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1. Introduction

In this paper, we consider the following thermoelastic laminated beam system with infinite memory
acting on the effective rotation angle, namely

P +GW—¢), +6,=0, xe€(0,1),r>0,
L,Bw—y),—D@Bw—-y),, + f ) g()Bw—=y) ., (x,t—s)ds
0
~-GW—-¢)—-60=fi(x), x€(,1),t>0, (1.1)

4 4
Ipwtl - Dwxx + G(w - ‘Px) + g?’h(w) + gﬁwl‘ = fZ(x)a X € (09 1)al > O’

kO, — 10 + 0+ Bw—y¢), =0, x€(0,1),r>0,

where the functions f;, f € L?(0,1) are external forcing terms, 4 and g are the nonlinear source
term and relaxation function respectively. ¢ = ¢(x, t) is the transverse displacement, ¢ = ¥(x, t) is the
rotation angle, w = w(x, t) is proportional to the amount of slip along the interface, 3w— is the effective
rotational angle and 6 = 6(x, 1) is the difference temperature. The positive parameters p, 1,,G, D, y, 8,k
and 7 are the density, mass moment of inertia, shear stiffness, flexural rigidity, adhesive stiffness,
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adhesive damping parameter, capacity and the diffusivity respectively. We supplement system (1.1)
with initial data

@(x,0) = o(x), ¥(x,0) = ho(x), w(x,0) = wo(x), 8(x,0) = 6(x), xe€][0,1], (12)
(%, 0) = @1(x), ¥i(x,0) = 1 (x), wi(x,0) = wi(x), xe€[0,1], '
and boundary conditions
0:(0,) =y(0,1) = w(0,1) = 0(0,1) =0, >0, 13
(1,0 =y (1,1) =w,(1,1) =6,(1,1) =0, t>0. (13)

System (1.1) models a vibrating structure, where two beams of the same layer and uniform thickness
are fastened together by an adhesive force in a way that permits the beams to slip over each other while
remaining in contact at all times. These types of structures are of great importance in the field of science
and engineering and are formally called laminated beams. The negligible mass and thickness of the
adhesive layer of the beams produces a damping mechanism which is proportional to slips frequency
of the two beams, thus producing a structural frictional force in the interfacial slip, see Hansen and
Spies [1].

In simple terms, the global attractor is a compact set on an infinite dimensional function space (the
phase space), which attracts at a uniform rate any bounded subset of the phase space. In some cases,
the global attractor may have finite dimension (Hausdorff and fractal dimension). Whenever the global
attractor possesses a finite fractal dimension, an infinite dimensional dynamical system generated by
a given PDE can be reduced to a finite dimensional systems of ODEs, for instance by making use
of Holder-Maiié theorem. Readers may see [11, 12] and references there in for more details. The
main novelty of this work is to show that system (1.1)—(1.3) possesses a global attractor which has a
finite fractal dimension. Considering the complicated nature of system (1.1) with the presence of the
nonlinear source term, the obvious challenge would be to establish that the system (1.1) is dissipative.
We will achieve this by defining and estimating several Lyapunov functionals.

Now, we give a quick review of some models and results in the literature that are related to problem
(1.1). Liu and Zhao [17] considered problem (1.1) with A(w) = w, fi = f, = 0 and established
an exponential stability result. It is important to mention that in the settings of global attractors, the
attractors in this case reduces to the singleton set {0}, which of course is simple. However, the presence
of external forcing terms fi, f> and the nonlinear source term / in system (1.1) creates a more interesting
and much more complicated attractors compared to the case where h(w) = w and f; = f, = O.
Raposo [23] studied

PPt + G (w - ()Ox)x = 0’ in (0’ 1) X (O’ +OO)’
LGBw—y), —DBw—¥),, -G —¢) +k(Bw =), =0, in (0, 1) X (0, +00), (1.4)
Iowy — Dwy, + 3G (Y — @) + 4dyw + 48w, = 0, in (0, 1) x (0, +00).

and proved an exponential decay result. Apalara [6] considered a thermoelastic laminated beam with
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structural damping where the heat is given by the Cattaneo law. Precisely, he considered

Py +G W —¢,), =0, in (0, 1) x (0, +00),
L,Bw—-y),—D@Bw—-¥), —GW—¢p)+060,=0, 1in(0,1)x(0,+c0),

4 4
Lwy —Dwy + G (Y — ¢,) + 3V + §,8W, =0, in (0,1) x (0, +00), (1.5)
P30+ g+ 0638w — ), =0, in (0, 1) X (0, +c0),
¢, +ag+0,=0, in (0, 1) x (0, +c0)

and proved the well-posedness as well as a uniform stability result. We refer the reader to [8, 16, 18—
20,24, 26] and the references cited therein for more related results. Let us mention that, the laminated
beam problem (1.1) is closely related to the well-known Timoshenko problem. For instance, in the
case of finite memory, setting A(w) = w, u = 3w, p; = p,po =1,, k=G,b =D, 3§ =y, 3a =, we
get

P1¢u + k(W —¢o), +0, =0, in (0, 1) x (0, +0),
pru= ), = D=0+ [ 6lt=9) =), (5o
—k(@W—¢)—6=0,in (0,1) X (0, +c0), (1.6)
Polyy — by, + 3k (Y — @) + ou + au, = 0, in (0,1) % (0, +00),
kO, — 100 + @ + (u— ), = 0, in (0, 1) x (0, +o0).
Using (1.6), and (1.6)s, then setting u = 0, we get the thermoelastic Timoshenko system:
P1¢u = k(px + ), + 6, =0, in (0, 1) x (0, +00),
P2 = b + fl WX, 1 = $)ds + k(g +¢) =0 =0, in (0, 1) x (0, +00), (1.7)
030, — kO, + gox,0+ Y, =0, in (0, 1) x (0, +00).

Several authors have studied (1.7), for instance, Feng [14] considered (1.7) and established that the
system is uniformly stable in cases of equal-wave speed and non equal wave speed of propagation.
Apalara [2] studied (1.7) with Neumann—Dirichlet—Dirichlet boundary conditions and proved a sta-
bility result without any condition on the speed of wave propagation. Messaoudi and Fareh [21, 22]
studied the following system

P1#u = k(g + ), = 0, in (0, 1) x (0, +00),
!
P2 = b x + f 87 = $)ux(x, $)ds + k(px + ) =6 = 0, in (0, 1) X (0, +00), (1.8)
0
036 — kOyx + Yy = 0, in (0,1) x (0, +e0),

and proved a general decay result for the case of equal wave speed of propagation, as well as for non
equal wave speed of propagation. For more related results, we refer the reader to [3-5,9, 13, 15, 25]
and references therein. This paper is organized as follows: In Section 2, we recall some preliminaries
and assumptions on the relaxation and nonlinear functions g and / respectively. In Section 3, we prove
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a well-posedness result for system (1.1)—(1.3). In Section 4, we establish the existence of the global
attractor for system (1.1)—(1.3). In Section 5, we show that the global attractor has a finite fractal
dimension. Throughout this work, we denote the inner product and norm in L*(0, 1) by (,) and ||.|
respectively. Also, the variables Cy, CorC,i = 1,2,3,... are positive generic constants that may
change from one line to another or within the same line.

2. Problem setting and preliminaries

In this section, we recall some useful materials and conditions. For this, we assume that the relax-
ation function g and the nonlinear function # satisfy:

(G1) g : [0, +00) — (0, +0c0) is an absolutely continuous function, with

g0)>0, D- f g(s)ds =1, > 0; 2.1
0
(G2) there exists a positive constant A such that for almost every y € R*
gy +ag(y) <0, 120; (2.2)

(G3) we assume i € C'(R) and for the function H(s) = f h(t)dr, there exist constants C{,C, > 0
0
such that

timinf 29 5 0. fiming )= 2C 1H(s)
[s|—>+00 8 [s]—+00 k)

>0, W(s)>-C,. (2.3)

We deduce from (2.3) that for every n > 0, there exist C;, C;, > 0 such that

H(s)+ns* > -C,, VseR, sh(s)—CiH(s)+ns’>-C;, VseR. (2.4)

For example, the function A(s) = s|s[”, 0 <y < 400, satisfies (2.3).

To deal with the memory term, we set
Ex,8)=Cw—u)(x, 1) — Bw—y)(x,t—s), t,5>0.
Simple calculations give
E(x,8) +E(x,s) — Bw—y)(x,1) =0, t,5s>0.

So problem (1.1)—(1.3) becomes

peu+G W —@), +6,=0, x€(0,1),1>0,
L, Gw =)y =1, Gw =), + f 8(8)Exx(x, s)ds
0
\ 4—G(w—sox)—9=f1(x), x€(0,1),7>0, (2.5)
oW = Dwox + G (Y — 9u) + 3yh(W) + 3w, = fo(x),  x € (0, 1),2>0,

kO, — 10 + o+ Bw—y¢), =0, x€(0,1),r>0,
§I+§S_(3W_w)l:()9 xe(0’1)9tss>05
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with boundary and initial conditions:

©x(0,8) = ¢(0,1) = w(0,1) = 6(0,1) = £0,s5) =0, >0,

(L, 1) = (1, 1) =wi(1,1) = 0.(1,1) = £c(1,5) =0, 12>0,

@(x,0) = o(x), ¥(x,0) = Po(x), w(x,0) = wo(x), 6(x,0) = p(x), x € [0, 1], (2.6)
@i(x,0) = @1(x), ¥i(x,0) = ¢ (x), wi(x,0) = wi(x), x€[0,1],

£(x,0) = 0, £%x,5) = Bwy — o) — Bw = P)(x, —s), x€[0,1].

Let
W = (p,u,3w —,q,w,v,0, f)T.

Then, we can re-write system (2.5)-(2.6) as follows:
W, + AW = F(W),

(2.7)
W(x, 0) = Wo(x),

where
Wo = (@0, @1, 3wo — o, 3wi — W1, wo, wi, 6o, €T,

4 1
=Y n(w) + = (.00
P

1
F(W) = — -
( ) (0$ 0’ 0, Ipfl(x)’ O, 3Ip

and the linear operator A is given by

—U

G 1

;(l/’ - pr)x + ;Gx
—-q

—2@Bw -y, - lfm (8)éx(x, $)ds — g(lp_ ) — 19
AW = 1, XX 1, 0 8 xx\As Ip Py Ip .
i %
D G 48
_EWXXT-F E(wl - ‘Px)l+ 3_IPV
—zexx + 7 Ux + 4
gs —q

We consider the following spaces:
H.(0,1) = {z € H'(0,1)/2(0) = 0}, H,(0,1) = {z € H'(0,1)/z(1) = 0},

HX(0,1) = {z € H*(0,1)/z, € H(0, 1)}, HX(0,1) = {z € H*(0, 1)/z, € H\(0, 1)}

and set
H =H'0,1)x L*0,1)x H'(0,1) x L*(0, 1) x H'(0,1) x L*(0, 1) x L*(0, 1) x M,  (2.8)

where
M= L} (R*, HL(0, 1))
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is defined by

1 )
L2 (R*,HL(0,1)) = {z :R* - H'(0,1)/ f f g()|zx(x, s)Pdsdx < +oo} (2.9)
0 0

and endowed with the inner product

1 00
(U, v)pm = f f g(u(x, s)vi(x, s)dsdx.
0 Jo
In addition, we define the space
DM) = {£,&,€ M, E(x,0) =0}
We have that, the inner product

<(ula Uz, U3, Ug, U5, Ug, U7, 1/[8), (vla V2, V3, V4, Vs, Vg, V7, V8)>‘}{

1 1 1 1
= pf uyvodx + 1, f ugvadx + 31, f UgVedx + kf urv7dx
0 0 0 0

1 1
+G f Guts — 13 — ur)(3vs — v3 — vi)dx + Iy f 3, V3,dx
0 0

1 1 +00
+3D f UsyVsxdx + f f g($)ugy(x, s)vgi(x, s)dsdx
0 0o Jo

together with H form a Hilbert space. Moreover, the domain of the linear operator A is defined by
W e Hip € A0, 1),u € HI0,1),3w —y € H:(0,1),q € H!(0, 1),
DA) := w e H20,1),ve H(0,1),6 € H(0,1),& € DIM), &, € H'(1,0) 5.
@x(0,0) = y(1,1) = wi(1,1) = £u(1,5) = 0,(1, 1) =0

3. Wellposedness

In this section, we state the existence and uniqueness result for our problem.

Theorem 3.1. Assume (G1)—(G3) hold and fi, f» € L*(0,1). If W, € H, then problem (2.5)—(2.6) has
a unique weak solution
WeCR";H).

Furthermore, if Wy € D(A), then
WeCR:;DA)NC (R H).

Proof. We show that the linear operator A is maximal monotone and that the function F is globally
lipschitz. For the maximality and monotonicity of A, see [17]. For the lipschitzness of F, let R > 0 and
set

B* = {U = (uy, up, uz, ug, us, ug, u7, ug) € D(A) : ||Uller < R}.
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Let U,V € BR, using the embedding of H!(0, 1) in L*(0, 1) and the fact that 1 € C'(R), we have

1
IF(U) = F(V)ll3, = 47f0 |h(ue) — h(ve)l’dx

/ 3.1
< 4yl Dl lits = vl G.1)

< CRIU = Vi,

where y = aug + (1 —a)vg, @ € (0, 1). Therefore, F is locally lipschitz. Thus, by Hille-Yosida Theorem
we obtain the existence of a local unique weak solution, that is

wecC((0,7T,);H),T, >0.

To obtain global existence, it is enough to show that [|[W(#)||¢ is uniformly bounded independent
of time. To this end, first, we multiply (2.5), by ¢, and integrate over (0, 1), then using integration by
parts and the boundary conditions, we obtain

1d
S (pllel? + Gllw = ¢IP) = G (W = 9.0 = G (32)

Secondly, we multiply (2.5), by (3w — ), and integrate over (0, 1), then using (2.5)s, integration by
parts and the boundary conditions, we get

1d
2 dt
1 1 00
=G (Y =), Bw, =) + (0, Bw, — ) + 3 f f g ($)IE(x, 5)|*dsdx.
0 0

|2a1Gw: = w)IP + ollBw, = Y + IR = 2(Bw = ), f1)]
3.3)

Next, we multiply (2.5); by 3w, and integrate over (0, 1), then using integration by parts and the
boundary conditions, we get

1d ) )
5 75 31wl + 3DIwilP + 8y (Hw), 1) = 2w, £3)]

= =3G (Y — @), w;) — 4:3||Wt||2~

Finally, we multiply (2.5), by 6, integrate over (0, 1), using integration by parts and the boundary
conditions, we infer that

(3.4)

1d

5 25 (KIBIE) = <l + (0r. ) = (6. Gw = 9. (3.5)

Adding (3.2)—(3.5), we obtain

d 1 1 00 )
—E(1) = —f f g (IE(x, )P dsdx — 4BIwilI> — Tll6I> <0, Vi >0, (3.6)
dt 2Jo Jo
where |
E(0) =3 [pligd? + 341w + LIGw: ol + 3DIw.IP + Gllw = @)

1
3 |1llBw, = w)ll? + € + 8y (Hw), 1) + K6l G

- ((3W - W), fl) - (W’ fZ) .
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Integration of (3.6) over (0, t) gives
E(t)+4p fot Iwi(s)II*ds < E(0),Vt > 0. (3.8)
From assumption (2.3), Young’s inequality and the embedding of H!(0, 1) in L*(0, 1), we get
E() z% [l + 3Ll + LlIGw: = gl + 3Dl + Gliw = @I
+ % (€0 + KlloIP | + ffn@wx —yoIP = dnydilwidP - 4yC,
B L (3.9)

3] I 3D
= '(—z)llt,otll2 + 7p||Wt||2 + Epll(3wz — )l + (T - 4777/11) [IwlI?

G lo 1 k
+ 6 - POl + 2 1Gwx = YOI + Ellfxllfw + EIIHZII -G,

where A, is the Poincaré’s constant. We then choose 7 such that

3D D
— —dnyd;]| = —
(4 ny 1) 2

and obtain
E(1) > Coll(p, @1, 3w — ¢, 3w, — Yy w, wy, 0,95, — C, (3.10)

where Cy = min{5, %, 2,2, -+, % }. Combining (3.8) and (3.10), we get

2°2°2°4°3°2
2 4ﬁ ! 2 1 ~
||W|LH + — [lw,()|°ds < — (E(0)+ C) < C,¥r > 0. (3.11)
Co Jo Co

Therefore, IIW(I)II;( is uniformly bounded independent of time. Hence the solution is global. The
computations above are done for regular solutions. However, the result remains true for weak solutions
by density argument. This completes the proof. O

4. Global attractor

In this section, we establish the existence of the global attractor for system (2.5)—(2.6). The exis-
tence and uniqueness result in Theorem (3.1) guarantees the existence of solution semi-group

St)y: H—H

defined by
SOWy =W(), YVt >0,

where W is the unique solution of system (2.5)—(2.6).

Lemma 4.1. The semigroup S (t) is strongly continuous in H.
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Proof. Let W/ = (goj,gof, Gw — )/, Bw, — tp,)j,wj,wf, 0/,ENT, j = 1,2 be two solutions of system
(2.5)—(2.6). Then W = W' — W? satisfies

p‘ptt + G((ﬁ - ()Ox)x + gx = 07 (.X, t) € (O’ 1) X (Oa +OO)’

I, Bw =), = lo Bw — ) — f 8($)&xx(x, $)ds
0
—GW—-¢)-0=0, (x,1)€(0,1)x (0, +00),

“4.1)
o = D + G = @) + 5y = HOv) + 3B =0, (50) € (0,1 X (0, +00),
kO, — 10 + o + Bw =), = 0, (x,1) € (0,1) x (0, +00),
£+ & - Gw—u), =0, (6 1) € (0, 1) X (0, +00),

with initial data W, = Wé - Wg. Now, multiplying (4.1), by ¢;, (4.1), by Bw, — ), (4.1); by 3w, ,
(4.1)4 by 61in L2(0, 1), using integration by parts and adding the outcomes, we obtain

1d 4
2dr (IWOIi,) + 4Bl + %(h(wl) — h(w?), 3w;)

R 42)
= 7|6 + 5 f f g (I, s)Pdsdx.
2 Jo Jo
Due to assumption (G1), we get
1d 4
5 7 (IWOIE) + 481wl + %(h(wb — h(w*), 3w;) < 0.
Using the same justification as in (3.1), we have on account of (3.11) that
L2 WIR,) + 48w < CIW G (4.3)
2dt H oo H '

where C is positive constant depending on W, and W;. Application of Gronwall’s lemma to (4.3) leads

to
IWOII5, < e“IWoli5,, Ve > 0,

and the desired result follows. O
Let us recall some basic definitions and theorems related to the theory of global attractor.

Definition 4.1. Let X be a Banach space. A set B C X is an absorbing set for the semigroup S(t) :
X — X if given any bounded set B C X there exist a time ty(B) such that S (t)B C B, for every t > ty(B).

Definition 4.2. The global attractor for a semigroup S (t) acting on a Hilbert space H is a compact
subset A of H satisfying the following conditions.
(i) A is invariant for S (1), i.e,

SOA=A, Yt =>0.

(ii) A attracts bounded sets; this means, for any bounded set B C H, we have

tlim dy (S()B,A) =0,
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where dy i1s the Hausdorff semi-distance defined by

dy(A, B) = sup 1nf||a — b||g.

acA b

Theorem 4.1. [10] Let S (t) be a dissipative semigroup on a metric space H. Then, S (t) has a compact
global attractor in H if and only if S (t) is asymptotically smooth in H.

4.1. Absorbing set

Next, we prove the existence of an absorbing set for system (2.5)-(2.6). To do this, we first state
and prove some useful lemmas.

Lemma 4.2. The functional J| defined by

1 +00
10 =1, [ Gu-v) [ s sdsds
0 0

satisfies, along the solution of system (2.5)-(2.6), the estimate

, 1,(D - ly)
Ji() < - %”3% — il + elBw, = P + ally — @ulP + e ull6sl
| | oo | (44)
+ C(l + —) €415 — Cf f & ()lE(x, )Pdsdx + SN fill,
€1 0 Jo 2
for any € > 0.
Proof. Differentiation of J; then using (2.5), and (2.5)5 along side integration by parts give
1 +00
Ji(@) = = L,(D = 3w, = yil* = I, f Gw, - !ﬁt)f g ()&(x, s)dsdx
0 0
I
1 +00 1 +00 2
+Df Bw, — i,bx)f g(8)éx(x, s)dsdx+f (f g (5)&(x, s)dsd) dx
0
4.5)

-G f W — @) f 8()é(x, s)dsdx — f f g()E(x, s)dsdx
ffl(x)f g(8)é(x, s)dsdx.
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Using Holder’s, Young’s and Poincaré’s equalities, we estimate the terms in (4.5) as follows:

1L,(D -1 1,2,8(0
I < %mw, il - Z(le(l )) f f ¢ ($)E(x, 9)Pdsdx,
D“(D
I < ell3wy = gl + (—)Il-foIM,

I < (D = lp)lIé 3y

2, GA(D - )
I < el —eul|” + —||§x||M,
(D 0) 2
Is < 61/1%||9x||2 ——LIElR,
1 2
< §||f1|| + ||§x||M-

Substituting (4.6) into (4.5), we obtain the result. This completes the proof.

1 X
() = —kp f 6 f o (y)dydx
0 0

satisfies, along the solution of system (2.5)-(2.6), the estimate

Lemma 4.3. The functional

1
Jz(t)<__||‘;01” + el — @l +C(1+ )I|9 112+ pll3w, — il

for any € > 0.

(4.6)

4.7)

Proof. Direct differentiation of J,, then making use of (2.5); and (2.5), with integration by parts give

1 1 1 X
Jy(t) =1p f Oupdx — p f prdx +p f Gwi =) f @(y)dydx
0 0 0 0
1 1
+kGf H(w—gox)dx+kf 6*dx.
0 0

Using Young’s and Poincaré’s inequalities, we obtain

J5(t) <p7]6,1° + ’—)Ilsotllz — plledP* + plI3w, — i l* + f;?llsotll2 + elly — ¢l

(Gk) A
4e,

164117 + kA, 1164

1
<- g”%”z + el — @l + C(l + 6_) 16117 + pll3w, — i,
2

for any €, > 0. This completes the proof.

1 1 X
J3(t) =p f o dx +p f 1/ f ¢ (y)dydx
0 0 0

Lemma 4.4. The functional

(4.8)

4.9)
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satisfies, along the solution of (2.5)-(2.6), the estimate
2

, G 3 A
J3(0) < ==y = @ull* + fll%ll2 + plBw: = wll? + 9pliwi > + ill@llz-

Proof. We differentiate J; and make use of (2.5), with integration by parts to get

(4.10)

1 1 1 X 1
50 = p fo Sdx -G fo W - ¢)ldx +p fo " fo o (y)dydx — fo 6 - ¢.)dx.

Using Cauchy-Schwarz, Young’s and Poincaré’s inequalities, we obtain
/ Py w2, Pz, Ai 2, G 2
J5(1) < 2~ Gl - @* + = + = + —I16:lI" + =Illy — ¢y
3(0) < plledl 1 = all” + Slieell™ + Slll” + S0 + Sl = el

2
=1 =P+ Ll + L + L1612
We observe that
Iall® = 1l = Gwy = ¢) + 3will* < 213w, — ¢ill* + 18]Iwil>.
Substituting (4.12) into (4.11), we obtain the desired result. This completes the proof.

Lemma 4.5. The functional
1
10 =1, [ Gw-w)Gw - )ds
0

satisfies, along the solution of (2.5)-(2.6), the estimate

, l 3(D - 1y)
Ti(t) < = 2Bwy = wl? + LIBw, — gl + =—21&.3,
4 21y
3(GA,)
21,

Proof. By differentiating J,4, then using (2.5), and integration by parts, we get

324
+ = @ull> + =216, + C.
2l

1 +00
To@) =L 13w, = gl = DoliBwy — will® - f GBw, — l//x)f 8(8)é(x, s)dsdx
0 0

1 1 1
+ Gf BGw -y — o )dx + f Bw —y)bdx + f Bw —¥) fi(x)dx.
0 0 0

Applying Young’s, Poincaré’s and Cauchy-Schwarz inequalities, we obtain
2

3 1 +00
Jie) % 13w, = il = o, P + 5 f ( f S, s)ds) dx
0 0

l
+ golBWx — Yl + GlBw. = Yl = @l + 113w = el 6.l

I
+ 213wy — gl + ClIAIP

4
I 3(D -1y
< —2Bwy = gl? + LIBw, — il P + S——L1E3,
4 21y
3(GAy)? , 347
+ = @ull” + =—116:lI” + C.
oI =P+ e

This completes the proof.
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Lemma 4.6. The functional
1
Js(r) = Ipf ww,dx
0
satisfies, along the solution of (2.5)-(2.6), the estimate
D
J5(0) < —lewxll2 + Clwll” + Clly — ¢ll” + C.

Proof. We differentiate Js, then use (2.5); and integration by parts to get

1 1
, 4
J5(0) = Llw* = Dllw.|* - Gf w(y — @ )dx — % f wh(w)dx
0 0
48 (!
3 Jo
From assumption (2.3), Holder’s and Poincaré’s inequalities, we get

4(C + I)m//l%

1
wwidx + f w(x)dx.
0

T30 < Ll = DlbwilP + Glhwillly =l + = L
4y 481
+2C,+ G+ Ll
D 4(Cy + DnyA?
<- (5 = S o+ Cllwd? + Clly = P+ C.

2
D _ 4Cirhmt
2 3

Choose n small enough such that (
Define the functional L by
L(1) = nE@) + nyJ1(t) + npJo(1) + naJ5(0) + Ja(t) + J5(2),
where n, ny, n,, n3 are positive constants to be determined later.
Lemma 4.7. The functional L satisfies, along the solution of (2.5)-(2.6), the estimate
mlWOliz, = Ci < L(1) < ol W@l + Ca, V1 20,
for some positive constants Uy, iy, C,,C,.

Proof. Using (2.3), Holder’s and Poincaré’s inequalities, we have on one hand

n
L) 25 [pligP + 30w + LIGw, = gl + 3Dl + Gliw = )]

n
+3 [lo||(3wx — I + €+ KO — Syndiliw.l® — 87Cn]
n

2

1
-ml, [5”(3"‘% - Wt)”z +

| 3611w, = WP + Co IAIP + A6allwdll” + Co,lI oI
(D - lp)A3
2
1 1 A2 1
— n3p [EII%IIZ + 5l - gox)uz] -1, [;nwxn2 + Enwtnz]

4 ), 1 >
-1 [3”(3% ~Yl” + S1Gw: = )l ] -

) > %, thus the desired result follows.

1 1
IISXIIfM] — mokp [EII%II2 + EIIHIIZ]

(4.16)

(4.17)

(4.18)

(4.19)
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This implies

mk  n3

n n 1 5
L(7) = (5 -5 3 )P”‘Pt” + (5 —5 —)1 IGBw: =)l

n 1 1 42yn 365\ A,
+31p(§—6)||wt||2+30(n(5— 3]1) - 61D) )n N[&

1 A5

/12
+6(5 - 20 Iy - IR + 1 (n(5 _ 21—10) _4 p) 1Gw, — I

noopm\ o (n m(D=Il)LA )
k(— - —) ¢ 55— |ll&«
+k{7— =)l +(2 > 1€l

n n
~ (CoSAIP + CoSIAIP + 4Cy).
Now, we first choose 1, 0,2, 7 small enough such that

4%yn s 26
Dostiom  40) o (1A%,
273D 6D 27 24

E_l > 0. 1_4/1%)/77_/1%62 _/I%Ip -0,
276 2”30 6D) 6D

no mp 1 46\ AL,

LoD s o fn(5 - 22 ) - 22 s,

(2 2G) g ("(2 2 )" 2 )7

(£ -22)> 0,3 - 2O . g

2 2

and obtain
L(l) 2 /’ll”(‘p’ Pt 3W - lr//? 3Wl‘ - l/’[’ W, Wy, 6’ 6)”3—{ - Cl-

On the other hand, again using assumption (2.3), Holder’s and Poincaré;s inequalities, we get

L) < aill@d? + aalwill® + asllBw; = )l + aallwll? + asli(y — @I

1
+ agllBwy — YOI + a7ll0I + aslié3, + 4nyC; f [wh(w)|dx
0
+ (CIAI + CUAIP + 4ynC,),
for some positive constants «;,i = 1,2, ..., 8. We observe that

1 1 1
fo [wh(w)ldx < fo wl({(w) = h(0))dx + fo Iwlin(0)ldx

2 /12
I @)y + 5 | Il +C.

(4.20)

(4.21)

(4.22)

(4.23)
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Substituting (4.23) into (4.22), we get
L(1) < poll(, @1 3w = 4, 3w; = Yy, w, w1, 0, )iz, + Co.
Combining (4.21) and (4.24), we obtain the result in (4.19).
Lemma 4.8. The functional L satisfies, along the solution of (2.5)-(2.6), the estimate
L'(t)+ CoL(t) < C, ¥t > 0,

for some positive constants C, C,.

Proof. Combining (3.6), Lemmas 4.2, 4.3, 4.4,4.5, 4.6, we have

ly
L)< (%p - @)usotn — (4Bn - 9pns — C) [will* - (Z - nlel) 1Gwx — vl
(M Cmp—mp—1 ) 1Gw, — I
Gns D
~ (22 -me - me - )w —@alF = ZiwlF

€

(D - ly)
(1+—) T‘))n@nx

Ly f f ¢ (9)é,(x, 9)Pdsdx,
2 0o Jo

Applying condition (2.2) and choosing

1
(Tn —emA] — nzC(l + —) - n3C — C) 16,117 + —||f1||2 +C
+(

l() Gl’l3
€= —,6 = —
! 8111 =2 4]’12 ’
we arrive at
, n l
L'(t) < - (%p - ip) i = (4n = 9pns = ) il = ZIIG3w, = Yl
I’LII (D l())
- (% — Ny — N3P — Ip) Bw, — ¥
Gn
- (5 - C)iw - polP = P
A2l 4
- (m - 1?0 - nQC(l + Gi;;) —nsC — c) 16,12 + %||f1||2 +C
8 3D -1
(25 - me)-me(1+ 5 - 22 e,
2 o
Now, we choose nj large enough so that
Gn3
ekl N c) 0,
(53

(4.24)

(4.25)

(4.26)

AIMS Mathematics Volume 5, Issue 5, 5261-5286.



5276

then we select n, large enough such that

mp  n3p
( P )>0. 4.27)

Next, we select n; large enough so that

(ﬂllp(D - lo)
2

— nyp — N3P — Ip) > 0, (4.28)

and finally, we select n large such that (4.19) remains valid and

(4Bn — 9pn; — C) > 0,

(Tﬂ—%—n2C(1+Sl—’?)—n3C—C)>O, (4.29)
(/l(g —n1C) —n1C(1 + ell) - W) >0,
From (4.26)—(4.29), there exist a constant C, > 0 such that
L'(t) < =Coll(@, @1, 3w — ¥, 3w, — Y, wy w,, 0,95, + C, (4.30)
By using Lemma 4.7, we obtain
L'(t) < -CoL(t) + C, VYt =0. (4.31)
This completes the proof. O

Theorem 4.2. Under the assumptions of Theorem 3.1, the semigroup S (t) of system (2.5)-(2.6), pos-
sesses a bounded absorbing set B, in H.

Proof. Integration of (4.25) over (0, ) leads to
L(t) < LO)e™ " + C (1 - ) < L(0)e™ ™ + C. (4.32)
Using (4.19), we get

1@, @1, 3w =, 3w, = i, w, wi, 6, Ml

1 1 _
< —L0)e @+ —(C+C
< L0 (C 4 C) (4.33)

1 _ _
< Z—ZH(SOO,%, 3wo — Yo, 3wr — Y1, wo, wi, 0o, £l + o (C +Cp + C2)~
1 1

Therefore, for R > \/u% (C +C + CZ), the ball B, (0, R) is a bounded absorbing set in (H, S (¢)) . This
completes the proof. O
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4.2. Asymptotic smoothness of the semigroup S(t)

Here, we establish the asymptotic smoothness of the semigroup S (¢) generated by system (2.5) —
(2.6) in H. We shall make use of the following lemma:

Lemma 4.9. [10] Let H be a Banach space. Let S(t) be a semigroup on H. Assume that for any
B C H bounded and positively invariant and for any t > ty = to(B) > 0, there exists a function Y g(t)
on [ty, ) and a pseudometric y, on C([0, 1], H) such that

(1) Ys() > 0 and lim Wg(r) = 0;
t—00

(i) the pseudometric xy, is precompact (with respect to the norm of H) in the sense that: any sequence
{yn} C B has a subsequence {y,,} such that the sequence {z;} € C([0,t], H) where z; = S(7)y,, is
Cauchy with respect to ',

(ii1) there holds the estimate
IS (Oy1 = SOyally < Pg@®llyr — yallw + x5U{S Oy} AS (Dy2}), Yy, 02 € B, V1> 1,

where {S (T)y1} is a function in C([0, t], H) given by y,(t) = S(7)y;.
Then S (t) is asymptotically smooth in H.

In what follows, we establish the asymptotic smoothness of the semigroup S (#) generated by the system
(2.5)—(2.6). Let _ _
Wj = ("DJ’ SO{’ (3W - w)]’ (3W, - lr//t)j’ Wj, W{’ 9], fj)Ta .] = 1, 2

be solutions of system (2.5)-(2.6) with corresponding initial data
Wy = (@3 @1, Bwo = Y0), Gwi = ), wh, wl, 05,6 € B, j = 1,2,

where 8 C H is a bounded and positive invariant set for the semigroup S (f). We set W = W' — W? and
Wy = W, — W;. Then W satisfies

p‘ptt + G (l/’ - ‘,Ox)x + gx = 05 (X, t) € (07 1) X (0’ +OO),

L, Bw =), —loBw —¢),, — f g($)Ex(x, s)ds
0
~GW—9)—0=0, (x,1) € (0,1) X (0, +00),

4 4 4.34
v = D+ G (4 = @) + 5y (ROw') = hOwP) + 3w, = 0, (39
(x,1) € (0,1) x (0, +00),
kgl - Texx + Pxt + (3W - l/l)t = 07 (-x’ t) € (0’ 1) X (O, +OO)’
é‘:t + gs - (3W - w)l‘ = O’ (x’ t) € (0’ 1) X (O’ +OO)’
with boundary conditions
(4.35)

©x(0,1) = y(0,1) = w(0,1) = 6(0,1) = £(0,5) =0, 1€ [0,+00),
e(1,0) =y (1,0) =w,(1,1) = 6,(1,1) = &(1,5) =0, t€[0,+00).
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The associated energy functional to system (4.34)-(4.35) is given by

Eo(1) = (/ollsofll2 + LIIGw, = wIP + lollBw. = w)IP + 3L lwil?)
+3 (3D||wx||2 + Gl = @I + kIO + 1141, (4.36)

1
25”(‘707 ‘Pt’ 3W - ¢7 3wt - lr//h W, Wy, 0? f)”(i—{'
Moreover, Ey(t) satisfies
d 1 1 (o] ,
EEO(D < =3Bwill* + Cglwll® — 7ll6:I* + 3 f f g (9)E(x, s)*dsdx. (4.37)
0o Jo

To see this, we multiply (4.34), by ¢,, (4.34), by 3w, —,), (4.34); by 3w,, (4.34), by 6in L*(0, 1),
using integration by parts and adding the outcomes, we get

dEo(1) _

praniaiets (14 AP = dy(h(w") — h(w?), wy) — 716,17

+lf fm g ()IE(x, 9)dsdx
2 0 0

1
< —4Blwill” + 47f h(w') = h(W?)llwldx — 716,
0

1 (o]
. f f g (5)IE(x, 9)dsdx
2 0 0

1
< =3Bl + C,Bf h(w') = h(W?)Pdx = 7|6,
0

1 00
. f f & (g, )P dsdx.
2 0 0

1 1
f Ih(w') — h(w*)PPdx < IIh’(y)Ilim(o,l)f wl*dx < Cgliwll*. (4.39)
0 0
Substituting (4.39) into (4.38), we obtain (4.37). Now, we define the functional L, by
Lo(1) = mE(1) + m K, (1) + myKy(2) + m3K5(1) + Ky(2) + Ks(2),

(4.38)

We have

where m, my, m,, m3 are positive constants to be determined and

1 +00
K1(t)=—1pf (3Wt—lﬁt)f 8($)&(x, s)dsdx,

K> (1) = —kp f f ¢ (y)dydx,
Ki(t) =p f ppdx +p f 1/ f ©:(y)dydx,

Ky(r) =1, f Gw = ¥)Bw = ¥)dx,
0

1
Ks(t) = Ipf ww,dx.
0
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Lemma 4.10. There exist 3, > 0,5, > 0 such that

BiEo(1) < Lo(1) < BrEo(1), Y1 > 0. (4.40)

Proof. Using Cauchy-Schwarz, Young’s and Poincaré’s inqualities, we see that

[Lo(t) — mE(2)] < my| Ky (2)] + my| Ky ()] + ms|K3(0)| + [Ka(2)] + |Ks5(2)]
< yilledl® + yallwid* + y3llBw: = w)IP + yallw,lI* (4.41)
+ Y5l — @oll? + Y6l Gwy = Wl + ¥4 ll0IF + ysllEy

where y;, i = 1,2, ..., 8 are positive constants. From (4.36) and (4.41), we can find a positive constant
Yo such that

|Lo(2) — mEy(2)| < yoEo(2).

It follows that

(m = y0)Eo(1) < Lo(r) < (m + o) Eo(1). (4.42)

By choosing m large enough such that (m —v,) > 0, we obtain the result. This completes the proof. 0O

Lemma 4.11. There exists v > 0 such that

Lo(t) + vLo(t) < Cgllw(®|I*, Yt > 0. (4.43)
Proof. Using similar computations as in Lemmas 4.2-4.6, we have

K|(t) < -2

1,(D - ly)
s IBwi - Uil + alBw, — ol + el — @l + e 116

1 +00
+C (1 + l) €13 — C f f g ()€ (x, s)*dsdx,
€1 0 Jo

, 1
K50 < ~LligdP + elly - o + C(l + —) 16117 + plI3w, = yull,
2 € (4.44)

, G 3
Ki(n) < —Elll// — ol + 7'0”90;”2 + plIBw; = will* + 9pliw* + ClI.II,

, l
Ky < _Zoll3wx =Yl + LlIBw; = il + ClIENG + Clly = @l + LGP,

D ~
K1) < —Ellwxll2 + Clwl? + Clly = @.ll” + Callw®I.
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Combining (4.37) and (4.44), we obtain

m
Ly < (22 - —3p) g = (3Bm — pms — C) [lw?

~

ZO - m181) IGw, = Yl + (mCs + Co)llwI

5
|
(mll (D —y)
d
|

— Mop — M3p = Ip) IGBw: — I
Gm3
2

1
mr — gymy AT — mzc(1 + —) m3C — c) 6.1
&

D
e c) I = @olF = Sliw?

1 )
+ (mIC(l + 1) ; C) IR + (T - mlC) f f & (), $)Pdsdx.
&1 2 0 0

By appropriate choices of m, m, m,, ms, €, & in a similar manner as done in Lemma 4.8, we obtain
Li(t) < CEy(t) + Cgllw()|*. (4.45)
Making use of (4.40) and (4.45), we get (4.43). O

Theorem 4.3. Under the assumptions of Theorem 3.1, the semigroup S(t) of system (2.5)-(2.6) is
asymptotically smooth in H.

Proof. Integrating (4.43) over (0, ) and making use of Lemma 4.10, we arrive at

Ey(r) < ﬁ—2EO(O)e‘V’ +Cg f [lw(s)|*ds.
B 0

It follows that
165 @1 3w = 0, 3w, = i, w, wi, 6, Ol
< Ce™"|[(¢o0, @1, 3wo = Yo, 3wi — 1, wo, wi, 60, E0)ll3; + Cis fo t Iw(s)Ids.
That is t
IS (OWy — S(OWgll5, < Ce™ Wy — Wil + Cs fo W' (s) — w?(s)lI*ds, (4.46)

for every W, Wy € B. Thus in other to apply Lemma 4.9, we set Wg(#) := Ce™ and x : HXH — R
is defined by

Xis (S(MW,. S (W) = C sup wl(s) = WA, (4.47)

0<7<t JO

Now, we show that y7, is precompact. Consider the sequence

{(QDOn’ Pin, 31’VOn - wOn’ 3W’lrz - wln’ Wons Win, 9011’ é:On)} c8
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We have that 8 c H is a bounded and positive invariant set, thus the corresponding solutions

{((@n(D), (@)n(0), 3wy () = (), 3(W0)n (1) = (Y)n(1), Wa(D), (W) (1), 6,(2), En(5))}

is bounded uniformly in H. Therefore

{((@n(®), (@)n(1), 3Wn(1) = (1), 3(WDa(1) = (W)n (), W), (W)(D), 6,(1), £u(5))}

is a bounded sequence in

C ([0,t],H).

This implies {w,(¢)} is bounded in
C (10,11, H}(0, 1)).

Using the compact embedding of
C (10,41, H}(0, ) N C' (10,11, L°(0, 1))

into
C (10,11, 270, 1)),

we can extract a subsequence {w, (¢)} which converges strongly in
C (10,11, L*(0, 1)) , ¥z > 0.

Therefore .

fim fim sup [ [, () = wi($)Pds = 0,
jmeol=00gcrer Jo

hence
1im 1im x% (S (1) Wou,. S (1) W, ) = 0. (4.48)

j—)oo [—0o0

In addition, we have lim Wg(¢) = 0. By applying Lemma 4.9, we obtain the asymptotic smoothness of

[—00

the semigroup S (¢) in H. m]

Theorem 4.4. Under the assumptions of Theorem (3.1), the semigroup S (t) of system (2.5)-(2.6) pos-
sesses the global attractor A in H, which is compact.

Proof. In Theorem 4.2, we showed that the semigroup S (¢) of system (2.5)-(2.6) possesses a bounded
absorbing set B, in H, and in Theorem 4.3 we showed that the semigroup S (¢) of system (2.5)-(2.6) is
asymptotically smooth in H. By applying Theorem 4.1, we obtain the result. O

5. Finite-fractal dimensional attractor

In this section, we show that the global attractor A obtained in section 4 has a finite-fractal dimen-
sion. To do this, we recall some basic concepts and results. We refer the reader to [10] and references
therein for more details.

Let X be a metric space and K C X be a compact set, then the fractal dimension of K is given by

) ) In(n(K, €))
dim*K =1 R
e (17
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where n(K, €) is the minimal number of closed balls with radius e that cover K.

Given a seminorm n(-) on a Banach space X, it is known that ny is compact whenever for any sequence
x; — 0 weakly in X we have that ny(x;) — 0.

We state the following result [10, Theorem 2.10], which guarantees that the global attractor A has a
finite fractal dimension.

Theorem 5.1. [10, Theorem 2.10] Let X be a separable Hilbert space and U C X be bounded and
closed. Assume that there exists a mapping J : U — X such that U C J(U) and

(1) J is Lipschitz on U, i.e., there exists L > 0 such that

T y1 = TIyallx < Lllyr = yallx, ¥ yi.y2 € U, (5.1)
(i1) there exist compact seminorms nx(-) and mx(-) on X such that

T y1 = Tyallx < yllyi = yallx + Anx(yr = y2) + mx(Ty1 — Ty2)l, (5.2)

for any yi,y, € U and some constants 0 <y < 1 and A > 0.
Then U is compact in X and has a finite fractal dimension.
The following is the main result of this section:

Theorem 5.2. Suppose the dynamical system (H,S (1)) generated by (2.5)-(2.6) possesses a global
attractor ‘A and if there exist nonnegative scalar functions a(t) and ¢(t) which are locally bounded in
[0, +00), and B(t) € L'((0, +00)) with lim B(t) = 0, such that

f—+00

ISOWy — SOWllz < a@)IIWy — Willz, (5.3)
and
IS (OWy — S @OWlly <BOIW, — Wil + (1) OSUP Iw'(s) = w? (I (5.4)

for any t > 0 and W}, = (¢}, ¢, Bwo — ¥o)', Bwi — ¢, wi, w', 05, &) € A, i = 1,2, where S (W, =
W(t). Then the global attractor ‘A has a finite fractal dimension.

Proof. We adopt the method of [10, Theorem 3.11], by applying Theorem 5.1. Let
Wi = (). @} Bwo — o), Bwy —¥1)  wh wh, 05, &) € A, i =1,2.

We observe that W = W' — W2 satisfies (4.1). Thus, performing similar computations as in Lemma
4.1, we get
IS (OWy — SOWli5, < Wy — Will5,, Yt > 0. (5.5)

Thus, we take a(r) = ¢ in (5.3) and we easily see that a(¢) is locally bounded in [0, +0). Next, we
show that (5.4) is satisfied. Indeed, integrating (4.43) over (0, t) and making use of (4.40), we get

C !
IS WL - SOWRIE, < 2 Ey)e + & f "I (s)ds
0

Bi Bi
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!
< Coe "Wy — Wil + C f e Vds sup |[w'(s) — wi(s)II?
0

O<s<t

= BOIW, = Wgllz, + ¢(2) sup [Iw'(s) = w(s)II, (5.6)

O<s<t
where

!
B = Coe™, ¢(1) = C f M9 ds, 130,
0

It’s easy to see that
B € L'RY) and lim B(1) = 0,
—

and that ¢(¢) is locally bounded in [0, co).
We take X = H x L*(0, T; H) for some T > 1, where

T
L2<0,T;w):{z<r>:||z||iz(0,m,)s f IIZ(t)Ili{dt<<><>}-
0

We denote the norm in X as

2 2 2
||V||X = ||W0||7‘{ + ||Z||L2(O,T;7’{)’

where V = (W, 2), Wy = (@0, @1, 3wo — o, 3w — Y1, wo, wi, 8o, &o).
Let w(f) = w'(f) — w?(¢), then integrating (5.6) over [T, 27 with respect to z, we get

2T
f IS Wy = S ()Wgllzdt < BriWg = Woll> + ¢r sup [Iw'(s) = w’(s)II, (5.7
T

0<s<2T

where 7 = szT B(t)dt and ¢ = fTZT ¢(t)dt. Also, from (5.6) we deduce

IS(TYWy — S(TYWgllz, < BDIWy — Wollz, + ¢(T) sup [w'(s) — w(s)II*. (5.8)

O<s<2T

Addition of (5.7) and (5.8) yield

2T
IS (TYWy = S(TYWqll3, +f IS (OWy — S () Wgll3,dr
T

< BrlWs = Wollz, + ¢r sup [Iw'(s) = w’(s)II, (5.9)

0<s<2T

where 7 = By + B(T) and ¢r = ¢ + ¢(T).
Now, we consider in the space X the subset

Ar ={V = W(QO),W();t€[0,T]: W) € A},

where W(0) = (¢, ¢;, Bw—), Bw—y),, w,w,, 8, &)(0) and W(¢) is the solution to (2.5)-(2.6) with initial
data W, = W(0). In addition, we define the operator

:7—: J71T - X
(W(0); W(1)) = (W(T), W(t +T)),
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J is clearly Lipschitz on Ay with Lipschitz constant |||, moreover, S Ar = Ar. It follows from
(5.9) that

1TV = V25 < BrllV! = V2I; + dr([nx(V! = VI + [nx(T V' = TVH]),
for any V!, V2 € Ay, where ny(V) = sup |w(s)||.

0<s<T

We have that L*(0, T; ) is compactly embedded in C(0, T'; ), thus ny is a compact seminorm on X.

We choose T such that By < 1, then application of Theorem 5.1 implies that A7 is a compact set in X

with finite fractal dimension.
We define the following projection operator by

P:X—>H
(W(@0), W()) — W(0).

Clearly, # is Lipschitz continuous and PA; = A, it follows that
dim}' A < dim{ Ay < oo.
The proof is complete. O

6. Conclusions

In this article, we have established the well-posedness and finite fractal-dimensional global attractor
for a non-linear thermoelastic laminated beam, where the heat conduction is given by Fourier’s law.
The presence of the nonlinear source term in system (1.1) gives an obvious challenge to establish that
the system is dissipative. We are able to achieve this by defining and estimating several Lyapunov
functionals.
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