Citation: Xin Zhao, Xin Liu, Jian Li. Convergence analysis and error estimate of finite element method of a nonlinear fluid-structure interaction problem[J]. AIMS Mathematics, 2020, 5(5): 5240-5260. doi: 10.3934/math.2020337
[1] | R. A. Adams, Sobolev Spaces, Academic press, New York, 1975. |
[2] | M. Astorino and C. Grandmont, Convergence analysis of a projection semi-implicit coupling scheme for fluid-structure interaction problems, Numer. Math., 116 (2010), 721-767. doi: 10.1007/s00211-010-0311-x |
[3] | D. Boffi, L. Gastaldi, A fictitious domain approach with Lagrange multiplier for fluid-structure interactions, Numer. Math., 135 (2017), 711-732. doi: 10.1007/s00211-016-0814-1 |
[4] | J. Boujot, Mathematical formulation of fluid-structure interaction problems, RAIRO Model. Math. Anal. Numer., 21 (1987), 239-260. doi: 10.1051/m2an/1987210202391 |
[5] | T. Chacon-Rebollo, V. Girault, F. Murat, et al. Analysis of a Coupled Fluid-Structure Model with Applications to Hemodynamics, SIAM J. Numer. Anal., 54 (2016), 994-1019. doi: 10.1137/140991509 |
[6] | Z. Chen, Finite Element Methods and Their Applications, Spring-Verlag, Heidelberg, 2005. |
[7] | P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. |
[8] | Q. Du, M. Gunzburger, L. Hou, et al. Analysis of a linear fluid-structure interaction problem, Disc. Cont. Dyn. Syst., 9 (2003), 633-650. doi: 10.3934/dcds.2003.9.633 |
[9] | Q. Du, M. Gunzburger, L. Hou, et al. Semidiscrete finite element approximations of a linear fluidstructure interaction problem, SIAM J. Nmer. Anal., 42 (2004), 1-29. doi: 10.1137/S0036142903408654 |
[10] | M. Fernández, Incremental displacement-correction schemes for incompressible fluid-structure interaction, Numer. Math., 123 (2013), 21-65. doi: 10.1007/s00211-012-0481-9 |
[11] | F. Flori and P. Orenga, Fluid-structure interaction: Analysis of a 3-D compressible model, Ann. Inst. H. Poincare Anal. Non Lineaire, 17 (2000), 753-777. doi: 10.1016/S0294-1449(00)00119-0 |
[12] | V. Girault and P. A. Raviart, Finite Element Method for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin, Heidelberg, 1987. |
[13] | C. Grandmont and Y. Maday, Existence for an unsteady fluid-structure interaction problem, M2AN Math. Model. Numer. Anal., 34 (2000), 609-636. doi: 10.1051/m2an:2000159 |
[14] | Y. He, Y. Lin, W. Sun, Stabilized finite element method for the non-stationary Navier-Stokes problem, Disc. Cont. Dyn. Syst. Series B, 6 (2006), 41-68. |
[15] | F. Hecht and O. Pironneau, An Energy Stable Monolithic Eulerian Fluid-Structure Finite Element Method, Int. J. Numer. Meth. Fl., 85 (2017), 430-446. doi: 10.1002/fld.4388 |
[16] | J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem I: Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal., 19 (1982), 275-311. doi: 10.1137/0719018 |
[17] | J. G. Heywood and R. Rannacher, Finite-element approximations of the nonstationary NavierStokes problem. Part IV: Error estimates for second-order time discretization, SIAM J. Numer. Anal., 27 (1990), 353-384. doi: 10.1137/0727022 |
[18] | A. T. Hill and E. Süli, Approximation of the global attractor for the incompressible Navier-Stokes equations, IMA J. Numer. Anal., 20 (2000), 633-667. doi: 10.1093/imanum/20.4.633 |
[19] | G. Hou, J. Wang, A. Layton, Numerical methods for fluid-structure interaction-A review, Commun. Comput. Phys., 12 (2012), 337-377. doi: 10.4208/cicp.291210.290411s |
[20] | G. Hsiao, R. Kleinman and G. Roach, Weak solutions of fluid-solid interaction problems, Math. Nachr., 218 (2000), 139-163. doi: 10.1002/1522-2616(200010)218:1<139::AID-MANA139>3.0.CO;2-S |
[21] | R. A. Khurram and A. Masud, A multiscale/stabilized formulation of the incompressible NavierStokes equations for moving boundary flows and fluid-structure interaction, Comput. Mech., 38 (2006), 403-416. doi: 10.1007/s00466-006-0059-4 |
[22] | W. Layton, Introduction to the Numerical Analysis of Incompressible Viscous Flows, Comput. Sci. Eng., SIAM, Philadelphia, 2008. |
[23] | P. LeTallec and S. Mani, Numerical analysis of a linearized fluid-structure interaction problem, Numer. Math., 87 (2000), 317-354. doi: 10.1007/s002110000183 |
[24] | J. Li, Y. He and Z. Chen, A new stabilized finite element method for the transient Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 197 (2009), 22-35. |
[25] | S. Micu and E. Zuazua, Asymptotics for the spectrum of a fluid/structure hybrid system arising in the control of noise, SIAM J. Math. Anal.,29 (1998), 967-1001. doi: 10.1137/S0036141096312349 |
[26] | H. Morand and R. Ohayon, Fluid Structure Interaction: Applied Numerical Methods, Academic press, New York, 1975. |
[27] | T. Richter, A fully Eulerian formulation for fluid structure interaction problems, J. Comput. Phys., 233 (2013), 227-240. doi: 10.1016/j.jcp.2012.08.047 |
[28] | R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Third ed., North-Holland, Amsterdam, 1984. |