NY Dover, New York, 1994.
    [17] M. Renardy, R. C. Rogers, An introduction to partial differential equations, 2 Eds., Springer, New York, 2004. https://doi.org/10.1007/b97427
    [18] P. G. Ciarlet, C. Mardare, An introduction to Shell theory, Differ. Geom. Theor. Appl., 9 (2008), 94–184. https://doi.org/10.1142/9789812771476_0002 doi: 10.1142/9789812771476_0002
    [19] G. Griso, L. Khilkova, J. Orlik, Asymptotic behavior of a viscous fluid interaction with a thin porous periodic plate, in preparation.
    [20] B. Muha, S. Canić, Existence of a solution to a fluid-multi-layered-structure interaction problem, J. Diff. Equations, 256 (2014), 658–706. https://doi.org/10.1016/j.jde.2013.09.016 doi: 10.1016/j.jde.2013.09.016
    [21] M. A. Fernández, J. F. Gerbeau, V. Martin, Numerical simulation of blood flows through a porous interface, ESAIM: Math. Model. Num., 42 (2008), 961–990. https://doi.org/10.1051/m2an:2008031 doi: 10.1051/m2an:2008031
    [22] C. Conca, Étude d'un fluide traversant une paroi perforée, Ⅰ. Comportement limite près de la paroi, (French) [Study of fluid flow through a perforated barrier. Ⅰ. Limit behavior near the barrier], J. Math. Pure. Appl., 66 (1987), 1–43.
    [23] C. Conca, Étude d'un fluide traversant une paroi perforée, Ⅱ. Comportement limite loin de la paroi, (French) [Study of fluid flow through a perforated barrier. Ⅱ. Limit behavior away from the barrier], J. Math. Pure. Appl., 66 (1987), 45–70.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(985) PDF downloads(66) Cited by(3)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog