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Abstract: In this paper, a semi-discrete finite element method for the nonlinear fluid-structure
interaction problem interacts between the Navier-Stokes fluids and linear elastic solids, is studied
and developed. A classical mixed variational principle of the weak formulation is given, and the
corresponding finite element method is defined. As for the nonlinearity arising from the nonlinear
interaction problem, we consider in time of a solution for suitably small data, and uniqueness
hypothesis. This approach is fairly robust and adapts to the important case of interface with fractures or
cracks. Convergence and estimate of the finite element method are also obtained for the nonlinear fluid-
structure interaction problem. Finally, numerical experiments are presented to show the performance
of the proposed method.
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1. Introduction

Fluid-structure interactions are interactions of some movable or deformable structure with an
internal or surrounding fluid flow. The variety of fluid-structure occurrences are abundant and ranges
from tent-roofs to micropumps, from parachutes via airbags to blood flow in arteries. It is the most
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important on both modelling, computational issues and applications, the most challenging
multi-physics problems for engineers, mathematicians and physicists. The topic of fluid-structure has
recently attracted more and more attention in the scientific community. Different methods have been
developed and analyzed such as mathematical model [11, 26], mathematical theory [4, 13], the weak
solution [20, 26], spectrum asymptotics [25], Lagrange multiplier method [3] and other method [27].
The literature regarding finite element methods can be found in [8, 9, 15, 23].

In this paper we describe a semi-discrete finite element scheme for the nonlinear fluid-structure
interaction problem, which interact between the Navier-Stokes fluids and linear elastic solids. There
are lots of literatures on fluid-structure interactions for which the fluid is modeled by viscous fluid
models [2,10,19,21]. However, the majority of them applies solid models of lower spatial dimensions
or linear interaction problem. Especially, in this paper, we consider the interaction of a nonlinear
viscous fluid with elastic body motion in bounder domain. We retain the condition: the interface
Γ0 between the fluid structure with continuous velocities and stresses. To some extend, numerical
analysis of the fluid-structure interaction problem is more difficult than that of the fluid-fluid interaction
problem. Here, we assume that the solid displacements of the linear elastic problem are infinitesimal
size is of practical interest. Therefore, the approach provided in fluid-fluid interaction problem can be
adapted to the fluid-structure case.

In the past several decades, their motivation, development and theoretical foundations have been
presented in lots of literatures [3, 5, 15, 27]. This method can be considered of the extend of the
reference [8, 9], in the sense that it intends to use the same Galerkin finite element method to analyze
the nonlinear fluid-structure interaction problem. Here, we discuss the analysis of finite element
method for fluid-structure interaction problem, which couples with the Navier-Stokes equations and
linear elastic equations. The analysis of this model is not straightforward even if the data is
sufficiently smooth. We must take special care of the nonlinear discrete terms arising from the finite
element discretization for the fluid-structure interaction problem; these nonlinear trilinear terms no
longer satisfy the anti-symmetry properties. Therefore, compared to the finite element analysis of the
linear interaction problem, the most challenging aspect rests in the treatment of the nonlinear
convection terms [12, 14, 16–18, 22, 24, 28], which has a significant impact on the analysis. In this
paper, we analyze the discrete methods in time of a solution for suitably small data, and uniqueness of
a suitably small solution, without smooth solutions. Therefore, the approach presented here is fairly
robust and adapts to the important case of interface with fractures or cracks. On the other hand,
numerical experiments are also provided for the model presented to confirm the theoretical results.

The rest of paper is organized as follows. In section 2, we introduce the fluid-structure model using
the Navier-Stokes equation with the linear elastic equation. In section 3, the finite element method of
the fluid-structure model is defined and its existence and uniqueness are provided. The convergence
and estimate of the presented method are obtained in sections 4 and 5. Finally, we present several
numerical examples to illustrate the features of the proposed methods in section 6.

2. Preliminaries

Let the Lipschitz bounded domain Ω = Ω1
⋃

Ω2 consist of two subdomains Ω1 and Ω2 of Rd,
d = 2, 3, coupled across an interface I0 = ∂Ω1

⋂
∂Ω2. Γ1 = ∂Ω1\I0, Γ2 = ∂Ω2\I0. Moreover, n1 and

n2 denote the outward unit normal vectors for Ω1 and Ω2, respectively. The coupled fluid-structure
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problem is stated as follows: In the fluid region, the governer problem is

ρ1vt + ∇p − µ1∇ · (∇v + ∇vT ) + (v · ∇)v = ρ1f1, in Ω1,

divv = 0, in Ω1,

v = 0, on Γ1,

v(0, x) = v0, in Ω1, (2.1)

where the viscosity µ1 > 0, the density ρ1 > 0, the body force f1 : [0,T ]→H1(Ω1), v0 is the initial value
on t = 0. v : Ω1 × [0,T ]→Rd and p : Ω1 × [0,T ]→R denote the velocity and pressure, respectively.

In the solid region, the solid is assumed to be governed by the following linear elasticity

ρ2utt − µ2∇ · (∇u + ∇uT ) − λ2∇(∇ · u) = ρ2f2, in Ω2,

u = 0, on Γ2,

u(0, x) = u0, ut(0, x) = u1, in Ω2, (2.2)

where µ2 and λ2 denote the Lame constants, ρ2 the constant solid density, u : Ω2 × [0,T ]→Rd the
displacement of the solid, f2 : [0,T ]→H1(Ω2) the given loading force per unit mass, and u0 and u1 the
given initial data.

Here, we begin as in the case with a fixed interface: the motion of the solid is wholly due to
infinitesimal displacements. Again, we assume that the fluid-solid interface is stationary. Although the
displacement u is small, the velocity ut is not. Thus, we cannot impose the no-slip condition on the
fluid velocity and must retain the interface condition v = ut, along a fixed boundary. Then, across the
fixed interface I0 between the fluid and solid, the velocity and stress vector are continuous:

ut = v on I0, (2.3)
µ2(∇u + ∇uT ) · n2 + λ2(∇ · u)n2 = pn1 − µ1(∇v + ∇vT ) · n1 on I0.

For the mathematical setting of problem (2.1)-(2.2), the following Hilbert spaces are introduced [1]:

Xi = [H1
0(Ωi)]d = {v ∈ [H1(Ωi)]d : v|Γi = 0}, i = 1, 2,

Q = L2(Ω1),

Ψ = {w ∈ [H1
0(Ω)]d : divw = 0 in Ω1}.

The fluid-structure interaction problem can be rewritten in variational form as follows: Given

fi ∈ C([0,T ]; L2(Ωi)),

v0 ∈ X1, divv0 = 0 in Ω1,

u0 ∈ X2, u1 ∈ X2, v0|Γ0 = u1|Γ0 ,

such that (v, p,u) ∈ L2([0,T ]; X1) × L2([0,T ]; Q) × L2([0,T ]; X2)

ρ1[vt,w]Ω1 + a1[v,w] + b[w, p] + ρ2[utt,w]Ω2 + a2[u,w] + c[v, v,w]
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= ρ1[f1,w]Ω1 + ρ2[f2,w]Ω2 , ∀w ∈ X ∈ [H1
0(Ω)]d, (2.4)

b[v, q] = 0, ∀q ∈ Q, (2.5)
v(0, x) = v0, u(0, x) = u0, ut(0, x) = u1, (2.6)∫ t

0
v(s)|Γ0ds = u(t)|Γ0 − u0|Γ0 a.e. t. (2.7)

Next, the divergence-free weak formulation for (2.4)-(2.7) is defined as follows: Given

fi ∈ C([0,T ]; L2(Ωi)),
v0 ∈ X1, divv0 = 0 in Ω1,

u0 ∈ X2, u1 ∈ X2, v0|Γ0 = u1|Γ0 , (2.8)

seek a pair (v,u) ∈ L2([0,T ]; X1) × L2([0,T ]; X2), divv = 0 such that

ρ1[vt,w]Ω1 + ρ2[utt,w]Ω2 + a1[v,w] + a2[u,w] + c[v, v,w]
= ρ1[f1,w]Ω1 + ρ2[f2,w]Ω2 , ∀w ∈ Ψ, (2.9)

v(0, x) = v0, u(0, x) = u0, ut(0, x) = u1, (2.10)∫ t

0
v(s)|Γ0ds = u(t)|Γ0 − u0|Γ0 a.e. t, (2.11)

where the continuous bilinear forms [·, ·]Ωi , ai[·, ·] and b[·, ·] are defined on Xi × Xi and X1 × Q,
respectively, by

[w1,w]Ωi =

∫
Ωi

w1wdΩi, w1,w ∈ Xi,

a1[v,w] =
µ1

2

∫
Ω1

(∇v + ∇vT ) : (∇w + ∇wT )dΩ, v,w ∈ X1,

a2[u,w] =
µ2

2

∫
Ω2

(
(∇u + ∇uT ) : (∇w + ∇wT ) + λ2(divu)(divw)

)
dΩ, u,w ∈ X2,

b[v, q] = −

∫
Ω1

divvqdΩ, ∀v ∈ X1, q ∈ Q.

Then, the following inequalities hold

a1[v, v] ≥ µ1‖∇v‖20,Ω1
, ∀v ∈ X1, a2[u,u] ≥

1
2
|||u|||20,Ω2

, ∀u ∈ X2, (2.12)

where
|||v|||0,Ω2 ≡

(
µ‖∇v‖20,Ω2

+ ‖divv‖0,Ω2

)1/2

is equivalent to the classical H1-norm. Moreover, the bilinear term b[·, ·] satisfy the inf-sup condition
for the whole system (2.4)-(2.7) and the Navier-Stokes equations:

inf
q∈Q

sup
w∈X1

b[w, q]
‖∇w‖0,Ω‖q‖0,Ω1

≥ β, (2.13)
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where the positive constant β is dependent of Ω1. Similarly, the trilinear term c[·, ·, ·] is defined as
follows [28]:

c[v1, v2,w] = (v1 · ∇v2,w), v1, v2, w ∈ X1.

Also, the following inequality is valid:

|c[u, v,w]| ≤ C0‖∇u‖0,Ω1‖∇v‖0,Ω1‖∇w‖0,Ω1 , u1, v2, w ∈ X1. (2.14)

Using the auxiliary problem and the results in [8, 28], we yield the following existence and
uniqueness of the divergence-free weak formulation for (2.9)-(2.11). For convenience, we set
fi,t ≡ ∂tfi, i = 1, 2 in the following.

In order to deal with the nonlinear terms, we have the following lemma.

Lemma 2.1. Assume that both v satisfy the following smallness condition

‖∇v‖0,Ω1 ≤
µ1

4C0
, (2.15)

for all t ∈ [0,T ]. Then, we have the estimate

|((v · ∇)v1,w)| ≤
µ1

4
‖∇v1‖0‖∇w‖0 ∀ v1,w ∈ X1. (2.16)

Lemma 2.2. Under the hypothesis of (2.8) and (2.15) below, the solution (v,u) ∈ L2([0,T ]; X1) ×
L2([0,T ]; X2) for (2.9)-(2.11) has the following error estimates:

‖∇v‖L∞([0,T ],L2(Ω1)) <
µ1

4C0
,

‖v‖2L∞([0,T ],L2(Ω1)) + ‖ut‖
2
L∞([0,T ],L2(Ω2)) + ‖v‖2L2([0,T ];X1) ≤ κ0,

‖vt‖
2
L∞([0,T ],L2(Ω1)) + ‖utt‖

2
L∞([0,T ],L2(Ω2)) ≤ κ1, (2.17)

where κi, i = 0, 1 are defined in (2.21) and (2.27), respectively.

Proof. Let the positive constant γ > 0 only depend on the Ω. Then, the following inequalities hold true

‖v‖0,Ω1 ≤ γ‖∇v‖0,Ω1 , ‖v‖0,Ω1 ≤ γ‖v‖1,Ω1 , γ > 0. (2.18)

Choosing w in (2.9) with

w|Ωi =

 v if i = 1,

ut if i = 2,

and using the Young inequality, get

ρ1

2
d
dt
‖v‖20,Ω1

+
ρ2

2
d
dt
‖ut‖

2
0,Ω2

+
1
2

d
dt
|||u|||20,Ω2

+ µ1‖∇v‖20,Ω1

≤ C0‖∇v‖30,Ω1
+ ρ1‖f1‖0,Ω1‖v‖0,Ω1 + ρ2‖f2‖0,Ω2‖ut‖0,Ω2
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≤ C0 ×
µ1

4C0
‖∇v‖20,Ω1

+
µ1

4
‖∇v‖20,Ω1

+
ρ2

2
‖ut‖

2
0,Ω1

+
ρ2

1γ
2

µ1
‖f1‖

2
0,Ω1

+
ρ2

2
‖f2‖

2
0,Ω2

=
µ1

2
‖∇v‖20,Ω1

+
ρ2

2
‖ut‖

2
0,Ω2

+
ρ2

1γ
2

µ1
‖f1‖

2
0,Ω1

+
ρ2

2
‖f2‖

2
0,Ω2

. (2.19)

Noting that µ1
2 ‖∇v‖20,Ω1

can be obsorbed by the left hand of the above inequality and integrating the
above inequality with respect to the time from 0 to s ∈ (0,T ], we have

ρ1

2
‖v‖20,Ω1

+
ρ2

2
‖ut‖

2
0,Ω2

+
1
2
|||u|||20,Ω2

+
µ1

2

∫ s

0
‖∇v‖20,Ω1

dt

≤
ρ1

2
‖v0‖

2
0,Ω1

+
ρ2

2
‖u1‖

2
0,Ω2

+
1
2
|||u0|||

2
0,Ω2

+
ρ2

2

∫ s

0
‖ut‖

2
0,Ω2

dt

+

∫ T ∗

0

(
ρ2

1γ
2

µ1
‖f1‖

2
0,Ω1

+
ρ2

2
‖f2‖

2
0,Ω2

)
dt

= κ0, (2.20)

where

κ0 =
ρ1

2
‖v0‖

2
0,Ω1

+
ρ2

2
‖u1‖

2
0,Ω2

+
1
2
|||u0|||

2
0,Ω2

+
ρ2

1γ
2T

µ1
‖f1‖

2
L∞([0,T ],L2(Ω1))

+
ρ2T

2
‖f2‖

2
L∞([0,T ],L2(Ω2)). (2.21)

Using the Gronwall inequality, yields that

‖v‖20,Ω1
+ ‖ut‖

2
0,Ω2

+ |||u|||20,Ω2
+ ‖v‖2L2([0,T ],X1)

≤ CeCTκ0 ≤ Cκ0, ∀s ∈ (0,T ]. (2.22)

Using (2.15), the Young inequality, and choosing appropriate parameter, yields

a1[v, v] + a2[u,u]
= −ρ1[vt, v] − ρ2[utt,u] − c[v, v, v] + ρ1[f1, v] + ρ2(f2,u)
≤ ρ1‖vt‖0,Ω1‖v‖0,Ω1 + ρ2‖utt‖0,Ω2‖u‖0,Ω2 + C0‖∇v‖30,Ω1

+ρ1‖f‖0,Ω1‖v‖0,Ω1 + ρ2‖f2‖0,Ω2‖u‖0,Ω2

≤
2ρ2

1γ
2

µ1
‖vt‖

2
0,Ω1

+
µ1

8
‖∇v‖20,Ω1

+ ρ2
2γ

2‖utt‖
2
0,Ω2

+
1
4
‖∇u‖20,Ω2

+
µ1

4
‖∇v‖20,Ω1

+
2ρ2

1γ
2

µ1
‖f1‖

2
0,Ω1

+
µ1

8
‖∇v‖20,Ω1

+ ρ2
2γ

2‖f2‖
2
0,Ω2

+
1
4
‖∇u‖20,Ω2

which implies

µ1

2
‖∇v‖20,Ω1

+
1
2
|||u|||20,Ω2

≤
2ρ2

1γ
2

µ1
‖vt‖

2
0,Ω1

+ ρ2
2γ

2‖utt‖
2
0,Ω2

+
2ρ2

1γ
2

µ1
‖f1‖

2
0,Ω1

+ ρ2
2γ

2‖f2‖
2
0,Ω2

. (2.23)
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In order to estimate the above inequality, we bound the two terms ‖vt‖0 and ‖utt‖0. First, we
differentiate the first equations of (2.1) and (2.2) with respect to the time, multiplying (2.1) and (2.2)
by the respective test functions vt and utt, respectively, and integrating them on the respective domains
Ω1 and Ω2 to obtain the following:

d
dt

(
ρ1

2
‖vt‖

2
0,Ω1

+
ρ2

2
‖utt‖

2
0,Ω2

) +
1
2

d
dt
|||ut|||

2
0,Ω2

+ µ1‖∇vt‖
2
0,Ω1

≤ 2C0‖∇v‖0,Ω1‖∇vt‖
2
0,Ω1

+ ρ1‖ft1‖0,Ω1‖vt‖0,Ω1 + ρ2‖ft2‖0,Ω2‖utt‖0,Ω2

≤
µ1

2
‖∇vt‖

2
0,Ω1

+
2ρ2

1γ
2

µ1
‖ft1‖

2
0,Ω1

+
µ1

8
‖∇vt‖

2
0,Ω1

+
ρ2

2γ
2

2
‖ft2‖

2
0,Ω2

+
1
2
|||utt|||

2
0,Ω2

. (2.24)

Using (2.15), and integrating the above inequality from 0 to s ∈ (0,T ], we can get

ρ1‖vt‖
2
0,Ω1

+ ρ2‖utt‖
2
0,Ω2

+ |||ut|||
2
0,Ω2

+ µ1

∫ s

0
‖∇vt‖

2
0,Ω1

dt

≤ C(ρ1‖vt(0)‖20,Ω1
+ ρ2‖utt(0)‖20,Ω2

+ |||u1|||
2
0,Ω2

)

+C
∫ s

0
(‖ft1‖

2
0,Ω1

+ ‖ft2‖
2
0,Ω2

)dt +

∫ s

0
|||ut|||

2
0,Ω2

dt. (2.25)

Here, vt(0) and utt(0) can be bounded by the following procedure. Taking t = 0 and setting

w|Ωi =

 vt(0) if i = 1,

utt(0) if i = 2,

we have

ρ1‖vt(0)‖20,Ω1
+ ρ2‖utt(0)‖20,Ω2

+ a1[v0, vt(0)] + b[vt(0), p0]
+a2(u0,utt(0)) + c[v0, v0, vt(0)]

= ρ1[f1(0), vt(0)] + ρ2[f2(0),utt(0)],

which together with (2.3) implies

ρ1‖vt(0)‖20 + ρ2‖utt(0)‖20 + (−µ2div(∇u0 + uT
0 ) − λ2∇(divu0),utt(0))

+(−µ1div(∇u0 + uT
0 ) + ∇p0 + v0 · ∇v0, vt(0))

= ρ1[f1(0), vt(0)] + ρ2[f2(0),utt(0)].

That is

ρ1‖vt(0)‖20,Ω1
+ ρ2‖utt(0)‖20,Ω2

≤ C(ρ1‖f1(0)‖20,Ω1
+ ρ2‖f2(0)‖20,Ω2

). (2.26)

Then, setting

κ1 = C
2∑

i=1

(ρi‖fi(0)‖20,Ω1
+ ‖fti‖

2
L2([0,T ],L2(Ωi))

). (2.27)
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combining (2.25) with (2.26), and applying the Gronwall inequality, we obtain

‖vt‖
2
0,Ω1

+ ‖utt‖
2
0,Ω2

≤ C(ρ1‖f1(0)‖20,Ω1
+ ρ2‖f2(0)‖20,Ω2

)

+

∫ s

0
(‖ft1‖

2
0,Ω1

+ ‖ft2‖
2
0,Ω2

)dt) < κ1, (2.28)

�
Using the same approach as above for the solution of (2.9)-(2.11), we can obtain the following

stability of the solution to (2.4)-(2.7).

Lemma 2.3. Under the hypothesis of Lemma 2.1 and

fi,t ∈ L2([0,T ]; L2(Ωi)), i = 1, 2, v0 ∈ [H2(Ω1)]d,

u1 ∈ [H1(Ω2)]d, u0 ∈ [H2(Ω2)]d, (2.29)

the solution (v, p,u) to (2.4)-(2.7) satisfies

v ∈ L∞([0,T ]; L2(Ω1)) ∩ L2([0,T ]; X1), vt ∈ L∞([0,T ]; L2(Ω1)) ∩ L2([0,T ]; X1),
u ∈ L∞([0,T ]; X2), ut ∈ L∞([0,T ]; X2), utt ∈ L∞([0,T ]; L2(Ω2)), (2.30)

and

‖vt‖
2
L∞([0,T ];L2(Ω1)) + ‖utt‖

2
L∞([0,T ];L2(Ω2) + ‖vt‖

2
L2([0,T ];X1) + ‖ut‖

2
L∞([0,T ];X2)

+‖p‖L2([0,T ];L2(Ω1))

≤ CeCT (‖f‖2H1([0,T ];L2(Ω)) + ‖u0‖
2
2,Ω2

+ ‖v0‖
2
2,Ω1

+ ‖p0‖1,Ω2 + ‖u1‖
2
1,Ω2

). (2.31)

Proof. Using the same approach as for the linear fluid-structure interaction problem [8, 9] and Lemma
2.1, we can obtain (2.31).

3. Finite element methods

Given two shape-regular, quasi-uniform triangulationThi of Ωi, i = 1, 2, the finite element method is
to solve (2.4)-(2.7) in a pair of finite dimensional spaces (Xh

1,Q
h,Xh

2) ⊂ (X1,Q,X2): The triangulations
T h

i do not cross the interface Γ0 and consist of triangular elements in two dimensions or tetrahedral
elements in three dimensions [6, 7].

Moreover, we assume that the finite element spaces (Xh
1,Q

h,Xh
2) ⊂ (X1,Q,X2) satisfies the

following approximation properties: For each w ∈ [H2(Ωi)]d and q ∈ H1(Ω) ∩ Q, there exist
approximations wh ∈ Xh

i and qh ∈ Qh such that [28]

‖w − wh‖0,Ωi + h‖∇(w − wh)‖0,Ωi ≤ Chr+1‖w‖r+1,Ωi ,

‖q − qh‖0,Ω1 ≤ Chr‖q‖r,Ω1 , (3.1)

Here, r is the degree of piecewise polynomial of the finite elements. For each wh ∈ Xh
i , we have the

inverse inequality

‖∇wh‖0,Ωi ≤ Ch−1‖wh‖0,Ωi , wh ∈ Xh
i . (3.2)
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Moreover, the so-called inf-sup condition is valid: for each qh ∈ Qh, there exists wh ∈ Xh, vh , 0, such
that [9]

inf
qh∈Qh

sup
wh∈Xh

d(wh, qh)
‖∇wh‖0,Ω‖qh‖0,Ω1

≥ β, (3.3)

where β is a positive constant depending on Ω. In the special case, (3.3) is valid for a general choice
Xh

1 and Qh.
The corresponding semi-discrete fluid-structure interaction problem can be rewritten in variational

form as follows: seek (vh, ph,uh) ∈ C1([0,T ]; Xh
1) ×C([0,T ]; Qh) ×C1([0,T ]; Xh

2) such that [12, 28]

ρ1[vht,wh]Ω1 + a1[vh,wh] + b[wh, ph] + ρ2[uhtt,wh]Ω2 + a2[uh,wh] + c[uh,uh,wh]
= ρ1[f1,wh]Ω1 + ρ2[f2,wh]Ω2 , ∀wh ∈ Xh, (3.4)

b[vh, qh] = 0, ∀qh ∈ Qh, (3.5)
vh(0, x) = v0h, uh(0, x) = u0h, uht(0, x) = u1h, (3.6)

vh|Γ0 = uht|Γ0 , a.e. t. (3.7)

If we define divergence-free finite element space

Ψh = {wh ∈ Xh
1 : b[wh, qh] = 0, ∀qh ∈ Qh},

then the corresponding weak formulation of semi-discrete finite element methods for (3.4)-(3.7) is
defined as follows: seek a pair (vh,uh) ∈ C1([0,T ];Ψh) ×C1([0,T ]; Xh

2) such that

ρ1[vht,wh]Ω1 + ρ2[uhtt,wh]Ω2 + a1[vh,wh] + a2[uh,wh] + c[uh,uh,wh]
= ρ1[f1,wh]Ω1 + ρ2[f2,wh]Ω2 , ∀wh ∈ Ψh, (3.8)

vh(0, x) = v0h, uh(0, x) = u0h, uht(0, x) = u1h, (3.9)
vh|Γ0 = uht|Γ0 , a.e. t. (3.10)

Here, the approximation of the initial condition (v0h, p0h,u1h) ∈ (Xh
1,Q

h,Xh
2) of (v0, p0,u1) is defined

as follows: for ∀(wh, qh) ∈ Xh × Qh

a1[v0h,wh] + [u1h,wh] + b[wh, p0h] = a1[v0,wh] + [u1,wh]Ω2 + b[wh, p0], (3.11)
b[v0h, qh] = 0, (3.12)

v0h|Γ0 = u1h|Γ0 , (3.13)

such that

‖∇(v0 − v0h)‖0,Ω1 + ‖p0 − p0h‖0,Ω1 + ‖u1 − u1h‖0,Ω2

≤ Chr(‖v0‖r+1,Ω1 + ‖p0‖r,Ω1 + ‖u1‖r+1,Ω2), (3.14)

with v0 ∈ Hr+1(Ω1), p0 ∈ Hr(Ω1) and u1 ∈ Hr+1(Ω2), r ∈ [0, k]. Moreover, we assume that u0h = Phuh

is defined by

a2[u0h,wh] = a2[u0,wh], ∀wh ∈ Xh
2 . (3.15)
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Based on the results [8, 12, 28], we can obtain the following existence and uniqueness of the semi-
discrete finite element approximation for the fluid-structure interaction.
Lemma 3.1 Under the hypothesis of Lemmas 2.1-2.2, there exists a unique solution to (3.4)-(3.7) such
that (vh, ph,uh) ∈ C1([0,T ]; Xh

1)×C([0,T ]; Qh)×C([0,T ]; Xh
2) and furthermore has the following bound

‖vh‖
2
L∞([0,T ];L2(Ω1)) + ‖uht‖

2
L∞([0,T ];L2(Ω2)) + ‖vh‖

2
L2([0,T ];X1) + ‖uh‖

2
L∞([0,T ];X2)

≤ CeCT (‖f‖2L2([0,T ];L2(Ω)) + ‖u0‖
2
1,Ω2

+ ‖v0‖
2
1,Ω1

+ ‖p0‖0,Ω1 + ‖u1‖
2
0,Ω2

),

and

‖vht‖
2
L∞([0,T ];L2(Ω1)) + ‖uhtt‖

2
L∞([0,T ];L2(Ω2)) + ‖vht‖

2
L2([0,T ];X1) + ‖uht‖

2
L∞([0,T ];X2)

+‖ph‖L2([0,T ];L2(Ω1))

≤ CeCT (‖f‖2H1([0,T ];L2(Ω)) + ‖u0‖
2
2,Ω2

+ ‖v0‖
2
2,Ω2

+ ‖p0‖
2
1,Ω2

+ ‖u1‖
2
2,Ω2

).

Proof. Using the same approach as for Lemmas 2.1-2.2, we can obtain the proof of Lemma 3.1.

4. Convergence

In this section, we mainly consider the convergence of the semi-discrete finite element method for
the nonlinear fluid-structure interaction problem. Then, we will provide the stability of the limit of the
finite element approximation based on the results on the previous section.
Theorem 4.1 Assume that the finite element meshes are nested and the data (v0, u0, u1, f1, f2) satisfies
(2.8) and (2.29). Let (vh, ph,uh) ∈ Xh

1×Qh×Xh
2 be the solution to (3.4)-(3.7), then there exists a unique

solution (v, p,u) ∈ X1 × Q × X2 satisfying

v ∈ L∞([0,T ]; L2(Ω1))
⋂

L2([0,T ]; X1),

vt ∈ L∞([0,T ]; L2(Ω1))
⋂

L2([0,T ]; X1), p ∈ L2([0,T ]; L2(Ω1)),

u ∈ L∞([0,T ]; X2),ut ∈ L∞([0,T ]; X2),utt ∈ L∞([0,T ]; L2(Ω2)), (4.1)

vh
∗
⇀ v in L∞([0,T ]; L2(Ω1)), vh→v, in L2([0,T ]; X1),

vht
∗
⇀ vt in L∞([0,T ]; L2(Ω1)), vht→vt in L2([0,T ]; X1),

uh
∗
⇀u in L∞([0,T ]; X2), uhtt

∗
⇀utt in L∞([0,T ]; L2(Ω2)),

uht
∗
⇀ut in L∞([0,T ]; L2(Ω2)), uht

∗
⇀ut in L∞([0,T ]; X2),

ph→p weakly in L2([0,T ]; L2(Ω1)). (4.2)

Furthermore, (v, p,u) satisfies (2.4)-(2.7).

Proof. Using the boundness of the finite element solution (vh, ph,uh), we may extract a subsequence
(vhµ , phµ ,uhµ) from it with the mesh scale decreasing to zero as µ→∞, and satisfy (4.1)-(4.2). A proof
of the error estimate can be found in [8, 9]. For completeness and to show the results of the nonlinear
fluid-structure interaction, we will sketch the proof here.

AIMS Mathematics Volume 5, Issue 5, 5240–5260.



5250

As for the trilinear term, we have for v ∈ L∞([0,T ]; L2(Ω1))∩L2([0,T ]; X1) and w ∈ C1([0,T ]; Xhµ
1 )

∫ T

0
c[vhµ , vhµ ,w]dt =

∫ T

0
dt

∫
Ω1

∑
i, j

vi
hµ

∂v j
hµ

∂xi w jdΩ. (4.3)

For all µ > N, passing to the limit as µ→∞, yields that

∫ T

0
dt

∫
Ω1

∑
i, j

vi
hµ

∂v j
hµ

∂xi w jdΩ →

∫ T

0
dt

∫
Ω1

∑
i, j

vi∂v j

∂xi w jdΩ

since

∣∣∣∣∣∣
∫ T

0
dt

∫
Ω1

∑
i, j

vi∂v j

∂xi w jdΩ −

∫ T

0
dt

∫
Ω1

∑
i, j

vi
hµ

∂v j
hµ

∂xi w jdΩ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ T

0
dt

∫
Ω1

∑
i, j

(vi − vi
hµ)
∂v j

∂xi w jdΩ +

∫ T

0
dt

∫
Ω1

∑
i, j

vi
hµ(
∂v j

hµ

∂xi −
∂v j

∂xi )w jdΩ

∣∣∣∣∣∣
≤ ‖(vi − vi

hµ)‖L∞([0,T ];L2(Ω1))‖v j‖L2([0,T ];X1)‖w j‖L2([0,T ];L2(Ω1))

+‖vi
hµ‖L∞([0,T ];L2(Ω1))‖v j − v j

hµ
‖L2([0,T ];X1)‖w j‖L2([0,T ];L2(Ω1)).

Recalling [8, 9], we can obtain the following results. Since uht→ut weak start convergence in
L∞([0,T ]; L2(Ω2)) and L∞([0,T ]; L2(Ω2)) is dense in L2([0,T ]; L2(Ω2)), we can obtain the strong
convergence for uht→ut in L2([0,T ]; L2(Ω2)) with its norm. Similarly, we can also have the same
result on the strong convergence for vh→v in L2([0,T ]; L2(Ω1)) with its norm. Thus, all these implies

v|Γ0 = ut|Γ0 . Applying the same approach as above, we can obtain (2.5) since
∞⋃
µ=N

L2([0,T ]; Qhµ) is

dense in L2([0,T ]; L2(Ω1)).
Using the estimates of semi-discrete finite element approximation in Lemma 3.1 and analysis above,

we have for each fixed N with µ > N∫ T

0
(ρ1[vhµt,w]Ω1 + a1[vhµ ,w] + b[w, phµ] + c[vhµ , vhµ ,w]

+ρ2[utthµ ,w]Ω2 + a2[uhµ ,w])dt

=

∫ T

0
(ρ1[f1,w]Ω1 + ρ2[f2,w]Ω2)dt, w ∈ C1([0,T ]; Xhµ). (4.4)

Thus, passing to the limit as µ→∞, we conclude that∫ T

0
(ρ1[vt,w]Ω1 + a1[v,w] + b[w, p] + c[v, v,w] + ρ2[utt,w]Ω2 + a2[u,w])dt

=

∫ T

0
(ρ1[f1,w]Ω1 + ρ2[f2,w]Ω2)dt,∀w ∈ C1([0,T ], Xhµ) (4.5)
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and noting
∞⋃
µ=N

C1([0,T ]; Xhµ) is dense in L2([0,T ]; X), yields that

∫ T

0
(ρ1[vt,w]Ω1 + a1[v,w] + b[w, p] + c[v, v,w] + ρ2[utt,w]Ω2 + a2[u,w])dt

=

∫ T

0
(ρ1[f1,w]Ω1 + ρ2[f2,w]Ω2)dt, w ∈ X, a.e.t. (4.6)

Moreover, we will consider the convergence of the finite element approximate on the initial value and
interface boundary. First, setting w(T ) = 0 and noticing∫ T

0
[vt,w]Ω1dt =

∫ T

0

d
dt

[v,w]Ω1dt −
∫ T

0
[v,wt]Ω1dt

= [v(T ),w(T )]Ω1 − [v(0),w(0)]Ω1 −

∫ T

0
[v,wt]Ω1dt, (4.7)

and ∫ T

0
[utt,w]Ω2dt =

∫ T

0

d
dt

[ut,w]Ω2dt −
∫ T

0
[ut,wt]Ω2dt

= [ut(T ),w(T )]Ω2 − [ut(0),w(0)]Ω2 −

∫ T

0
[ut,wt]Ω2dt, (4.8)

we obtain from (4.6) for w ∈ C1([0,T ]; X)∫ T

0
(−ρ1[v,wt]Ω1 + a1[v,w] + b[w, p] + c[v, v,w] − ρ2[ut,wt]Ω2 + a2[u,w])dt

=

∫ T

0
(ρ1[f1,w]Ω1 + ρ2[f2,w]Ω2)dt + ρ1[v(0),w(0)]Ω1 + ρ2[ut(0),w(0)]Ω2 . (4.9)

On the other hand, by the same reason of (4.4), and passing to the limit as µ→∞, we infer for w ∈
C1([0,T ]; Xhµ)∫ T

0
(−ρ1[v,wt]Ω1 + a1[v,w] + b[w, p] + c[v, v,w] − ρ2[ut,wt]Ω2 + a2[u,w])dt

=

∫ T

0
(ρ1[f1,w]Ω1 + ρ2[f2,w]Ω2)dt + ρ1[v0,w(0)]Ω1 + ρ2[u1,w(0)]Ω2 , (4.10)

which together with (4.9) implies

ρ1[v(0) − v0,w(0)]Ω1 + ρ2[ut(0) − u1,w(0)]Ω2 = 0, w(0) ∈ Xhµ . (4.11)

Thus, using the bedding theorem that
∞⋃
µ=0

Xhµ is dense in L2(Ω), we can infer that

v(0) = v0 in L2(Ω1), ut(0) = u1 in L2(Ω2). (4.12)
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Using (4.1) and compact embedding theory, we can deduce the following strong convergence for a
further subsequence hµ

uhµ,t→ut in L2([0,T ]; L2(Ω2)),
uhµ→u in L2([0,T ]; L2(Ω2)). (4.13)

Then, noticing

uhµ = u0hµ +

∫ t

0
uhµ t(s)ds, (4.14)

and ‖u0h − u0‖0,Ω2 = 0 as h→0, yields that

u = u0 +

∫ t

0
utds. (4.15)

Therefore, we have

u0 = u −
∫ t

0
ut(s)ds = u(0, x), (4.16)

which is the second equation of (2.10). �

5. Error estimate

The goal of this section is to analyze the estimates of the discretization errors for the Galerkin
finite element method for the nonlinear fluid-structure interaction problem. The estimates are based
on the solution to (3.4)-(3.7). The approach is based on a priori estimates for the solution of Galerkin
semi-discrete scheme in space [14, 16, 18, 28], the full set of estimates is obtained by differentiateting
the discrete version with the respect to time. Furthermore, the analysis in Theorem 5.1 below, which
provide a good global assessment of the discretization error under reasonable assumptions.

First, the projection operator Ph : L2(Ω)→Ψh is introduced as follows:

ρ1[Phv,w] + ρ2[Phu,w] = ρ1[v,w] + ρ2[u,w], ∀w ∈ Ψh, (5.1)

which implies

b[Phw, qh] = 0, ∀qh ∈ Qh. (5.2)

Under the hypotheses of angle condition on two domains Ω1 and Ω2, it holds for ε ∈ (0, 1) and integer
k > 0 that [9]

(‖v − Phv‖0,Ω1 + ‖u − Phu‖0,Ω2) + h(‖∇(v − Phv)‖0,Ω1 + ‖∇(v − Phv)‖0,Ω2)
≤ Ch1+r−ε(‖v‖r+1,Ω1 + ‖u‖r+1,Ω2),

∀v ∈ Hr+1(Ω1), u ∈ Hr+1(Ω2), i = 1, 2, r ∈ [0, k]. (5.3)

Then, we have the following result of semi-discrete finite element approximations of the fluid-solid
interaction problem.
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Theorem 5.1 Under the hypothesis of Theorem 4.1, let (v, p,u) ∈ X1 × Q × X2 and (vh, ph,uh) ∈
Xh

1 × Qh × Xh
2 be the solution of (2.4)-(2.7) and (3.4)-(3.7), respectively. Then, it holds

‖v − vh‖
2
L∞([0,T ],L2(Ω1)) + ‖ut − uht‖

2
L∞([0,T ],L2(Ω2))

+‖∇(v − vh)‖2L2([0,T ],L2(Ω1)) + ‖∇(u − uh)‖2L2([0,T ],L2(Ω2))

≤ Ch2r(‖v0‖
2
r+1,Ω1

+ ‖p0‖
2
r,Ω1

+ ‖u1‖
2
r+1,Ω2

) + Ch2(r−ε)(‖v‖2L2([0,T ],Hr+1(Ω1))

+‖u‖2L2([0,T ],Hr+1(Ω2)) + ‖p‖2L2([0,T ],Hr(Ω1)) + ‖ut‖
2
L2([0,T ],Hr+1(Ω2)))dt. (5.4)

Proof. Subtracting (2.4) from (3.4), yields that

ρ1[vt − vht,wh]Ω1 + a1[v − vh,wh] + b[wh, p − ph] + c[v, v,wh] − c[vh, vh,wh]
ρ2[utt − uhtt,wh]Ω2 + a2[u − uh,wh] = 0, ∀wh ∈ Xh, a.e.t. (5.5)

In order to uniform the variational formulation, we define wh in two different domains. Setting wh =

ξ̃ − ξh with

ξh|Ωi =

 vh if i = 1,

uht if i = 2,

and

ξ̃|Ωi =

 Phv if i = 1,

Phut if i = 2,

using (5.1), then we can obtain the following result

ρ1[vt − vht,wh]Ω1 + ρ2[utt − uhtt,wh]Ω2

= ρ1[Phvt − vht,wh]Ω1 + ρ2[Phut − uht,wh]Ω2

=
ρ1

2
d
dt
‖Phv − vh‖

2
0,Ω1

+
ρ2

2
d
dt
‖Phut − uht‖

2
0,Ω2

. (5.6)

By (3.5) and (5.2),

b[Phv − vh, p − ph] = b[Phv − vh, p − qh], ∀qh ∈ Qh. (5.7)

Similarly,

a1[Phv − vh, Phv − vh] + a2[Phu − uh, Phut − uht]

= µ1‖∇(Phv − vh)‖20,Ω1
+

1
2

d
dt
|||Phu − uh|||

2
0,Ω2

. (5.8)

Using the estimates of the trilinear term c[·, ·, ·], leads to

c[v, v,wh] − c[vh, vh,wh]
= c[v − vh, v,wh] − c[vh, v − vh,wh]
≤ c[v − Phv, v,wh] + c[Phv − vh, v,wh] + c[vh, v − Phv,wh]
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+c[vh, Phv − vh,wh]
= I1 + I2 + I3 + I4, (5.9)

Substituting wh = Phv − vh into the above inequalities and using (2.15), we have

|I1 + I3| ≤ C0‖∇(v − Phv)‖0,Ω1(‖∇v‖0,Ω1 + ‖∇vh‖0,Ω1)‖∇(vh − Phv)‖0,Ω1

≤
µ1

2
‖∇(v − Phv)‖0,Ω1‖∇(vh − Phv)‖0,Ω1

≤
µ1

8
‖∇(vh − Phv)‖20,Ω1

+
µ1

2
‖∇(v − Phv)‖20,Ω1

(5.10)

and

|I2 + I4| ≤ C0(‖∇v‖0,Ω1 + ‖∇vh‖0,Ω1)‖∇(vh − Phv)‖20,Ω1

≤
µ1

2
‖∇(vh − Phv)‖20,Ω1

, (5.11)

which together with (5.9) yields that

|c[v, v,wh] − c[v, v,wh]|

≤
5µ1

8
‖∇(vh − Phv)‖20,Ω1

+
µ1

2
‖∇(v − Phv)‖20,Ω1

. (5.12)

From the bounds of these inequality and the Young inequality, hence, after inserting (5.5) and noting
that

a2[u − Phu, Phut − uht] =
d
dt

a2[u − Phu, Phu − uh] − a2[ut − Phut, Phu − uh]

we have
ρ1

2
d
dt
‖Phv − vh‖

2
0,Ω +

ρ2

2
d
dt
‖Phut − uht‖

2
0,Ω + µ1‖∇(Phv − vh)‖20,Ω1

+
1
2

d
dt
|||(Phu − uh)|||20,Ω2

= −a1[v − Phv, Phv − vh] − b[Phv − vh, p − qh] − a2[u − Phu, Phut − uht]
−c[v, v,wh] + c[vh, vh,wh]

= −a1[v − Phv, Phv − vh] − b[Phv − vh, p − qh] −
d
dt

a2[u − Phu, Phu − uh]

+a2[ut − Phut, Phu − uh] − c[v, v,wh] + c[vh, vh,wh]

≤
7µ1

8
‖∇(Phv − vh)‖20,Ω1

+ C(‖∇(v − Phv)‖20,Ω1
+ ‖p − qh‖

2
0,Ω1

+ |||ut − Phut|||
2
0,Ω2

)

+
1
2
|||(Phu − uh)|||20,Ω2

−
d
dt

a2[u − Phu, Phu − uh], (5.13)

where the last positive constant C determined by the bounds of the data (µ, f, v0,u0,u1). Recalling the
estimate in (3.14), the definition of initial value u0h in (3.15), integrating the above equation from 0 to
s, and using the Gronwall inequality, we can achieve the following result:

‖Phv − vh‖
2
0,Ω + ‖Phut − uht‖

2
0,Ω + ‖∇(Phu − uh)‖20,Ω2

)

+

∫ s

0
(‖∇(Phv − vh)‖20,Ω1

dt

≤ Ch2r(‖v0‖
2
r+1,Ω1

+ ‖p0‖
2
r,Ω1

+ ‖u1‖
2
r+1,Ω2

)

+Ch2(r−ε)
∫ T

0
(‖v‖2r+1,Ω1

+ ‖p‖2r,Ω1
+ ‖u‖2r+1,Ω2

+ ‖ut‖
2
r+1,Ω2

)dt,

which together with a triangle inequality, yields the desired result. �
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6. Numerical experiments

In this section, we present numerical experiment to examine the convergence of the fluid-structure
interaction system. The computational domain Ω is designed as [0, 2π]× [−1, 1], where Ω1 = [0, 2π]×
[0, 1], Ω2 = [0, 2π] × [−1, 0], I0 = [0, 2π] × {0} and Γ1,Γ2 defined as before, i.e. Figure 1.

Figure 1. A sketch of the fluid domain Ω1, structure domain Ω2 and interface I0.

In order to satisfy the conditions on coupled interface I0, we set µ1 = µ2 = 1−2ν
4 sin(1)(1−ν) and λ2 =

ν
2 sin(1)(1−ν) by Lame formulation, in which 0 < ν < 1

2 is Poisson’s ratio. Especially, let ν = 1
4 , ρ1 = ρ2 = 1

and T = 1 in this example. Then the boundary data, initial data and the source terms are chosen such
that the exact solution of the fluid-structure interaction system is given by

v = {− cos(x) sin(y − 1)et, sin(x)(cos(y − 1) − 1)et},

p = sin(x) cos(y)et,

u = {− cos(x) sin(y − 1)et, sin(x)(cos(y + 1) − 1)et}.

For the discretization in space we have considered Taylor-Hood element for the Navier-Stokes
equations and P2 for the Elasticity system. It should be noted that the finite element partition in Ω1

and Ω2 must match at the interaction interface. For the discretization in time we combine the central
difference scheme for the second-order derivative with the Implicit Euler scheme for the first-order
derivative. First, without consider the nonlinear term, we can express the discrete system (3.4) − (3.5)
as the following linear algebraic systems

M2
d2w
dt2 + M1

dw
dt

+ S 1w = F,

where the matrices M2, M1 and S 1 are deduced from the bilinear a1[·, ·], a2[·, ·], b[·, ·], [ d·
dt , ·], [

d2·
dt2 , ·], F is

the variation of the source term and w = {v1, v2, ph, u1, u2} are the unknowns. In particular, the matrix
M2, M1 and S 1, respectively, have the following form

M2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 M21 0
0 0 0 0 M21


,
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M1 =


M11 0 0 M12 0
0 M11 0 0 M12

0 0 0 0 0
0 0 0 M13 0
0 0 0 0 M13


and

S 1 =


A1 A2 B1 ∗ ∗

AT
2 A3 B2 ∗ ∗

BT
1 BT

2 0 0 0
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗


.

Then as a result of treating trilinear by Oseen iteration, i.e. (vn
h · ∇)vn+1

h , the time-discrete problem can
be read as:

(
M2

τ2 +
M1

τ
+ S 1 + S 2)wn+1 = Fn+1 + (

2M2

τ2 +
M1

τ
)wn −

M2

τ2 wn−1,

where S 2 can be express as 
A4 0 0 0 0
0 A4 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


.

Obviously, the foregoing matrix systems can be derived from the following equation:

ρ1

[
vn+1 − vn

∆t
,w1h

]
Ω1

+ a1[vn+1
h ,w1h] + b[w1h, pn+1

h ] − b[vn+1
h , qh] + (vn

h · ∇)vn+1
h

+ρ2

[
un+1 − 2un + un−1

∆t2 ,w2h

]
Ω2

+ a2[un+1
h ,w2h]

+

∫
I0

(vn+1
h − un+1

ht )w1hds +

∫
I0

[µ2(∇uh + ∇uT
h )n2 + λ(divuhn2)]n+1w1hds

+

∫
I0

(un+1
ht − vn+1

h )w2hds −
∫

I0

[pn1 − µ1(∇vh + ∇vT
h )n1]n+1w2hds

= ρ1[fn+1
1 ,w1h]Ω1 + ρ2[fn+1

2 ,w2h]Ω2 , n = 0, 1, · · ·N, (6.1)

where ∆t = T/N is the uniform time step size. Moreover, when treating the initial conditions, we use
the Implicit Euler scheme as the method of difference.

We partition domain Ω into a uniform matching triangulation. The refined meshes are obtained
by dividing primary meshes into four similar cells by connecting the edge midpoints. By matching
the time step size ∆t with the mesh size O(8h3), Table 1 gives the numerical results through using the
monolithic scheme. We see that the convergence rates for the velocity, pressure and displacement of
the solid are just about O(h3), O(h2) and O(h3), respectively, as the theoretical prediction.

In order to verify the order of time convergence, thought there is no theoretical analysis in this
paper, we test the case in which space step size h can be chosen as small as enough. We can observe
that the expected order of convergence in τ, i.e. O(τ) in Table 2.
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Table 1. Error results for the triples P2 − P1 − P2 at the end time.

h ‖vn − vn
h‖1 ‖pn − pn

h‖0 ‖un − un
h‖0 ‖un − un

h‖1

2−3 5.0313e-02 3.7129e-02 2.2842e-02 7.1309e-02
2−4 1.1786e-02 7.4693e-03 2.8885e-03 1.3052e-02
2−5 2.8876e-03 1.7159e-03 3.7417e-04 2.8635e-03
2−6 7.1868e-04 4.1590e-04 5.3240e-05 6.8775e-04

Rate 2.0431 2.1601 2.9150 2.2320

Table 2. Error results for different time step size τ and h = 2−6.

τ ‖vn − vn
h‖1 ‖pn − pn

h‖0 ‖un − un
h‖0 ‖un − un

h‖1

1/5 2.7888e-01 2.9410e-01 2.8505e-01 7.0934e-01
1/10 1.3926e-01 1.5211e-01 1.4489e-01 3.6428e-01
1/20 6.9729e-02 7.7373e-02 7.3046e-02 1.8516e-01
1/40 3.4912e-02 3.9019e-02 3.6674e-02 9.3457e-02
Rate 0.9993 0.9714 0.9861 0.9747

Then in Table 3 and Table 4, we test the different decoupling order scheme for this interaction
system. Table 3 shows the results by first solving Navier-Stokes equation, then solving Elasticity
equation; Table 4 shows the results in reverse order. In both of them, we use the Nitsche’s trick to treat
the Dirichlet interface condition, i.e. the first equation of (2.3). That is to say, we use

∫
I0

(vn
h−un−1

ht )w1hds
or

∫
I0

(un
ht − vn

h)w2hds to weakly treat the Dirichlet interface condition.

Table 3. Error results for first solving Navier-Stokes equation.

h ‖vn − vn
h‖1 ‖pn − pn

h‖0 ‖un − un
h‖0 ‖un − un

h‖1

2−3 8.3133e-02 4.3960e-02 2.2426e-02 7.2486e-02
2−4 1.4350e-02 7.8258e-03 2.8314e-03 1.3255e-02
2−5 3.0401e-03 1.7028e-03 3.6418e-04 2.8794e-03
2−6 7.2433e-04 4.7933e-04 5.1454e-05 6.8676e-04

Rate 2.2809 2.1730 2.9226 2.2406

Table 4. Error results for first solving Elasticity equation.

h ‖vn − vn
h‖1 ‖pn − pn

h‖0 ‖un − un
h‖0 ‖un − un

h‖1

2−3 5.0113e-02 4.1194e-02 2.6434e-02 9.3836e-02
2−4 1.1725e-02 7.7002e-03 3.2815e-03 1.5731e-02
2−5 3.5428e-03 2.0901e-03 4.1104e-04 3.6282e-03
2−6 7.1862e-04 4.4337e-04 5.3622e-05 7.3375e-04

Rate 2.0413 2.1793 2.9818 2.3329
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Concretely, we take the decoupling method used in Table 3 as an example, i.e. first solving Navier-
Stokes equation then solving Elasticity equation, to explain the decoupling computational process.
First, we give the following fully discrete scheme:

ρ1[vn
ht,w1h]Ω1 + a1[vn

h,w1h] + b[w1h, pn
h] − b[vn

h, qh] + (vn−1
h · ∇)vn

h

+

∫
I0

(vn
h − un−1

ht )w1hds = ρ1[fn
1 ,w1h]Ω1 −

∫
I0

[µ2(∇uh + ∇uT
h )n2 + λ(divuhn2)]n−1w1hds

ρ2[un
htt,w2h]Ω2 + a2[un

h,w2h] +

∫
I0

(un
ht − vn

h)w2hds = ρ2[fn
2 ,w2h]Ω2

+

∫
I0

[pn1 − µ1(∇vh + ∇vT
h )n1]nw2hds,

then the corresponding matrix representations of foregoing equations can be written by imitating the
process before. What we need emphasize is that we substitute the coupled Neumann interface

∫
I0

[pn1−

µ1(∇vh+∇vT
h )n1]nw1hds by the known value of n−1, i.e, −

∫
I0

[µ2(∇uh+∇uT
h )n2+λ(∇·uhn2)]n−1w1hds in

Navier-Stokes equation; then we substitute the coupled Neumann interface
∫

I0
[µ2(∇uh +∇uT

h )n2 +λ(∇ ·
uhn2)]nw2hds by the updated value of Navier-Stokes equation, i.e,

∫
I0

[pn1 − µ1(∇vh + ∇vT
h )n1]nw2hds

in the Elasticity equation.
In the end, we need to explain the second method in Table 4. When treating the coupled interface

I0 in the Elasticity equation, we substitute
∫

I0
[pn1 − µ1(∇vh + ∇vT

h )n1]n−1w2hds for corresponding
term; When treating the coupled interface I0 in the Navier-Stokes equation, we substitute∫

I0
[µ2(∇uh + ∇uT

h )n2 + λ(∇ · uhn2)]nw1hds for corresponding term.
It can be seen that the convergence rates for the velocity, pressure of the fluid and displacement of

the solid are the same as previous coupled method.
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