Research article

A generalized Shift-HSS splitting method for nonsingular saddle point problems

  • Received: 23 April 2022 Accepted: 05 May 2022 Published: 20 May 2022
  • MSC : 65F08, 65F10

  • In this paper, we propose a generalized shift-HSS (denoted by SFHSS) iteration method for solving nonsingular saddle point systems with nonsymmetric positive definite (1, 1)-block sub-matrix, and theoretically verify its convergence property. In addition, we discuss the algebraic properties of the resulted SFHSS preconditioner and estimate the sharp eigenvalue bounds of the related preconditioned matrix. Finally, numerical experiments are given to support our theoretical results and reveal that the new method is feasible and effective.

    Citation: Zhuo-Hong Huang. A generalized Shift-HSS splitting method for nonsingular saddle point problems[J]. AIMS Mathematics, 2022, 7(7): 13508-13536. doi: 10.3934/math.2022747

    Related Papers:

  • In this paper, we propose a generalized shift-HSS (denoted by SFHSS) iteration method for solving nonsingular saddle point systems with nonsymmetric positive definite (1, 1)-block sub-matrix, and theoretically verify its convergence property. In addition, we discuss the algebraic properties of the resulted SFHSS preconditioner and estimate the sharp eigenvalue bounds of the related preconditioned matrix. Finally, numerical experiments are given to support our theoretical results and reveal that the new method is feasible and effective.



    加载中


    [1] M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), 1–137. https://doi.org/10.1017/S0962492904000212 doi: 10.1017/S0962492904000212
    [2] C. Q. Lv, C. F. Ma, BCR method for solving generalized coupled Sylvester equations over centrosymmetric or anti-centrosymmetric matrix, Comput. Math. Appl., 75 (2018), 70–88. https://doi.org/10.1016/j.camwa.2017.08.041 doi: 10.1016/j.camwa.2017.08.041
    [3] H. C. Elman, Preconditioning for the steady-state Navier-Stokes equations with low viscosity, SIAM J. Sci. Comput., 20 (1999), 1299–1316. https://doi.org/10.1137/S1064827596312547 doi: 10.1137/S1064827596312547
    [4] Z. Z. Bai, B. N. Parlett, Z. Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102 (2005), 1–38. https://doi.org/10.1007/s00211-005-0643-0 doi: 10.1007/s00211-005-0643-0
    [5] S. L. Wu, T. Z. Huang, X. L. Zhao, A modified SSOR iterative method for augmented systems, J. Comput. Appl. Math., 228 (2009), 424–433. https://doi.org/10.1016/j.cam.2008.10.006 doi: 10.1016/j.cam.2008.10.006
    [6] A. L. Yang, Y. J. Wu, The Uzawa-HSS method for saddle-point problems, Appl. Math. Lett., 38 (2014), 38–42. https://doi.org/10.1016/j.aml.2014.06.018 doi: 10.1016/j.aml.2014.06.018
    [7] P. Y. Chen, J. G. Huang, H. S. Sheng, Some Uzawa methods for steady incompressible Navier-Stokes equations discretized by mixed element methods, J. Comput. Appl. Math., 273 (2015), 313–325. https://doi.org/10.1016/j.cam.2014.06.019 doi: 10.1016/j.cam.2014.06.019
    [8] Z. Z. Bai, G. H. Golub, M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix. Anal. Appl., 24 (2002), 603–626. https://doi.org/10.1137/S0895479801395458 doi: 10.1137/S0895479801395458
    [9] Z. Z. Bai, G. H. Golub, Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal., 27 (2007), 1–23. https://doi.org/10.1093/imanum/drl017 doi: 10.1093/imanum/drl017
    [10] Z. H. Huang, T. Z. Huang, Spectral properties of the preconditioned AHSS iteration method for generalized saddle point problems, Comput. Appl. Math., 29 (2010), 269–295.
    [11] Z. H. Huang, H. Su, A modified shift-splitting method for nonsymmetric saddle point problems, J. Comput. Appl. Math., 317 (2017), 535–546. https://doi.org/10.1016/j.cam.2016.11.032 doi: 10.1016/j.cam.2016.11.032
    [12] Z. Z. Bai, S. L. Zhang, A regularized conjugate gradient method for symmetric positive definite system of linear equations, J. Comput. Math., 20 (2002), 437–448.
    [13] Z. Z. Bai, J. F. Yin, Y. F. Su, A shift-splitting preconditioner for non-Hermitian positive definite matrices, J. Comput. Math., 24 (2006), 539–552.
    [14] Y. Cao, H. R. Tao, M. Q. Jiang, Generalized shift splitting preconditioners for saddle point problems, Math. Numer. Sinca, 36 (2014), 16–26.
    [15] C. R. Chen, C. F. Ma, A generalized shift-splitting preconditioner for saddle point problems, Appl. Math. Lett., 43 (2015), 49–55. https://doi.org/10.1016/j.aml.2014.12.001 doi: 10.1016/j.aml.2014.12.001
    [16] Y. Cao, J. Du, Q. Niu, Shift-splitting preconditioners for saddle point problems, J. Comput. Appl. Math., 272 (2014), 239–250. https://doi.org/10.1016/j.cam.2014.05.017 doi: 10.1016/j.cam.2014.05.017
    [17] Y. Cao, S. Li, L. Q. Yao, A class of generalized shift-splitting preconditioners for nonsymmetric saddle point problems, Appl. Math. Lett., 49 (2015), 20–27. https://doi.org/10.1016/j.aml.2015.04.001 doi: 10.1016/j.aml.2015.04.001
    [18] S. W. Zhou, A. L. Yang, Y. Dou, Y. J. Wu. The modified shift-splitting preconditioners for nonsymmetric saddle-point problems, Appl. Math. Lett., 59 (2016), 109–114. https://doi.org/10.1016/j.aml.2016.03.011 doi: 10.1016/j.aml.2016.03.011
    [19] Z. G. Huang, L. G. Wang, Z. Xu, J. J. Cui, The generalized modified shift-splitting preconditioners for nonsymmetric saddle point problems, Appl. Math. Comput., 299 (2017), 95–118. https://doi.org/10.1016/j.amc.2016.11.038 doi: 10.1016/j.amc.2016.11.038
    [20] Y. Saad, M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), 856–869. https://doi.org/10.1137/0907058 doi: 10.1137/0907058
    [21] M. Q. Jiang, Y. Cao, On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 231 (2009), 973–982. https://doi.org/10.1016/j.cam.2009.05.012 doi: 10.1016/j.cam.2009.05.012
    [22] J. J. H. Miller, On the location of zeros of certain classes of polynomials with applications to numerical analysis, J. Inst. Math. Appl., 8 (1971), 397–406. https://doi.org/10.1093/imamat/8.3.397 doi: 10.1093/imamat/8.3.397
    [23] S. T. Ling, Q. B. Liu, New local generalized shift-splitting preconditioners for saddle point problems, Appl. Math. Comput., 302 (2017), 58–67. https://doi.org/10.1016/j.amc.2017.01.014 doi: 10.1016/j.amc.2017.01.014
    [24] Z. G. Huang, L. G. Wang, Z. Xu, J. J. Cui, An efficient preconditioned variant of the PSS preconditioner for generalized saddle point problems, Appl. Math. Comput., 376 (2020), 125110. https://doi.org/10.1016/j.amc.2020.125110 doi: 10.1016/j.amc.2020.125110
    [25] J. L. Zhu, A. L. Yang, Y. J. Wu, A parameterized deteriorated PSS preconditioner and its optimization for nonsymmetric saddle point problems, Comput. Math. Appl., 79 (2020), 1420–1434. https://doi.org/10.1016/j.camwa.2019.09.004 doi: 10.1016/j.camwa.2019.09.004
    [26] Y. M. Huang, A practical formula for computing optimal parameters in the HSS iteration methods, J. Comput. Appl. Math., 255 (2014), 142–149. https://doi.org/10.1016/j.cam.2013.01.023 doi: 10.1016/j.cam.2013.01.023
    [27] S. Q. Shen, A note on PSS preconditioners for generalized saddle point problems, Appl. Math. Comput., 237 (2014), 723–729. https://doi.org/10.1016/j.amc.2014.03.151 doi: 10.1016/j.amc.2014.03.151
    [28] Y. Cao, J. L. Dong, Y. M. Wang, A relaxed deteriorated PSS preconditioner for nonsymmetric saddle point problems from the steady Navier-Stokes equation, J. Comput. Appl. Math., 273 (2015), 41–60. https://doi.org/10.1016/j.cam.2014.06.001 doi: 10.1016/j.cam.2014.06.001
    [29] Q. Q. Shen, Y. Cao, L. Wang, Two improvements of the deteriorated PSS preconditioner for generalized saddle point problems, Numer. Algor., 75 (2017), 33–54. https://doi.org/10.1007/s11075-016-0195-7 doi: 10.1007/s11075-016-0195-7
    [30] Y. Cao, A block positive-semidefinite splitting preconditioner for generalized saddle point linear systems, J. Comput. Appl. Math., 374 (2020), 112787. https://doi.org/10.1016/j.cam.2020.112787 doi: 10.1016/j.cam.2020.112787
    [31] M. Benzi, G. H. Golub, A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26 (2004), 20–41. https://doi.org/10.1137/S0895479802417106 doi: 10.1137/S0895479802417106
    [32] H. C. Elman, A. Ramage, D. J. Silvester, Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow, ACM T. Math. Software, 33 (2007), 14. https://doi.org/10.1145/1236463.1236469 doi: 10.1145/1236463.1236469
    [33] A. Hadjidimos, The saddle point problem and the Manteuffel algorithm, BIT. Numer. Math., 56 (2016), 1281–1302. https://doi.org/10.1007/s10543-016-0617-x doi: 10.1007/s10543-016-0617-x
    [34] Y. Dou, A. L. Yang, Y. J. Wu, Z. Z. Liang, Convergence analysis of modified PGSS methods for singular saddle-point problems, Comput. Math. Appl., 77 (2019), 93–104. https://doi.org/10.1016/j.camwa.2018.09.016 doi: 10.1016/j.camwa.2018.09.016
    [35] Z. Z. Bai, A. Hadjidimos, Optimization of extrapolated Cayley transform with non-Hermitian positive definite matrix, Linear Algebra Appl., 463 (2014), 322–339. https://doi.org/10.1016/j.laa.2014.08.021 doi: 10.1016/j.laa.2014.08.021
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1442) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog