Citation: Cyril Dennis Enyi, Soh Edwin Mukiawa. Dynamics of a thermoelastic-laminated beam problem[J]. AIMS Mathematics, 2020, 5(5): 5261-5286. doi: 10.3934/math.2020338
[1] | S. W. Hansen, R. Spies, Structural damping in a laminated beams due to interfacial slip, J. Sound Vib., 204 (1997), 183-202. doi: 10.1006/jsvi.1996.0913 |
[2] | T. A. Apalara, General stability of memory-type thermoelastic Timoshenko beam acting on shear force, Continuum Mech. Thermodyn., 30 (2018), 291-300. doi: 10.1007/s00161-017-0601-y |
[3] | S. E Mukiawa, T. A. Apalara, S. A. Messaoudi, A general and optimal stability result for a laminated beam, Journal of Integral Equations and Applications, 2020. |
[4] | T. A. Apalara, S. A. Messaoudi, An exponential stability result of a Timoshenko system with thermoelasticity with second sound and in the presence of delay, Appl. Math. Optim., 71 (2015), 449-472. doi: 10.1007/s00245-014-9266-0 |
[5] | T. A. Apalara, S. A. Messaoudi, A. A. Keddi, On the decay rates of Timoshenko system with second sound, Math. Methods Appl. Sci., 39 (2016), 2671-2684. doi: 10.1002/mma.3720 |
[6] | T. A. Apalara, Uniform stability of a laminated beam with structural damping and second sound Z. Angew. Math. Phys., 41 (2017), 68(2). |
[7] | V. I. Arnold, Mathematical Methods of Classical Mechanics, New York: Springer-Verlag, 1989. |
[8] | X. G. Cao, D. Y. Liu, G. Q. Xu,Easy test for stability of laminated beams with structural damping and boundary feedback controls, J. Dyn. Control Syst., 13 (2007), 313-336. doi: 10.1007/s10883-007-9022-8 |
[9] | M. M. Cavalcanti, A, Guesmia, General decay rates of solutions to a nonlinear wave equation with boundary condition of memory type, Differ. Integral Equ., 18 (2005), 583-600. |
[10] | I. Chueshov, I. Lasiecka, Long-Time behaviour of second order evolution equations with nonlinear damping, Memoirs of the American Mathematical Society, Providence, 195, 2008. |
[11] | A. Miranville, S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Evolutionary Equations, IV (2008), 103-200. |
[12] | R. Temam, Infinite dimensional dynamical systems in mechanics and physics, Springer-Verlag, Berlin, Heidelberg, 2Eds, New York, 1997. |
[13] | M. M. Chen, W. J. Liu, W. C. Zhou, Existence and general stabilization of the Timoshenko system of thermo-viscoelasticity of type III with frictional damping and delay terms, Adv. Nonlinear Anal., 7 (2018), 547-569. doi: 10.1515/anona-2016-0085 |
[14] | B. Feng, Uniform decay of energy for a porous thermoelasticity system with past history, Appl. Anal., 97 (2018), 210-229. doi: 10.1080/00036811.2016.1258116 |
[15] | H. D. Fernández Sare, R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Ration. Mech. Anal., 194 (2009), 221-251. doi: 10.1007/s00205-009-0220-2 |
[16] | S. W. Hansen, A model for a two-layered plate with interfacial slip. In: Control and Estimation of Distributed Parameter Systems:, Nonlinear Phenomena (Vorau, 1993), International Series of Numerical Mathematics, 118 (1993), 143-170. |
[17] | W. Liu, W. Zhao, Stabilization of a thermoelastic laminated beam with past history, Appl. Math. Optim., 80 (2019), 103-133. doi: 10.1007/s00245-017-9460-y |
[18] | A. Lo, N. E. Tatar, Uniform stability of a laminated beam with structural memory, QTDS 15 (2016), 517-540. |
[19] | A. Lo, N. E. Tatar, Stabilization of laminated beams with interfcial slip EJDE, 129 (2015), 1-14. |
[20] | S. E. Mukiawa, C. D. Enyi, Well-posedness and Attractors for a Memory-type Thermoelastic Timoshenko Beam Acting on Shear Force, Taiwanese J. Math., DOI: 10.11650/tjm/191106. |
[21] | S. A. Messaoudi, A. Fareh, General decay for a porous thermoelastic system with memory: the case of equal speeds, Nonlinear Anal., 74 (2011), 6895-6906. doi: 10.1016/j.na.2011.07.012 |
[22] | S. A. Messaoudi, A. Fareh, General decay for a porous-thermoelastic system with memory: The case of nonequal speeds, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 23-40. |
[23] | C. A. Raposo, Exponential stability for a structure with interfacial slip and frictional damping, Appl. Math. Lett., 53 (2016), 85-91. doi: 10.1016/j.aml.2015.10.005 |
[24] | N. E. Tatar, Stabilization of a laminated beam with interfacial slip by boundary controls, Bound. Value Probl., 2015 (2015), 1-11. doi: 10.1186/s13661-014-0259-3 |
[25] | M. L. Santos, D. S. A. Junior, J. E. M. Rivera, The stability of number of the Timoshenko system with second sound, J. Differ. Equ., 253 (2012), 2715-2733. doi: 10.1016/j.jde.2012.07.012 |
[26] | J. M. Wang, G. Q. Xu, S. P. Yung, Exponential stabilization of laminated beams with structural damping and boundary feedback controls, SIAM J. Control Optim., 44 (2005), 1575-1597. doi: 10.1137/040610003 |