The fuzzy set is highly beneficial for expressing people's hesitations in their everyday lives, and it is a great tool for dealing with uncertainty, which can be described precisely and perfectly from the decision-maker's point of view. Soft set theory has been developed in recent years to address real-world issues. Jun et al. merged fuzzy and soft sets to produce hybrid structures. Hybrid structures are soft set and fuzzy set speculations. The concept of hybrid ideals in near-subtraction semigroups is introduced in this paper, and their equivalent results are obtained. Additionally, we demonstrate the concept of hybrid intersection. Moreover, we define the concept of homomorphism of a hybrid structure in a near-subtraction semigroup.
Citation: S. Meenakshi, G. Muhiuddin, B. Elavarasan, D. Al-Kadi. Hybrid ideals in near-subtraction semigroups[J]. AIMS Mathematics, 2022, 7(7): 13493-13507. doi: 10.3934/math.2022746
The fuzzy set is highly beneficial for expressing people's hesitations in their everyday lives, and it is a great tool for dealing with uncertainty, which can be described precisely and perfectly from the decision-maker's point of view. Soft set theory has been developed in recent years to address real-world issues. Jun et al. merged fuzzy and soft sets to produce hybrid structures. Hybrid structures are soft set and fuzzy set speculations. The concept of hybrid ideals in near-subtraction semigroups is introduced in this paper, and their equivalent results are obtained. Additionally, we demonstrate the concept of hybrid intersection. Moreover, we define the concept of homomorphism of a hybrid structure in a near-subtraction semigroup.
[1] | S. Anis, M. Khan, Y. B. Jun, Hybrid ideals in semigroups, Cogent Math., 4 (2017), 1–12. https://doi.org/10.1080/23311835.2017.1352117 doi: 10.1080/23311835.2017.1352117 |
[2] | J. R. Clay, The near-rings on groups of low order, Math. Z., 104 (1968), 364–371. https://doi.org/10.1007/BF01110428 doi: 10.1007/BF01110428 |
[3] | P. Dheena, G. S. Kumar, On strongly regular near-subtraction semigroups, Commun. Korean Math. Soc., 22 (2007), 323–330. https://doi.org/10.4134/CKMS.2007.22.3.323 doi: 10.4134/CKMS.2007.22.3.323 |
[4] | B. Elavarasan, Y. B. Jun, Regularity of semigroups in terms of hybrid ideals and hybrid bi-ideals, Kragujev. J. Math., 46 (2022), 857–864. |
[5] | B. Elavarasan, G. Muhiuddin, K. Porselvi, Y. B. Jun, Hybrid structures applied to ideals in near-rings, Complex Intell. Syst., 7 (2021), 1489–1498. https://doi.org/10.1007/s40747-021-00271-7 doi: 10.1007/s40747-021-00271-7 |
[6] | B. Elavarasan, K. Porselvi, Y. B. Jun, Hybrid generalized bi-ideals in semigroups, Int. J. Math. Comput. Sci., 14 (2019), 601–612. |
[7] | Y. B. Jun, H. S. Kim, E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Jpn., 61 (2005), 459–464. |
[8] | Y. B. Jun, H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn., 65 (2007), 129–134. https://doi.org/10.32219/isms.65.1_129 doi: 10.32219/isms.65.1_129 |
[9] | Y. B. Jun, M. Sapanci, M. A. Öztürk, Fuzzy ideals in Gamma near-rings, Tr. J. Math., 22 (1998), 449–459. |
[10] | Y. B. Jun, S. Z. Song, G. Muhiuddin, Hybrid structures and applications, Ann. Commun. Math., 1 (2018), 11–25. |
[11] | K. J. Lee, C. H. Park, Some questions on fuzzifications of ideals in subtraction algebras, Commun. Korean Math. Soc., 22 (2007), 359–363. https://doi.org/10.4134/CKMS.2007.22.3.359 doi: 10.4134/CKMS.2007.22.3.359 |
[12] | G. Mason, Strongly regular near-rings, Proc. Edinb. Math. Soc., 23 (1980), 27–35. https://doi.org/10.1017/S0013091500003564 doi: 10.1017/S0013091500003564 |
[13] | P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X |
[14] | J. D. P. Meldrum, Varieties and d. g. near-rings, Proc. Edinb. Math. Soc., 17 (1971), 271–274. https://doi.org/10.1017/S0013091500027000 doi: 10.1017/S0013091500027000 |
[15] | D. Molodtsov, Soft set theory–first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5 |
[16] | G. Muhiuddin, J. C. G. John, B. Elavarasan, Y. B. Jun, K. Porselvi, Hybrid structures applied to modules over semirings, J. Intell. Fuzzy Syst., 42 (2022), 2521–2531. https://doi.org/10.3233/JIFS-211751 doi: 10.3233/JIFS-211751 |
[17] | G. Muhiuddin, J. C. G. John, B. Elavarasan, K. Porselvi, D. Al-Kadi, Properties of $k$-hybrid ideals in ternary semiring, J. Intell. Fuzzy Syst., 42 (2022), 5799–5807. https://doi.org/10.3233/JIFS-212311 doi: 10.3233/JIFS-212311 |
[18] | G. Muhiuddin, D. Al-Kadi, W. A. Khan, C. Jana, Hybrid structures applied to subalgebras of BCH-algebras, Secur. Commun. Netw., 2021 (2021), 1–8. https://doi.org/10.1155/2021/8960437 doi: 10.1155/2021/8960437 |
[19] | G. Muhiuddin, D. Al-Kadi, A. Mahboob, Hybrid structures applied to ideals in BCI-algebras, J. Math., 2020 (2020), 1–7. https://doi.org/10.1155/2020/2365078 doi: 10.1155/2020/2365078 |
[20] | K. Porselvi, B. Elavarasan, On hybrid interior ideals in semigroups, Probl. Anal. Issues Anal., 8 (2019), 137–146. https://doi.org/10.15393/j3.art.2019.6150 doi: 10.15393/j3.art.2019.6150 |
[21] | K. Porselvi, B. Elavarasan, Y. B. Jun, Hybrid interior ideals in ordered semigroups, New Math. Nat. Comput., 18 (2022), 1–8. https://doi.org/10.1142/S1793005722500016 doi: 10.1142/S1793005722500016 |
[22] | G. Muhiuddin, H. Harizavi, Y. B. Jun, Bipolar-valued fuzzy soft hyper BCK ideals in hyper BCK algebras, Discrete Math. Algorithms Appl., 12 (2020), 2050018. https://doi.org/10.1142/S1793830920500184 doi: 10.1142/S1793830920500184 |
[23] | G. Muhiuddin, Bipolar fuzzy $KU$-subalgebras/ideals of $KU$-algebras, Ann. Fuzzy Math. Inform., 8 (2014), 409–418. |
[24] | G. Muhiuddin, D. Al-Kadi, A. Mahboob, A. Albjedi, Interval-valued $m$-polar fuzzy positive implicative ideals in BCK-algebras, Math. Probl. Eng., 2021 (2021), 1–9. https://doi.org/10.1155/2021/1042091 doi: 10.1155/2021/1042091 |
[25] | G. Muhiuddin, D. Al-Kadi, Interval valued $m$-polar fuzzy BCK/BCI-algebras, Int. J. Comput. Intell. Syst., 14 (2021), 1014–1021. https://doi.org/10.2991/ijcis.d.210223.003 doi: 10.2991/ijcis.d.210223.003 |
[26] | G. Muhiuddin, D. Al-Kadi, A. Mahboob, A. Aljohani, Generalized fuzzy ideals of BCI-algebras based on interval valued $m$-polar fuzzy structures, Int. J. Comput. Intell. Syst., 14 (2021), 1–9. https://doi.org/10.1007/s44196-021-00006-z doi: 10.1007/s44196-021-00006-z |
[27] | G. Muhiuddin, K. P. Shum, New types of $(\alpha, \beta)$-fuzzy subalgebras of BCK/BCI-algebras, Int. J. Math. Comput. Sci., 14 (2019), 449–464. |
[28] | G. Muhiuddin, A. M. Al-Roqi, Subalgebras of $BCK/BCI$-algebras based on $(\alpha, \beta)$-type fuzzy sets, J. Comput. Anal. Appl., 18 (2015), 1057–1064. |
[29] | D. Al-Kadi, G. Muhiuddin, Bipolar fuzzy $BCI$-implicative ideals of $BCI$-algebras, Ann. Commun. Math., 3 (2020), 88–96. |
[30] | A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517. |
[31] | B. M. Schein, Difference semigroups, Commun. Algebra, 20 (1992), 2153–2169. https://doi.org/10.1080/00927879208824453 doi: 10.1080/00927879208824453 |
[32] | D. R. P. Williams, Fuzzy ideals in near-subtraction semigroups, Int. Scholarly Sci. Res. Innov., 2 (2008), 625–632. |
[33] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. |
[34] | B. Zelinka, Subtraction semigroups, Math. Bohem., 120 (1995), 445–447. https://doi.org/10.21136/MB.1995.126093 doi: 10.21136/MB.1995.126093 |