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1. Introduction

In this paper, we consider the following thermoelastic laminated beam system with infinite memory
acting on the effective rotation angle, namely

ρϕtt + G (ψ − ϕx)x + θx = 0, x ∈ (0, 1), t > 0,

Iρ (3w − ψ)tt − D (3w − ψ)xx +

∫ +∞

0
g(s) (3w − ψ)xx (x, t − s)ds

−G (ψ − ϕx) − θ = f1(x), x ∈ (0, 1), t > 0,

Iρwtt − Dwxx + G (ψ − ϕx) +
4
3
γh(w) +

4
3
βwt = f2(x), x ∈ (0, 1), t > 0,

kθt − τθxx + ϕxt + (3w − ψ)t = 0, x ∈ (0, 1), t > 0,

(1.1)

where the functions f1, f2 ∈ L2(0, 1) are external forcing terms, h and g are the nonlinear source
term and relaxation function respectively. ϕ = ϕ(x, t) is the transverse displacement, ψ = ψ(x, t) is the
rotation angle, w = w(x, t) is proportional to the amount of slip along the interface, 3w−ψ is the effective
rotational angle and θ = θ(x, t) is the difference temperature. The positive parameters ρ, Iρ,G,D, γ, β, k
and τ are the density, mass moment of inertia, shear stiffness, flexural rigidity, adhesive stiffness,

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2020338


5262

adhesive damping parameter, capacity and the diffusivity respectively. We supplement system (1.1)
with initial dataϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), w(x, 0) = w0(x), θ(x, 0) = θ0(x), x ∈ [0, 1],

ϕt(x, 0) = ϕ1(x), ψt(x, 0) = ψ1(x), wt(x, 0) = w1(x), x ∈ [0, 1],
(1.2)

and boundary conditions

ϕx(0, t) = ψ(0, t) = w(0, t) = θ(0, t) = 0, t ≥ 0,
ϕ(1, t) = ψx(1, t) = wx(1, t) = θx(1, t) = 0, t ≥ 0.

(1.3)

System (1.1) models a vibrating structure, where two beams of the same layer and uniform thickness
are fastened together by an adhesive force in a way that permits the beams to slip over each other while
remaining in contact at all times. These types of structures are of great importance in the field of science
and engineering and are formally called laminated beams. The negligible mass and thickness of the
adhesive layer of the beams produces a damping mechanism which is proportional to slips frequency
of the two beams, thus producing a structural frictional force in the interfacial slip, see Hansen and
Spies [1].

In simple terms, the global attractor is a compact set on an infinite dimensional function space (the
phase space), which attracts at a uniform rate any bounded subset of the phase space. In some cases,
the global attractor may have finite dimension (Hausdorff and fractal dimension). Whenever the global
attractor possesses a finite fractal dimension, an infinite dimensional dynamical system generated by
a given PDE can be reduced to a finite dimensional systems of ODEs, for instance by making use
of Hölder-Mañé theorem. Readers may see [11, 12] and references there in for more details. The
main novelty of this work is to show that system (1.1)–(1.3) possesses a global attractor which has a
finite fractal dimension. Considering the complicated nature of system (1.1) with the presence of the
nonlinear source term, the obvious challenge would be to establish that the system (1.1) is dissipative.
We will achieve this by defining and estimating several Lyapunov functionals.

Now, we give a quick review of some models and results in the literature that are related to problem
(1.1). Liu and Zhao [17] considered problem (1.1) with h(w) = w, f1 = f2 = 0 and established
an exponential stability result. It is important to mention that in the settings of global attractors, the
attractors in this case reduces to the singleton set {0}, which of course is simple. However, the presence
of external forcing terms f1, f2 and the nonlinear source term h in system (1.1) creates a more interesting
and much more complicated attractors compared to the case where h(w) = w and f1 = f2 = 0.
Raposo [23] studied


ρϕtt + G (ψ − ϕx)x = 0, in (0, 1) × (0,+∞),
Iρ (3w − ψ)tt − D (3w − ψ)xx −G (ψ − ϕx) + k2(3w − ψ)t = 0, in (0, 1) × (0,+∞),
Iρwtt − Dwxx + 3G (ψ − ϕx) + 4γw + 4βwt = 0, in (0, 1) × (0,+∞).

(1.4)

and proved an exponential decay result. Apalara [6] considered a thermoelastic laminated beam with
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structural damping where the heat is given by the Cattaneo law. Precisely, he considered

ρϕtt + G (ψ − ϕx)x = 0, in (0, 1) × (0,+∞),
Iρ (3w − ψ)tt − D (3w − ψ)xx −G (ψ − ϕx) + δθx = 0, in (0, 1) × (0,+∞),

Iρwtt − Dwxx + G (ψ − ϕx) +
4
3
γw +

4
3
βwt = 0, in (0, 1) × (0,+∞),

ρ3θt + qx + δ(3w − ψ)tx = 0, in (0, 1) × (0,+∞),
τqt + αq + θx = 0, in (0, 1) × (0,+∞)

(1.5)

and proved the well-posedness as well as a uniform stability result. We refer the reader to [8, 16, 18–
20, 24, 26] and the references cited therein for more related results. Let us mention that, the laminated
beam problem (1.1) is closely related to the well-known Timoshenko problem. For instance, in the
case of finite memory, setting h(w) = w, u = 3w, ρ1 = ρ, ρ2 = Iρ, k = G, b = D, 3

4δ = γ, 3
4α = β, we

get 

ρ1ϕtt + k (ψ − ϕx)x + θx = 0, in (0, 1) × (0,+∞),

ρ2 (u − ψ)tt − D (u − ψ)xx +

∫ t

0
g(t − s) (u − ψ)xx (x, s)ds

− k (ψ − ϕx) − θ = 0, in (0, 1) × (0,+∞),
ρ2utt − buxx + 3k (ψ − ϕx) + δu + αut = 0, in (0, 1) × (0,+∞),
kθt − τθxx + ϕxt + (u − ψ)t = 0, in (0, 1) × (0,+∞).

(1.6)

Using (1.6)2 and (1.6)3, then setting u = 0, we get the thermoelastic Timoshenko system:
ρ1ϕtt − k (ϕx + ψ)x + θx = 0, in (0, 1) × (0,+∞),

ρ2ψtt − bψxx +

∫ t

0
g(s)ψxx(x, t − s)ds + k(ϕx + ψ) − θ = 0, in (0, 1) × (0,+∞),

ρ3θt − kθxx + ϕxt + ψt = 0, in (0, 1) × (0,+∞).

(1.7)

Several authors have studied (1.7), for instance, Feng [14] considered (1.7) and established that the
system is uniformly stable in cases of equal-wave speed and non equal wave speed of propagation.
Apalara [2] studied (1.7) with Neumann–Dirichlet–Dirichlet boundary conditions and proved a sta-
bility result without any condition on the speed of wave propagation. Messaoudi and Fareh [21, 22]
studied the following system

ρ1ϕtt − k (ϕx + ψ)x = 0, in (0, 1) × (0,+∞),

ρ2ψtt − bψxx +

∫ t

0
g(t − s)ψxx(x, s)ds + k(ϕx + ψ) − θ = 0, in (0, 1) × (0,+∞),

ρ3θt − kθxx + δψxt = 0, in (0, 1) × (0,+∞),

(1.8)

and proved a general decay result for the case of equal wave speed of propagation, as well as for non
equal wave speed of propagation. For more related results, we refer the reader to [3–5, 9, 13, 15, 25]
and references therein. This paper is organized as follows: In Section 2, we recall some preliminaries
and assumptions on the relaxation and nonlinear functions g and h respectively. In Section 3, we prove
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a well-posedness result for system (1.1)–(1.3). In Section 4, we establish the existence of the global
attractor for system (1.1)–(1.3). In Section 5, we show that the global attractor has a finite fractal
dimension. Throughout this work, we denote the inner product and norm in L2(0, 1) by (, ) and ‖.‖
respectively. Also, the variables C0, C̄ or Ci, i = 1, 2, 3, ... are positive generic constants that may
change from one line to another or within the same line.

2. Problem setting and preliminaries

In this section, we recall some useful materials and conditions. For this, we assume that the relax-
ation function g and the nonlinear function h satisfy:

(G1) g : [0,+∞) −→ (0,+∞) is an absolutely continuous function, with

g(0) > 0, D −
∫ ∞

0
g(s)ds = l0 > 0; (2.1)

(G2) there exists a positive constant λ such that for almost every y ∈ R+

g′(y) + λg(y) ≤ 0, t ≥ 0; (2.2)

(G3) we assume h ∈ C1(R) and for the function H(s) =

∫ s

0
h(τ)dτ, there exist constants C1,C2 > 0

such that
lim inf
|s|→+∞

H(s)
s2 ≥ 0, lim inf

|s|→+∞

sh(s) −C1H(s)
s2 ≥ 0, h′(s) ≥ −C2. (2.3)

We deduce from (2.3) that for every η > 0, there exist Cη,C′η > 0 such that

H(s) + ηs2 ≥ −Cη, ∀s ∈ R, sh(s) −C1H(s) + ηs2 ≥ −C′η, ∀s ∈ R. (2.4)

For example, the function h(s) = s|s|γ, 0 ≤ γ < +∞, satisfies (2.3).

To deal with the memory term, we set

ξt(x, s) = (3w − ψ)(x, t) − (3w − ψ)(x, t − s), t, s ≥ 0.

Simple calculations give

ξt(x, s) + ξs(x, s) − (3w − ψ)t(x, t) = 0, t, s ≥ 0.

So problem (1.1)–(1.3) becomes

ρϕtt + G (ψ − ϕx)x + θx = 0, x ∈ (0, 1), t > 0,

Iρ (3w − ψ)tt − lo (3w − ψ)xx +

∫ +∞

0
g(s)ξxx(x, s)ds

−G (ψ − ϕx) − θ = f1(x), x ∈ (0, 1), t > 0,

Iρwtt − Dwxx + G (ψ − ϕx) +
4
3
γh(w) +

4
3
βwt = f2(x), x ∈ (0, 1), t > 0,

kθt − τθxx + ϕxt + (3w − ψ)t = 0, x ∈ (0, 1), t > 0,
ξt + ξs − (3w − ψ)t = 0, x ∈ (0, 1), t, s > 0,

(2.5)
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with boundary and initial conditions:

ϕx(0, t) = ψ(0, t) = w(0, t) = θ(0, t) = ξ(0, s) = 0, t ≥ 0,
ϕ(1, t) = ψx(1, t) = wx(1, t) = θx(1, t) = ξx(1, s) = 0, t ≥ 0,
ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), w(x, 0) = w0(x), θ(x, 0) = θ0(x), x ∈ [0, 1],
ϕt(x, 0) = ϕ1(x), ψt(x, 0) = ψ1(x), wt(x, 0) = w1(x), x ∈ [0, 1],
ξ(x, 0) = 0, ξ0(x, s) = (3w0 − ψ0) − (3w − ψ)(x,−s), x ∈ [0, 1].

(2.6)

Let
W = (ϕ, u, 3w − ψ, q,w, v, θ, ξ)T .

Then, we can re-write system (2.5)-(2.6) as follows:
Wt + AW = F(W),

W(x, 0) = W0(x),
(2.7)

where
W0 = (ϕ0, ϕ1, 3w0 − ψ0, 3w1 − ψ1,w0,w1, θ0, ξ

0)T ,

F(W) = (0, 0, 0,
1
Iρ

f1(x), 0,−
4γ
3Iρ

h(w) +
1
Iρ

f2(x), 0, 0)T

and the linear operator A is given by

AW =



−u
G
ρ

(ψ − ϕx)x + 1
ρ
θx

−q

−
l0
Iρ

(3w − ψ)xx −
1
Iρ

∫ +∞

0
g(s)ξxx(x, s)ds −

G
Iρ

(ψ − ϕx) −
1
Iρ
θ

−v
−D

Iρ
wxx + G

Iρ
(ψ − ϕx) +

4β
3Iρ

v
− τkθxx + 1

k ux + 1
k q

ξs − q


.

We consider the following spaces:

H1
∗ (0, 1) = {z ∈ H1(0, 1)/z(0) = 0}, H̄1

∗ (0, 1) = {z ∈ H1(0, 1)/z(1) = 0},

H2
∗ (0, 1) = {z ∈ H2(0, 1)/zx ∈ H1

∗ (0, 1)}, H̄2
∗ (0, 1) = {z ∈ H2(0, 1)/zx ∈ H̄1

∗ (0, 1)}

and set

H = H̄1
∗ (0, 1) × L2(0, 1) × H1

∗ (0, 1) × L2(0, 1) × H1
∗ (0, 1) × L2(0, 1) × L2(0, 1) ×M, (2.8)

where
M = L2

g

(
R+,H1

∗ (0, 1)
)
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is defined by

L2
g

(
R+,H1

∗ (0, 1)
)

=

{
z : R+ → H1

∗ (0, 1)/
∫ 1

0

∫ ∞

0
g(s)|zx(x, s)|2dsdx < +∞

}
(2.9)

and endowed with the inner product

〈u, v〉M =

∫ 1

0

∫ ∞

0
g(s)ux(x, s)vx(x, s)dsdx.

In addition, we define the space

D(M) = {ξ, ξs ∈ M, ξ(x, 0) = 0} .

We have that, the inner product

〈(u1, u2, u3, u4, u5, u6, u7, u8), (v1, v2, v3, v4, v5, v6, v7, v8)〉H

= ρ

∫ 1

0
u2v2dx + Iρ

∫ 1

0
u4v4dx + 3Iρ

∫ 1

0
u6v6dx + k

∫ 1

0
u7v7dx

+ G
∫ 1

0
(3u5 − u3 − u1x)(3v5 − v3 − v1x)dx + l0

∫ 1

0
u3xv3xdx

+ 3D
∫ 1

0
u5xv5xdx +

∫ 1

0

∫ +∞

0
g(s)u8x(x, s)v8x(x, s)dsdx

together withH form a Hilbert space. Moreover, the domain of the linear operator A is defined by

D(A) :=


W ∈ H|ϕ ∈ H̄2

∗ (0, 1), u ∈ H̄1
∗ (0, 1), 3w − ψ ∈ H2

∗ (0, 1), q ∈ H1
∗ (0, 1),

w ∈ H2
∗ (0, 1), v ∈ H1

∗ (0, 1), θ ∈ H1
∗ (0, 1), ξ ∈ D(M), ξx ∈ H1(1, 0)

ϕx(0, t) = ψ(1, t) = wx(1, t) = ξx(1, s) = θx(1, t) = 0

 .
3. Wellposedness

In this section, we state the existence and uniqueness result for our problem.

Theorem 3.1. Assume (G1)− (G3) hold and f1, f2 ∈ L2(0, 1). If W0 ∈ H , then problem (2.5)−(2.6) has
a unique weak solution

W ∈ C
(
R+;H

)
.

Furthermore, if W0 ∈ D(A), then

W ∈ C
(
R+;D(A)

)
∩C1 (

R+;H
)
.

Proof. We show that the linear operator A is maximal monotone and that the function F is globally
lipschitz. For the maximality and monotonicity of A, see [17]. For the lipschitzness of F, let R > 0 and
set

BR = {U = (u1, u2, u3, u4, u5, u6, u7, u8) ∈ D(A) : ‖U‖H ≤ R} .
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Let U,V ∈ BR, using the embedding of H1
∗ (0, 1) in L∞(0, 1) and the fact that h ∈ C1(R), we have

‖F(U) − F(V)‖2
H

= 4γ
∫ 1

0
|h(u6) − h(v6)|2dx

≤ 4γ‖h′(y)‖L∞(0,1)‖u6 − v6‖
2
L2(0,1)

≤ C(R)‖U − V‖2
H
,

(3.1)

where y = αu6 + (1−α)v6, α ∈ (0, 1). Therefore, F is locally lipschitz. Thus, by Hille-Yosida Theorem
we obtain the existence of a local unique weak solution, that is

W ∈ C ([0,Tm);H) ,Tm > 0.

To obtain global existence, it is enough to show that ‖W(t)‖H is uniformly bounded independent
of time. To this end, first, we multiply (2.5)1 by ϕt and integrate over (0, 1), then using integration by
parts and the boundary conditions, we obtain

1
2

d
dt

(
ρ‖ϕt‖

2 + G‖(ψ − ϕx)‖2
)

= G ((ψ − ϕx), ψt) − (θx, ϕt) . (3.2)

Secondly, we multiply (2.5)2 by (3w−ψ)t and integrate over (0, 1), then using (2.5)5, integration by
parts and the boundary conditions, we get

1
2

d
dt

[
Iρ‖(3wt − ψt)‖2 + l0‖(3wx − ψx)‖2 + ‖ξx‖

2
M
− 2 ((3w − ψ), f1)

]
= G ((ψ − ϕx), (3wt − ψt)) + (θ, (3wt − ψt)) +

1
2

∫ 1

0

∫ ∞

0
g′(s)|ξx(x, s)|2dsdx.

(3.3)

Next, we multiply (2.5)3 by 3wt and integrate over (0, 1), then using integration by parts and the
boundary conditions, we get

1
2

d
dt

[
3Iρ‖wt‖

2 + 3D‖wx‖
2 + 8γ (H(w), 1) − 2 (w, f2)

]
= −3G ((ψ − ϕx),wt) − 4β‖wt‖

2.
(3.4)

Finally, we multiply (2.5)4 by θ, integrate over (0, 1), using integration by parts and the boundary
conditions, we infer that

1
2

d
dt

(
k‖θ‖2

)
= −τ‖θx‖

2 + (θx, ϕt) − (θ, (3w − ψ)t) . (3.5)

Adding (3.2)–(3.5), we obtain

d
dt

E(t) =
1
2

∫ 1

0

∫ ∞

0
g′(s)|ξx(x, s)|2dsdx − 4β‖wt‖

2 − τ‖θx‖
2 ≤ 0, ∀t ≥ 0, (3.6)

where
E(t) =

1
2

[
ρ‖ϕt‖

2 + 3Iρ‖wt‖
2 + Iρ‖(3wt − ψt)‖2 + 3D‖wx‖

2 + G‖(ψ − ϕx)‖2
]

+
1
2

[
l0‖(3wx − ψx)‖2 + ‖ξx‖

2
M

+ 8γ (H(w), 1) + k‖θ‖2
]

− ((3w − ψ), f1) − (w, f2) .

(3.7)
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Integration of (3.6) over (0, t) gives

E(t) + 4β
∫ t

0
‖wt(s)‖2ds ≤ E(0),∀t ≥ 0. (3.8)

From assumption (2.3), Young’s inequality and the embedding of H1
∗ (0, 1) in L2(0, 1), we get

E(t) ≥
1
2

[
ρ‖ϕt‖

2 + 3Iρ‖wt‖
2 + Iρ‖(3wt − ψt)‖2 + 3D‖wx‖

2 + G‖(ψ − ϕx)‖2
]

+
1
2

[
‖ξx‖

2
M

+ k‖θ‖2
]

+
l0

4
‖(3wx − ψx)‖2 − 4ηγλ1‖wx‖

2 − 4γCη

−
λ2

1

l0
‖ f1‖

2 −
3D
4
‖wx‖

2 −
λ2

1

3D
‖ f2‖

2

=
ρ

2
‖ϕt‖

2 +
3Iρ
2
‖wt‖

2 +
Iρ
2
‖(3wt − ψt)‖2 +

(
3D
4
− 4ηγλ1

)
‖wx‖

2

+
G
2
‖(ψ − ϕx)‖2 +

l0

4
‖(3wx − ψx)‖2 +

1
2
‖ξx‖

2
M

+
k
2
‖θ2‖ −C,

(3.9)

where λ1 is the Poincaré’s constant. We then choose η such that(
3D
4
− 4ηγλ1

)
=

D
2

and obtain
E(t) ≥ C0‖(ϕ, ϕt, 3w − ψ, 3wt − ψt,w,wt, θ, ξ)‖2H −C, (3.10)

where C0 = min{ρ2 ,
G
2 ,

Iρ
2 ,

l0
4 ,

1
4 ,

k
2 }. Combining (3.8) and (3.10), we get

‖W‖2
H

+
4β
C0

∫ t

0
‖wt(s)‖2ds ≤

1
C0

(E(0) + C) ≤ C̄,∀t ≥ 0. (3.11)

Therefore, ‖W(t)‖2
H

is uniformly bounded independent of time. Hence the solution is global. The
computations above are done for regular solutions. However, the result remains true for weak solutions
by density argument. This completes the proof. �

4. Global attractor

In this section, we establish the existence of the global attractor for system (2.5)–(2.6). The exis-
tence and uniqueness result in Theorem (3.1) guarantees the existence of solution semi-group

S (t) : H −→ H

defined by
S (t)W0 = W(t), ∀t ≥ 0,

where W is the unique solution of system (2.5)–(2.6).

Lemma 4.1. The semigroup S (t) is strongly continuous inH .
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Proof. Let W j = (ϕ j, ϕ
j
t , (3w − ψ) j, (3wt − ψt) j,w j,w j

t , θ
j, ξ j)T , j = 1, 2 be two solutions of system

(2.5)–(2.6). Then W = W1 −W2 satisfies

ρϕtt + G (ψ − ϕx)x + θx = 0, (x, t) ∈ (0, 1) × (0,+∞),

Iρ (3w − ψ)tt − l0 (3w − ψ)xx −

∫ +∞

0
g(s)ξxx(x, s)ds

−G (ψ − ϕx) − θ = 0, (x, t) ∈ (0, 1) × (0,+∞),

Iρwtt − Dwxx + G (ψ − ϕx) +
4
3
γ(h(w1) − h(w2)) +

4
3
βwt = 0, (x, t) ∈ (0, 1) × (0,+∞),

kθt − τθxx + ϕxt + (3w − ψ)t = 0, (x, t) ∈ (0, 1) × (0,+∞),
ξt + ξs − (3w − ψ)t = 0, (x, t) ∈ (0, 1) × (0,+∞),

(4.1)

with initial data W0 = W1
0 − W2

0 . Now, multiplying (4.1)1 by ϕt, (4.1)2 by (3wt − ψt), (4.1)3 by 3wt ,
(4.1)4 by θ in L2(0, 1), using integration by parts and adding the outcomes, we obtain

1
2

d
dt

(
‖W(t)‖2

H

)
+ 4β‖wt‖

2 +
4γ
3

(h(w1) − h(w2), 3wt)

= −τ‖θx‖
2 +

1
2

∫ 1

0

∫ ∞

0
g′(s)|ξx(x, s)|2dsdx.

(4.2)

Due to assumption (G1), we get

1
2

d
dt

(
‖W(t)‖2

H

)
+ 4β‖wt‖

2 +
4γ
3

(h(w1) − h(w2), 3wt) ≤ 0.

Using the same justification as in (3.1), we have on account of (3.11) that

1
2

d
dt

(
‖W(t)‖2

H

)
+ 4β‖wt‖

2 ≤ C‖W(t)‖2
H
, (4.3)

where C is positive constant depending on W1
0 and W2

0 . Application of Gronwall’s lemma to (4.3) leads
to

‖W(t)‖2
H
≤ eCt‖W0‖

2
H
,∀t ≥ 0,

and the desired result follows. �

Let us recall some basic definitions and theorems related to the theory of global attractor.

Definition 4.1. Let X be a Banach space. A set B ⊂ X is an absorbing set for the semigroup S (t) :
X → X if given any bounded set B ⊂ X there exist a time t0(B) such that S (t)B ⊂ B, for every t ≥ t0(B).

Definition 4.2. The global attractor for a semigroup S (t) acting on a Hilbert space H is a compact
subsetA of H satisfying the following conditions.
(i) A is invariant for S (t); i.e,

S (t)A = A, ∀ t ≥ 0.

(ii) A attracts bounded sets; this means, for any bounded set B ⊂ H, we have

lim
t−→∞

dH (S (t)B,A) = 0,
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where dH is the Hausdorff semi-distance defined by

dH(A, B) = sup
a∈A

inf
b∈B
‖a − b‖H.

Theorem 4.1. [10] Let S (t) be a dissipative semigroup on a metric space H. Then, S (t) has a compact
global attractor in H if and only if S (t) is asymptotically smooth in H.

4.1. Absorbing set

Next, we prove the existence of an absorbing set for system (2.5)-(2.6). To do this, we first state
and prove some useful lemmas.

Lemma 4.2. The functional J1 defined by

J1(t) = −Iρ

∫ 1

0
(3wt − ψt)

∫ +∞

0
g(s)ξ(x, s)dsdx

satisfies, along the solution of system (2.5)-(2.6), the estimate

J′1(t) ≤ −
Iρ(D − l0)

2
‖3wt − ψt‖

2 + ε1‖3wx − ψx‖
2 + ε1‖ψ − ϕx‖

2 + ε1λ1‖θx‖
2

+ C
(
1 +

1
ε1

)
‖ξx‖

2
M
−C

∫ 1

0

∫ +∞

0
g′(s)|ξx(x, s)|2dsdx +

1
2
‖ f1‖

2,

(4.4)

for any ε1 > 0.

Proof. Differentiation of J1 then using (2.5)2 and (2.5)5 along side integration by parts give

J′1(t) = − Iρ(D − l0)‖3wt − ψt‖
2 − Iρ

∫ 1

0
(3wt − ψt)

∫ +∞

0
g′(s)ξ(x, s)dsdx︸                                            ︷︷                                            ︸

I1

+ D
∫ 1

0
(3wx − ψx)

∫ +∞

0
g(s)ξx(x, s)dsdx︸                                             ︷︷                                             ︸

I2

+

∫ 1

0

(∫ +∞

0
g′(s)ξ(x, s)dsd

)2

dx︸                                  ︷︷                                  ︸
I3

−G
∫ 1

0
(ψ − ϕx)

∫ +∞

0
g(s)ξ(x, s)dsdx︸                                           ︷︷                                           ︸

I4

−

∫ 1

0
θ

∫ +∞

0
g(s)ξ(x, s)dsdx︸                            ︷︷                            ︸

I5

−

∫ 1

0
f1(x)

∫ +∞

0
g(s)ξ(x, s)dsdx.︸                                     ︷︷                                     ︸

I6

(4.5)

AIMS Mathematics Volume 5, Issue 5, 5261–5286.



5271

Using Hölder’s, Young’s and Poincaré’s equalities, we estimate the terms in (4.5) as follows:

I1 ≤
Iρ(D − l0)

2
‖3wt − ψt‖

2 −
Iρλ1g(0)
2(D − l0)

∫ 1

0

∫ +∞

0
g′(s)|ξx(x, s)|2dsdx,

I2 ≤ ε1‖3wx − ψx‖
2 +

D2(D − l0)
ε1

‖ξx‖
2
M
,

I3 ≤ (D − l0)‖ξx‖
2
M
,

I4 ≤ ε1‖ψ − ϕx‖
2 +

Gλ2
1(D − l0)
ε1

‖ξx‖
2
M
,

I5 ≤ ε1λ
2
1‖θx‖

2 +
(D − l0)λ2

1

2ε1
‖ξx‖

2
M
,

I6 ≤
1
2
‖ f1‖

2 +
D − l0

2
‖ξx‖

2
M
.

(4.6)

Substituting (4.6) into (4.5), we obtain the result. This completes the proof. �

Lemma 4.3. The functional

J2(t) = −kρ
∫ 1

0
θ

∫ x

0
ϕt(y)dydx

satisfies, along the solution of system (2.5)-(2.6), the estimate

J′2(t) ≤ −
ρ

2
‖ϕt‖

2 + ε2‖ψ − ϕx‖
2 + C

(
1 +

1
ε2

)
‖θx‖

2 + ρ‖3wt − ψt‖
2, (4.7)

for any ε2 > 0.

Proof. Direct differentiation of J2, then making use of (2.5)1 and (2.5)4 with integration by parts give

J′2(t) =τρ

∫ 1

0
θxϕtdx − ρ

∫ 1

0
ϕ2

t dx + ρ

∫ 1

0
(3wt − ψt)

∫ x

0
ϕt(y)dydx

+ kG
∫ 1

0
θ (ψ − ϕx) dx + k

∫ 1

0
θ2dx.

(4.8)

Using Young’s and Poincaré’s inequalities, we obtain

J′2(t) ≤ρτ2‖θx‖
2 +

ρ

4
‖ϕt‖

2 − ρ‖ϕt‖
2 + ρ‖3wt − ψt‖

2 +
ρ

4
‖ϕt‖

2 + ε2‖ψ − ϕx‖
2

+
(Gk)2λ1

4ε2
‖θx‖

2 + kλ1‖θx‖
2

≤ −
ρ

2
‖ϕt‖

2 + ε2‖ψ − ϕx‖
2 + C

(
1 +

1
ε2

)
‖θx‖

2 + ρ‖3wt − ψt‖
2,

(4.9)

for any ε2 > 0. This completes the proof. �

Lemma 4.4. The functional

J3(t) = ρ

∫ 1

0
ϕϕtdx + ρ

∫ 1

0
ψ

∫ x

0
ϕt(y)dydx
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satisfies, along the solution of (2.5)-(2.6), the estimate

J′3(t) ≤ −
G
2
‖ψ − ϕx‖

2 +
3ρ
2
‖ϕt‖

2 + ρ‖3wt − ψt‖
2 + 9ρ‖wt‖

2 +
λ2

1

2G
‖θx‖

2. (4.10)

Proof. We differentiate J3 and make use of (2.5)1 with integration by parts to get

J′3(t) = ρ

∫ 1

0
ϕ2

t dx −G
∫ 1

0
(ψ − ϕx)2dx + ρ

∫ 1

0
ψt

∫ x

0
ϕt(y)dydx −

∫ 1

0
θ(ψ − ϕx)dx.

Using Cauchy-Schwarz, Young’s and Poincaré’s inequalities, we obtain

J′3(t) ≤ ρ‖ϕt‖
2 −G‖ψ − ϕx‖

2 +
ρ

2
‖ϕt‖

2 +
ρ

2
‖ψt‖

2 +
λ1

2G
‖θx‖

2 +
G
2
‖ψ − ϕx‖

2

= −
G
2
‖ψ − ϕx‖

2 +
3ρ
2
‖ϕt‖

2 +
ρ

2
‖ψt‖

2 +
λ2

1

2G
‖θx‖

2.

(4.11)

We observe that
‖ψt‖

2 = ‖ − (3wt − ψt) + 3wt‖
2 ≤ 2‖3wt − ψt‖

2 + 18‖wt‖
2. (4.12)

Substituting (4.12) into (4.11), we obtain the desired result. This completes the proof. �

Lemma 4.5. The functional

J4(t) = Iρ

∫ 1

0
(3w − ψ)(3w − ψ)tdx

satisfies, along the solution of (2.5)-(2.6), the estimate

J′4(t) ≤ −
l0

4
‖3wx − ψx‖

2 + Iρ‖3wt − ψt‖
2 +

3(D − l0)
2l0

‖ξx‖
2
M

+
3(Gλ1)2

2l0
‖ψ − ϕx‖

2 +
3λ4

1

2l0
‖θx‖

2 + C.
(4.13)

Proof. By differentiating J4, then using (2.5)2 and integration by parts, we get

J′4(t) =Iρ‖3wt − ψt‖
2 − l0‖3wx − ψx‖

2 −

∫ 1

0
(3wx − ψx)

∫ +∞

0
g(s)ξx(x, s)dsdx

+ G
∫ 1

0
(3w − ψ)(ψ − ϕx)dx +

∫ 1

0
(3w − ψ)θdx +

∫ 1

0
(3w − ψ) f1(x)dx.

(4.14)

Applying Young’s, Poincaré’s and Cauchy-Schwarz inequalities, we obtain

J′4(t) ≤ Iρ‖3wt − ψt‖
2 − l0‖3wx − ψx‖

2 +
3

2l0

∫ 1

0

(∫ +∞

0
g(s)ξx(x, s)ds

)2

dx

+
l0

6
‖3wx − ψx‖

2 + Gλ1‖3wx − ψx‖‖ψ − ϕx‖ + λ2
1‖3wx − ψx‖‖θx‖

+
l0

4
‖3wx − ψx‖

2 + C‖ f1‖
2

≤ −
l0

4
‖3wx − ψx‖

2 + Iρ‖3wt − ψt‖
2 +

3(D − l0)
2l0

‖ξx‖
2
M

+
3(Gλ1)2

2l0
‖ψ − ϕx‖

2 +
3λ4

1

2l0
‖θx‖

2 + C.

(4.15)

This completes the proof. �
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Lemma 4.6. The functional

J5(t) = Iρ

∫ 1

0
wwtdx

satisfies, along the solution of (2.5)-(2.6), the estimate

J′5(t) ≤ −
D
4
‖wx‖

2 + C‖wt‖
2 + C‖ψ − ϕx‖

2 + C. (4.16)

Proof. We differentiate J5, then use (2.5)3 and integration by parts to get

J′5(t) = Iρ‖wt‖
2 − D‖wx‖

2 −G
∫ 1

0
w(ψ − ϕx)dx −

4γ
3

∫ 1

0
wh(w)dx

−
4β
3

∫ 1

0
wwtdx +

∫ 1

0
w f2(x)dx.

(4.17)

From assumption (2.3), Hölder’s and Poincaré’s inequalities, we get

J′5(t) ≤ Iρ‖wt‖
2 − D‖wx‖

2 + Gλ1‖wx‖‖ψ − ϕx‖ +
4(C1 + 1)ηγλ2

1

3
‖wx‖

2

+
4γ
3

(C′η + Cη) +
4βλ1

3
‖wx‖‖wt‖

≤ −

(
D
2
−

4(C1 + 1)ηγλ2
1

3

)
‖wx‖

2 + C‖wt‖
2 + C‖ψ − ϕx‖

2 + C.

(4.18)

Choose η small enough such that
(

D
2 −

4(C1+1)ηγλ2
1

3

)
≥ D

4 , thus the desired result follows. �

Define the functional L by

L(t) = nE(t) + n1J1(t) + n2J2(t) + n3J3(t) + J4(t) + J5(t),

where n, n1, n2, n3 are positive constants to be determined later.

Lemma 4.7. The functional L satisfies, along the solution of (2.5)-(2.6), the estimate

µ1‖W(t)‖2
H
− C̄1 ≤ L(t) ≤ µ2‖W(t)‖2

H
+ C̄2, ∀t ≥ 0, (4.19)

for some positive constants µ1, µ2, C̄1, C̄2.

Proof. Using (2.3), Hölder’s and Poincaré’s inequalities, we have on one hand

L(t) ≥
n
2

[
ρ‖ϕt‖

2 + 3Iρ‖wt‖
2 + Iρ‖(3wt − ψt)‖2 + 3D‖wx‖

2 + G‖(ψ − ϕx)‖2
]

+
n
2

[
l0‖(3wx − ψx)‖2 + ‖ξx‖

2
M

+ k‖θ‖2 − 8γηλ2
1‖wx‖

2 − 8γCη

]
−

n
2

[
λ2

1δ1‖(3wx − ψx)‖2 + Cδ1‖ f1‖
2 + λ2

1δ2‖wx‖
2 + Cδ2‖ f2‖

2
]

− n1Iρ

[
1
2
‖(3wt − ψt)‖2 +

(D − l0)λ2
1

2
‖ξx‖

2
M

]
− n2kρ

[
1
2
‖ϕt‖

2 +
1
2
‖θ‖2

]
− n3ρ

[
1
2
‖ϕt‖

2 +
1
2
‖(ψ − ϕx)‖2

]
− Iρ

[
λ2

1

2
‖wx‖

2 +
1
2
‖wt‖

2
]

− Iρ

[
λ2

1

2
‖(3wx − ψx)‖2 +

1
2
‖(3wt − ψt)‖2

]
.
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This implies

L(t) ≥
(
n
2
−

n2k
2
−

n3

2

)
ρ‖ϕt‖

2 +

(
n
2
−

n1

2
−

1
2

)
Iρ‖(3wt − ψt)‖2

+ 3Iρ

(
n
2
−

1
6

)
‖wt‖

2 + 3D
(
n
(
1
2
−

4λ2
1γη

3D
−
λ2

1δ2

6D

)
−
λ2

1Iρ
6D

)
‖wx‖

2

+ G
(n
2
−

n3ρ

2G

)
‖(ψ − ϕx)‖2 + l0

(
n
(
1
2
−
λ2

1δ1

2l0

)
−
λ2

1Iρ
2l0

)
‖(3wx − ψx)‖2

+ k
(n
2
−
ρn2

2

)
‖θ‖2 +

(
n
2
−

n1(D − l0)Iρλ2
1

2

)
‖ξx‖

2
M

−

(
Cδ1

n
2
‖ f1‖

2 + Cδ2

n
2
‖ f2‖

2 + 4γCηn
)
.

(4.20)

Now, we first choose δ1, δ2, η small enough such that(
1
2
−

4λ2
1γη

3D
−
λ2

1δ2

6D

)
> 0,

(
1
2
−
λ2

1δ1

2l0

)
> 0,

then choose n large enough so that(
n
2
−

n2k
2
−

n3

2

)
> 0,

(
n
2
−

n1

2
−

1
2

)
> 0,

(
n
2
−

1
6

)
> 0,

(
n
(
1
2
−

4λ2
1γη

3D
−
λ2

1δ2

6D

)
−
λ2

1Iρ
6D

)
> 0,

(n
2
−

n3ρ

2G

)
> 0,

(
n
(
1
2
−
λ2

1δ1

2l0

)
−
λ2

1Iρ
2l0

)
> 0,

(n
2
−
ρn2

2

)
> 0,

(
n
2
−

n1(D − l0)Iρλ2
1

2

)
> 0

and obtain
L(t) ≥ µ1‖(ϕ, ϕt, 3w − ψ, 3wt − ψt,w,wt, θ, ξ)‖2H − C̄1. (4.21)

On the other hand, again using assumption (2.3), Hölder’s and Poincaré;s inequalities, we get

L(t) ≤ α1‖ϕt‖
2 + α2‖wt‖

2 + α3‖(3wt − ψt)‖2 + α4‖wx‖
2 + α5‖(ψ − ϕx)‖2

+ α6‖(3wx − ψx)‖2 + α7‖θ‖
2 + α8‖ξx‖

2
M

+ 4nγC′1

∫ 1

0
|wh(w)|dx

+
(
C‖ f1‖

2 + C‖ f2‖
2 + 4γnCη

)
,

(4.22)

for some positive constants αi, i = 1, 2, ..., 8. We observe that∫ 1

0
|wh(w)|dx ≤

∫ 1

0
|w|(|h(w) − h(0)|)dx +

∫ 1

0
|w||h(0)|dx

≤

(
λ2

1‖h
′(αw)‖2L∞(0,1) +

λ2
1

2

)
‖wx‖

2 + C.
(4.23)
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Substituting (4.23) into (4.22), we get

L(t) ≤ µ2‖(ϕ, ϕt, 3w − ψ, 3wt − ψt,w,wt, θ, ξ)‖2H + C̄2. (4.24)

Combining (4.21) and (4.24), we obtain the result in (4.19). �

Lemma 4.8. The functional L satisfies, along the solution of (2.5)-(2.6), the estimate

L′(t) + C0L(t) ≤ C, ∀t ≥ 0, (4.25)

for some positive constants C,C0.

Proof. Combining (3.6), Lemmas 4.2, 4.3, 4.4,4.5, 4.6, we have

L′(t) ≤ −
(n2ρ

2
−

n3ρ

2

)
‖ϕt‖

2 − (4βn − 9ρn3 −C) ‖wt‖
2 −

(
l0

4
− n1ε1

)
‖(3wx − ψx)‖2

−

(
n1Iρ(D − l0)

2
− n2ρ − n3ρ − Iρ

)
‖(3wt − ψt)‖2

−

(Gn3

2
− n1ε1 − n2ε2 −C

)
‖(ψ − ϕx)‖2 −

D
4
‖wx‖

2

−

(
τn − ε1n1λ

2
1 − n2C

(
1 +

1
ε2

)
− n3C −C

)
‖θx‖

2 +
n1

2
‖ f1‖

2 + C

+

(
n1C

(
1 +

1
ε1

)
+

3(D − l0)
2

)
‖ξx‖

2
M

+

(n
2
− n1C

) ∫ 1

0

∫ ∞

0
g′(s)|ξx(x, s)|2dsdx.

Applying condition (2.2) and choosing

ε1 =
l0

8n1
, ε2 =

Gn3

4n2
,

we arrive at

L′(t) ≤ −
(n2ρ

2
−

n3ρ

2

)
‖ϕt‖

2 − (4βn − 9ρn3 −C) ‖wt‖
2 −

l0

8
‖(3wx − ψx)‖2

−

(
n1Iρ(D − l0)

2
− n2ρ − n3ρ − Iρ

)
‖(3wt − ψt)‖2

−

(Gn3

4
−C

)
‖(ψ − ϕx)‖2 −

D
4
‖wx‖

2

−

(
τn −

λ2
1l0

8
− n2C

(
1 +

4n2

Gn3

)
− n3C −C

)
‖θx‖

2 +
n1

2
‖ f1‖

2 + C

−

(
λ
(n
2
− n1C

)
− n1C

(
1 +

8n1

l0

)
−

3(D − l0)
2

)
‖ξx‖

2
M
.

Now, we choose n3 large enough so that (Gn3

4
−C

)
> 0, (4.26)
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then we select n2 large enough such that (n2ρ

2
−

n3ρ

2

)
> 0. (4.27)

Next, we select n1 large enough so that(
n1Iρ(D − l0)

2
− n2ρ − n3ρ − Iρ

)
> 0, (4.28)

and finally, we select n large such that (4.19) remains valid and

(4βn − 9ρn3 −C) > 0,(
τn −

λ2
1l0

8
− n2C

(
1 +

8n1

l0

)
− n3C −C

)
> 0,(

λ
(n
2
− n1C

)
− n1C

(
1 +

1
ε1

)
−

3(D − l0)
2

)
> 0.

(4.29)

From (4.26)–(4.29), there exist a constant C̃0 > 0 such that

L′(t) ≤ −C̃0‖(ϕ, ϕt, 3w − ψ, 3wt − ψt,w,wt, θ, ξ)‖2H + C, (4.30)

By using Lemma 4.7, we obtain

L′(t) ≤ −C0L(t) + C, ∀t ≥ 0. (4.31)

This completes the proof. �

Theorem 4.2. Under the assumptions of Theorem 3.1, the semigroup S (t) of system (2.5)-(2.6), pos-
sesses a bounded absorbing set B1 inH .

Proof. Integration of (4.25) over (0, t) leads to

L(t) ≤ L(0)e−C0t + C
(
1 − e−C0t

)
≤ L(0)e−C0t + C. (4.32)

Using (4.19), we get

‖(ϕ, ϕt, 3w − ψ, 3wt − ψt,w,wt, θ, ξ)‖2H

≤
1
µ1

L(0)e−C0t +
1
µ1

(
C + C̄1

)
≤
µ2

µ1
‖(ϕ0, ϕ1, 3w0 − ψ0, 3w1 − ψ1,w0,w1, θ0, ξ0)‖2

H
+

1
µ1

(
C + C̄1 + C̄2

)
.

(4.33)

Therefore, for R >
√

1
µ1

(
C + C̄1 + C̄2

)
, the ball B1 (0,R) is a bounded absorbing set in (H , S (t)) . This

completes the proof. �
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4.2. Asymptotic smoothness of the semigroup S(t)

Here, we establish the asymptotic smoothness of the semigroup S (t) generated by system (2.5) −
(2.6) inH . We shall make use of the following lemma:

Lemma 4.9. [10] Let H be a Banach space. Let S (t) be a semigroup on H. Assume that for any
B ⊂ H bounded and positively invariant and for any t ≥ t0 = t0(B) ≥ 0, there exists a function ΨB(t)
on [t0,∞) and a pseudometric χt

B
on C([0, t],H) such that

(i) ΨB(t) ≥ 0 and lim
t→∞

ΨB(t) = 0;

(ii) the pseudometric χt
B

is precompact (with respect to the norm of H) in the sense that: any sequence
{yn} ⊂ B has a subsequence {ynk} such that the sequence {zk} ∈ C([0, t],H) where zk = S (τ)ynk is
Cauchy with respect to χt

B
;

(iii) there holds the estimate

‖S (t)y1 − S (t)y2‖H ≤ ΨB(t)‖y1 − y2‖H + χt
B({S (τ)y1}, {S (τ)y2}), ∀y1, y2 ∈ B, ∀ t ≥ t0,

where {S (τ)y1} is a function in C([0, t],H) given by yi(τ) = S (τ)yi.

Then S (t) is asymptotically smooth in H.

In what follows, we establish the asymptotic smoothness of the semigroup S (t) generated by the system
(2.5)–(2.6). Let

W j = (ϕ j, ϕ
j
t , (3w − ψ) j, (3wt − ψt) j,w j,w j

t , θ
j, ξ j)T , j = 1, 2

be solutions of system (2.5)-(2.6) with corresponding initial data

W j
0 = (ϕ j

0, ϕ
j
1, (3w0 − ψ0) j, (3w1 − ψ1) j,w j

0,w
j
1, θ

j
0, ξ

j)T ∈ B, j = 1, 2,

where B ⊂ H is a bounded and positive invariant set for the semigroup S (t). We set W = W1 −W2 and
W0 = W1

0 −W2
0 . Then W satisfies

ρϕtt + G (ψ − ϕx)x + θx = 0, (x, t) ∈ (0, 1) × (0,+∞),

Iρ (3w − ψ)tt − l0 (3w − ψ)xx −

∫ +∞

0
g(s)ξxx(x, s)ds

−G (ψ − ϕx) − θ = 0, (x, t) ∈ (0, 1) × (0,+∞),

Iρwtt − Dwxx + G (ψ − ϕx) +
4
3
γ(h(w1) − h(w2)) +

4
3
βwt = 0,

(x, t) ∈ (0, 1) × (0,+∞),
kθt − τθxx + ϕxt + (3w − ψ)t = 0, (x, t) ∈ (0, 1) × (0,+∞),
ξt + ξs − (3w − ψ)t = 0, (x, t) ∈ (0, 1) × (0,+∞),

(4.34)

with boundary conditionsϕx(0, t) = ψ(0, t) = w(0, t) = θ(0, t) = ξ(0, s) = 0, t ∈ [0,+∞),
ϕ(1, t) = ψx(1, t) = wx(1, t) = θx(1, t) = ξx(1, s) = 0, t ∈ [0,+∞).

(4.35)
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The associated energy functional to system (4.34)-(4.35) is given by

E0(t) =
1
2

(
ρ‖ϕt‖

2 + Iρ‖(3wt − ψt)‖2 + l0‖(3wx − ψx)‖2 + 3Iρ‖wt‖
2
)

+
1
2

(
3D‖wx‖

2 + G‖(ψ − ϕx)‖2 + k‖θ‖2 + ‖ξx‖
2
M

)
=

1
2
‖(ϕ, ϕt, 3w − ψ, 3wt − ψt,w,wt, θ, ξ)‖2H .

(4.36)

Moreover, E0(t) satisfies

d
dt

E0(t) ≤ −3β‖wt‖
2 + CB‖w‖2 − τ‖θx‖

2 +
1
2

∫ 1

0

∫ ∞

0
g′(s)|ξx(x, s)|2dsdx. (4.37)

To see this, we multiply (4.34)1 by ϕt, (4.34)2 by (3wt − ψt), (4.34)3 by 3wt, (4.34)4 by θ in L2(0, 1),
using integration by parts and adding the outcomes, we get

dE0(t)
dt

= − 4β‖wt‖
2 − 4γ(h(w1) − h(w2),wt) − τ‖θx‖

2

+
1
2

∫ 1

0

∫ ∞

0
g′(s)|ξx(x, s)|2dsdx

≤ − 4β‖wt‖
2 + 4γ

∫ 1

0
|h(w1) − h(w2)||wt|dx − τ‖θx‖

2

+
1
2

∫ 1

0

∫ ∞

0
g′(s)|ξx(x, s)|2dsdx

≤ − 3β‖wt‖
2 + Cβ

∫ 1

0
|h(w1) − h(w2)|2dx − τ‖θx‖

2

+
1
2

∫ 1

0

∫ ∞

0
g′(s)|ξx(x, s)|2dsdx.

(4.38)

We have ∫ 1

0
|h(w1) − h(w2)|2dx ≤ ‖h′(y)‖2L∞(0,1)

∫ 1

0
|w|2dx ≤ CB‖w‖2. (4.39)

Substituting (4.39) into (4.38), we obtain (4.37). Now, we define the functional L0 by

L0(t) = mE(t) + m1K1(t) + m2K2(t) + m3K3(t) + K4(t) + K5(t),

where m,m1,m2,m3 are positive constants to be determined and

K1(t) = −Iρ

∫ 1

0
(3wt − ψt)

∫ +∞

0
g(s)ξ(x, s)dsdx,

K2(t) = −kρ
∫ 1

0
θ

∫ x

0
ϕt(y)dydx,

K3(t) = ρ

∫ 1

0
ϕϕtdx + ρ

∫ 1

0
ψ

∫ x

0
ϕt(y)dydx,

K4(t) = Iρ

∫ 1

0
(3w − ψ)(3w − ψ)tdx,

K5(t) = Iρ

∫ 1

0
wwtdx.
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Lemma 4.10. There exist β1 > 0, β2 > 0 such that

β1E0(t) ≤ L0(t) ≤ β2E0(t), ∀t ≥ 0. (4.40)

Proof. Using Cauchy-Schwarz, Young’s and Poincaré’s inqualities, we see that

|L0(t) − mE0(t)| ≤ m1|K1(t)| + m2|K2(t)| + m3|K3(t)| + |K4(t)| + |K5(t)|
≤ γ1‖ϕt‖

2 + γ2‖wt‖
2 + γ3‖(3wt − ψt)‖2 + γ4‖wx‖

2

+ γ5‖(ψ − ϕx)‖2 + γ6‖(3wx − ψx)‖2 + γ7‖θ‖
2 + γ8‖ξx‖

2
M
,

(4.41)

where γi, i = 1, 2, ..., 8 are positive constants. From (4.36) and (4.41), we can find a positive constant
γ̄0 such that

|L0(t) − mE0(t)| ≤ γ̄0E0(t).

It follows that

(m − γ̄0)E0(t) ≤ L0(t) ≤ (m + γ̄0)E0(t). (4.42)

By choosing m large enough such that (m− γ̄0) > 0, we obtain the result. This completes the proof. �

Lemma 4.11. There exists ν > 0 such that

L′0(t) + νL0(t) ≤ CB‖w(t)‖2, ∀t ≥ 0. (4.43)

Proof. Using similar computations as in Lemmas 4.2-4.6, we have



K′1(t) ≤ −
Iρ(D − l0)

2
‖3wt − ψt‖

2 + ε1‖3wx − ψx‖ + ε1‖ψ − ϕx‖
2 + ε1λ1‖θx‖

2

+ C
(
1 +

1
ε1

)
‖ξx‖

2
M
−C

∫ 1

0

∫ +∞

0
g′(s)|ξx(x, s)|2dsdx,

K′2(t) ≤ −
ρ

2
‖ϕt‖

2 + ε2‖ψ − ϕx‖
2 + C

(
1 +

1
ε2

)
‖θx‖

2 + ρ‖3wt − ψt‖
2,

K′3(t) ≤ −
G
2
‖ψ − ϕx‖

2 +
3ρ
2
‖ϕt‖

2 + ρ‖3wt − ψt‖
2 + 9ρ‖wt‖

2 + C‖θx‖
2,

K′4(t) ≤ −
l0

4
‖3wx − ψx‖

2 + Iρ‖3wt − ψt‖
2 + C‖ξx‖

2
M

+ C‖ψ − ϕx‖
2 + C‖θx‖

2,

K′5(t) ≤ −
D
2
‖wx‖

2 + C‖wt‖
2 + C‖ψ − ϕx‖

2 + C̃B‖w(t)‖2.

(4.44)
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Combining (4.37) and (4.44), we obtain

L′0(t) ≤ −
(m2ρ

2
−

m3ρ

2

)
‖ϕt‖

2 − (3βm − 9ρm3 −C) ‖wt‖
2

−

(
l0

4
− m1ε1

)
‖(3wx − ψx)‖2 + (mCB + C̃B)‖w(t)‖2

−

(
m1Iρ(D − l0)

2
− m2ρ − m3ρ − Iρ

)
‖(3wt − ψt)‖2

−

(Gm3

2
− m1ε1 − m2ε2 −C

)
‖(ψ − ϕx)‖2 −

D
2
‖wx‖

2

−

(
mτ − ε1m1λ

2
1 − m2C

(
1 +

1
ε2

)
− m3C −C

)
‖θx‖

2

+

(
m1C

(
1 +

1
ε1

)
+ C

)
‖ξx‖

2
M

+

(m
2
− m1C

) ∫ 1

0

∫ ∞

0
g′(s)|ξx(x, s)|2dsdx.

By appropriate choices of m,m1,m2,m3, ε1, ε2 in a similar manner as done in Lemma 4.8, we obtain

L′0(t) ≤ CE0(t) + CB‖w(t)‖2. (4.45)

Making use of (4.40) and (4.45), we get (4.43). �

Theorem 4.3. Under the assumptions of Theorem 3.1, the semigroup S (t) of system (2.5)-(2.6) is
asymptotically smooth inH .

Proof. Integrating (4.43) over (0, t) and making use of Lemma 4.10, we arrive at

E0(t) ≤
β2

β1
E0(0)e−νt + CB

∫ t

0
‖w(s)‖2ds.

It follows that

‖(ϕ, ϕt, 3w − ψ, 3wt − ψt,w,wt, θ, ξ)‖2H

≤ Ce−νt‖(ϕ0, ϕ1, 3w0 − ψ0, 3w1 − ψ1,w0,w1, θ0, ξ0)‖2
H

+ CB

∫ t

0
‖w(s)‖2ds.

That is

‖S (t)W1
0 − S (t)W2

0‖
2
H
≤ Ce−νt‖W1

0 −W2
0‖

2
H

+ CB

∫ t

0
‖w1(s) − w2(s)‖2ds, (4.46)

for every W1
0 ,W

2
0 ∈ B. Thus in other to apply Lemma 4.9, we set ΨB(t) := Ce−νt and χt

B
: H×H −→ R

is defined by

χt
B

(
S (τ)W1

0 , S (τ)W2
0

)
= CB sup

0≤τ≤t

∫ τ

0
‖w1(s) − w2(s)‖2ds. (4.47)

Now, we show that χt
B

is precompact. Consider the sequence

{(ϕ0n, ϕ1n, 3w0n − ψ0n, 3w1n − ψ1n,w0n,w1n, θ0n, ξ0n)} ⊂ B.
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We have that B ⊂ H is a bounded and positive invariant set, thus the corresponding solutions

{((ϕn(t), (ϕt)n(t), 3wn(t) − ψn(t), 3(wt)n(t) − (ψt)n(t),wn(t), (wt)n(t), θn(t), ξn(s))}

is bounded uniformly inH . Therefore

{((ϕn(t), (ϕt)n(t), 3wn(t) − ψn(t), 3(wt)n(t) − (ψt)n(t),wn(t), (wt)n(t), θn(t), ξn(s))}

is a bounded sequence in
C ([0, t],H) .

This implies {wn(t)} is bounded in
C

(
[0, t],H1

∗ (0, 1)
)
.

Using the compact embedding of

C
(
[0, t],H1

∗ (0, 1)
)
∩C1

(
[0, t], L2(0, 1)

)
into

C
(
[0, t], L2(0, 1)

)
,

we can extract a subsequence {wn j(t)} which converges strongly in

C
(
[0, t], L2(0, 1)

)
,∀t > 0.

Therefore
lim
j→∞

lim
l→∞

sup
0≤τ≤t

∫ τ

0
‖wn j(s) − wnl(s)‖2ds = 0,

hence
lim
j→∞

lim
l→∞

χt
B

(
S (τ)W0n j , S (τ)W0nl

)
= 0. (4.48)

In addition, we have lim
t→∞

ΨB(t) = 0. By applying Lemma 4.9, we obtain the asymptotic smoothness of

the semigroup S (t) inH . �

Theorem 4.4. Under the assumptions of Theorem (3.1), the semigroup S (t) of system (2.5)-(2.6) pos-
sesses the global attractorA inH , which is compact.

Proof. In Theorem 4.2, we showed that the semigroup S (t) of system (2.5)-(2.6) possesses a bounded
absorbing set B1 inH , and in Theorem 4.3 we showed that the semigroup S (t) of system (2.5)-(2.6) is
asymptotically smooth inH . By applying Theorem 4.1, we obtain the result. �

5. Finite-fractal dimensional attractor

In this section, we show that the global attractorA obtained in section 4 has a finite-fractal dimen-
sion. To do this, we recall some basic concepts and results. We refer the reader to [10] and references
therein for more details.
Let X be a metric space and K ⊂ X be a compact set, then the fractal dimension of K is given by

dimX
f K = lim sup

ε→0

In(n(K, ε))
In(1/ε)

,
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where n(K, ε) is the minimal number of closed balls with radius ε that cover K.
Given a seminorm nX(·) on a Banach space X, it is known that nX is compact whenever for any sequence
x j → 0 weakly in X we have that nX(x j)→ 0.
We state the following result [10, Theorem 2.10], which guarantees that the global attractor A has a
finite fractal dimension.

Theorem 5.1. [10, Theorem 2.10] Let X be a separable Hilbert space and U ⊂ X be bounded and
closed. Assume that there exists a mapping J : U → X such thatU ⊆ J(U) and

(i) J is Lipschitz onU, i.e., there exists L > 0 such that

‖Jy1 − Jy2‖X ≤ L‖y1 − y2‖X, ∀ y1, y2 ∈ U; (5.1)

(ii) there exist compact seminorms nX(·) and mX(·) on X such that

‖Jy1 − Jy2‖X ≤ γ‖y1 − y2‖X + λ[nX(y1 − y2) + mX(Jy1 − Jy2)], (5.2)

for any y1, y2 ∈ U and some constants 0 < γ < 1 and λ > 0.

ThenU is compact in X and has a finite fractal dimension.

The following is the main result of this section:

Theorem 5.2. Suppose the dynamical system (H, S (t)) generated by (2.5)-(2.6) possesses a global
attractor A and if there exist nonnegative scalar functions α(t) and φ(t) which are locally bounded in
[0,+∞), and β(t) ∈ L1((0,+∞)) with lim

t→+∞
β(t) = 0, such that

‖S (t)W1
0 − S (t)W2

0‖
2
H ≤ α(t)‖W1

0 −W2
0‖

2
H, (5.3)

and

‖S (t)W1
0 − S (t)W2

0‖
2
H ≤β(t)‖W1

0 −W2
0‖

2
H + φ(t) sup

0<s<t
‖w1(s) − w2(s)‖2, (5.4)

for any t > 0 and W i
0 = (ϕi

0, ϕ
i
1, (3w0 − ψ0)i, (3w1 − ψ1)i,wi

0,w
i
1, θ

i
0, ξ

i
0) ∈ A, i = 1, 2, where S (t)W0 =

W(t). Then the global attractorA has a finite fractal dimension.

Proof. We adopt the method of [10, Theorem 3.11], by applying Theorem 5.1. Let

W i
0 = (ϕi

0, ϕ
i
1, (3w0 − ψ0)i, (3w1 − ψ1)i,wi

0,w
i
1, θ

i
0, ξ

i
0) ∈ A, i = 1, 2.

We observe that W = W1 − W2 satisfies (4.1). Thus, performing similar computations as in Lemma
4.1, we get

‖S (t)W1
0 − S (t)W2

0‖
2
H
≤ eκt‖W1

0 −W2
0‖

2
H
, ∀t ≥ 0. (5.5)

Thus, we take α(t) = eκt in (5.3) and we easily see that α(t) is locally bounded in [0,+∞). Next, we
show that (5.4) is satisfied. Indeed, integrating (4.43) over (0, t) and making use of (4.40), we get

‖S (t)W1
0 − S (t)W2

0‖
2
H
≤
β2

β1
E0(0)e−νt +

C
β1

∫ t

0
e−ν(t−s)‖w(s)‖2ds
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≤ C0e−νt‖W1
0 −W2

0‖
2
H

+ C
∫ t

0
e−ν(t−s)ds sup

0<s<t
‖w1(s) − w2(s)‖2

= β(t)‖W1
0 −W2

0‖
2
H

+ φ(t) sup
0<s<t
‖w1(s) − w2(s)‖2, (5.6)

where

β(t) = C0e−νt, φ(t) = C
∫ t

0
e−ν(t−s)ds, t ≥ 0.

It’s easy to see that
β(t) ∈ L1(R+) and lim

t→0
β(t) = 0,

and that φ(t) is locally bounded in [0,∞).
We take X = H × L2(0,T ;H) for some T > 1, where

L2(0,T ;H) =

{
z(t) : ‖z‖2L2(0,T ;H) ≡

∫ T

0
‖z(t)‖2

H
dt < ∞

}
.

We denote the norm in X as
‖V‖2X = ‖W0‖

2
H

+ ‖z‖2L2(0,T ;H),

where V = (W0, z), W0 = (ϕ0, ϕ1, 3w0 − ψ0, 3w1 − ψ1,w0,w1, θ0, ξ0).
Let w(t) = w1(t) − w2(t), then integrating (5.6) over [T, 2T ] with respect to t, we get∫ 2T

T
‖S (t)W1

0 − S (t)W2
0‖

2
H

dt ≤ βT ‖W1
0 −W2

0‖
2 + φT sup

0<s<2T
‖w1(s) − w2(s)‖2, (5.7)

where βT =
∫ 2T

T
β(t)dt and φT =

∫ 2T

T
φ(t)dt. Also, from (5.6) we deduce

‖S (T )W1
0 − S (T )W2

0‖
2
H
≤ β(T )‖W1

0 −W2
0‖

2
H

+ φ(T ) sup
0<s<2T

‖w1(s) − w2(s)‖2. (5.8)

Addition of (5.7) and (5.8) yield

‖S (T )W1
0 − S (T )W2

0‖
2
H

+

∫ 2T

T
‖S (t)W1

0 − S (t)W2
0‖

2
H

dt

≤ β̃T ‖W1
0 −W2

0‖
2
H

+ φ̃T sup
0<s<2T

‖w1(s) − w2(s)‖2, (5.9)

where β̃T = βT + β(T ) and φ̃T = φT + φ(T ).
Now, we consider in the space X the subset

AT := {V ≡ (W(0),W(t)); t ∈ [0,T ] : W(0) ∈ A},

where W(0) = (ϕ, ϕt, (3w−ψ), (3w−ψ)t,w,wt, θ, ξ)(0) and W(t) is the solution to (2.5)-(2.6) with initial
data W0 = W(0). In addition, we define the operator

J : AT → X

(W(0); W(t)) 7→ (W(T ),W(t + T )),
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J is clearly Lipschitz on AT with Lipschitz constant ‖J‖, moreover, JAT = AT . It follows from
(5.9) that

‖JV1 − JV2‖2X ≤ β̃T ‖V1 − V2‖2X + φ̃T
(
[nX(V1 − V2)]2 + [nX(JV1 − JV2)]2),

for any V1,V2 ∈ AT , where nX(V) = sup
0≤s≤T

‖w(s)‖.

We have that L2(0,T ;H) is compactly embedded in C(0,T ;H), thus nX is a compact seminorm on X.
We choose T such that β̃T ≤

1
2 , then application of Theorem 5.1 implies thatAT is a compact set in X

with finite fractal dimension.
We define the following projection operator by

P : X → H

(W(0),W(t)) 7→ W(0).

Clearly, P is Lipschitz continuous and PAT = A, it follows that

dimHf A ≤ dimX
fAT < ∞.

The proof is complete. �

6. Conclusions

In this article, we have established the well-posedness and finite fractal-dimensional global attractor
for a non-linear thermoelastic laminated beam, where the heat conduction is given by Fourier’s law.
The presence of the nonlinear source term in system (1.1) gives an obvious challenge to establish that
the system is dissipative. We are able to achieve this by defining and estimating several Lyapunov
functionals.
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