Research article

Generalized accelerated AOR splitting iterative method for generalized saddle point problems

  • Received: 03 August 2021 Revised: 29 January 2022 Accepted: 08 February 2022 Published: 15 February 2022
  • MSC : 65F10, 65F50

  • Generalized accelerated AOR (GAAOR) splitting iterative method for the generalized saddle point problems is proposed in this paper. The iterative scheme and the convergence of the GAAOR splitting method are researched. The eigenvalues distributions of its preconditioned matrix is discussed under {two different choices of the parameter matrix Q}. The resulting GAAOR preconditioner is used to precondition Krylov subspace method such as the restarted generalized minimal residual (GMRES) method for solving the equivalent formulation of the generalized saddle point problems. The theoretical results and effectiveness of the GAAOR splitting iterative method are supported by {some} numerical examples.

    Citation: Jin-Song Xiong. Generalized accelerated AOR splitting iterative method for generalized saddle point problems[J]. AIMS Mathematics, 2022, 7(5): 7625-7641. doi: 10.3934/math.2022428

    Related Papers:

  • Generalized accelerated AOR (GAAOR) splitting iterative method for the generalized saddle point problems is proposed in this paper. The iterative scheme and the convergence of the GAAOR splitting method are researched. The eigenvalues distributions of its preconditioned matrix is discussed under {two different choices of the parameter matrix Q}. The resulting GAAOR preconditioner is used to precondition Krylov subspace method such as the restarted generalized minimal residual (GMRES) method for solving the equivalent formulation of the generalized saddle point problems. The theoretical results and effectiveness of the GAAOR splitting iterative method are supported by {some} numerical examples.



    加载中


    [1] K. J. Arrow, L. Hurwicz, H. Uzawa, Studies in linear and non-linear programming, Stanford: Stanford University Press, 1958.
    [2] Z. Z. Bai, G. H. Golub, J. Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), 1–32. https://doi.org/10.1007/s00211-004-0521-1 doi: 10.1007/s00211-004-0521-1
    [3] Z. Z. Bai, B. N. Parlett, Z. Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102 (2005), 1–38. https://doi.org/10.1007/s00211-005-0643-0 doi: 10.1007/s00211-005-0643-0
    [4] M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), 1–137. https://doi.org/10.1017/S0962492904000212 doi: 10.1017/S0962492904000212
    [5] H. C. Elman, G. H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal., 31 (1994), 1645–1661. https://doi.org/10.1137/0731085 doi: 10.1137/0731085
    [6] G. H. Golub, D. J. Silvester, A. J. Wathen, Performance and analysis of saddle point precon ditioners for the discrete steady-state Navier-stokes equations, Numer. Math., 90 (2002), 665–688. https://doi.org/10.1007/s002110100300 doi: 10.1007/s002110100300
    [7] J. S. Xiong, X. B. Gao, Semi-convergence analysis of Uzawa-AOR method for singular saddle point problems, Comp. Appl. Math., 36 (2017), 383–395. https://doi.org/10.1007/s40314-015-0233-4 doi: 10.1007/s40314-015-0233-4
    [8] J. S. Xiong, X. B. Gao, GSTS-Uzawa method for a class of complex singular saddle point problems, Comp. Appl. Math., 37 (2018), 3580–3592. https://doi.org/10.1007/s40314-017-0535-9 doi: 10.1007/s40314-017-0535-9
    [9] H. C. Elman, A. Ramage, D. J. Silvester, Algorithm 866: IFISS, a Matlab toolbox for modelling imcompressible flow, ACM Trans. Math. Softw., 33 (2007), 1–18. https://doi.org/10.1145/1236463.1236469 doi: 10.1145/1236463.1236469
    [10] J. Y. Yuan, Iterative methods for generalized least squares linear systems, Ph D. Thesis, IMPA, Brazil, 1993.
    [11] J. Y. Yuan, A. N. Iusem, Preconditioned conjugate gradient method for generalized least squares linear systems, J. Comput. Appl. Math., 71 (1996), 287–297. https://doi.org/10.1016/0377-0427(95)00239-1 doi: 10.1016/0377-0427(95)00239-1
    [12] J. Y. Yuan, R. J. B. Sampaio, W. Sun, Algebraic relationships between updating and downdating least squares linear systems, Numer. Math. J. Chin. Univ., 3 (1996), 203–210.
    [13] I. Perugia, V. Simoncini, Block-diagonal and indefinite symmetric preconditioners for mixed finite clement formulations, Numer. Linear Algebra Appl., 7 (2000), 585–616.
    [14] Z. Z. Bai, M. Benzi, F. Chen, Modified HSS iteration methods for a class of complex symmetric linear systems, Computing, 87 (2010), 93–111. https://doi.org/10.1007/s00607-010-0077-0 doi: 10.1007/s00607-010-0077-0
    [15] Z. Z. Bai, M. Benzi, F. Chen, On preconditioned MHSS iteration methods for complex symmetric linear systems, Numer. Algorithms, 56 (2011), 297–317. https://doi.org/10.1007/s11075-010-9441-6 doi: 10.1007/s11075-010-9441-6
    [16] Z. Z. Bai, M. Benzi, F. Chen, Z. Q. Wang, Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems, IMA J. Numer. Anal., 33 (2013), 343–369. https://doi.org/10.1093/imanum/drs001 doi: 10.1093/imanum/drs001
    [17] T. Z. Huang, S. L. Wu, C. X. Li, The spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for generalized saddle point problems, J. Comput. Appl. Math., 229 (2009), 37–46. https://doi.org/10.1016/j.cam.2008.10.012 doi: 10.1016/j.cam.2008.10.012
    [18] Z. H. Huang, T. Z. Huang, Spectral properties of the preconditioned AHSS iteration method for generalized saddle point problems, Comput. Appl. Math., 29 (2010), 269–295.
    [19] K. Zhang, L. N. Wang, Efficient HSS-based preconditioners for generalized saddle point problems, Comp. Appl. Math., 39 (2020), 154. https://doi.org/10.1007/s40314-020-01180-0 doi: 10.1007/s40314-020-01180-0
    [20] Z. Z. Bai, Y. M. Huang, M. K. Ng, Block-triangular preconditioners for system arising from edge-preserving image restoration, J. Comput. Math., 28 (2010), 848–863.
    [21] M. Q. Jing, Y. Cao, Block triangular preconditioners for generalized saddle point problems, Math. Numer. Sinica, 32 (2010), 47–58. https://doi.org/10.12286/jssx.2010.1.47 doi: 10.12286/jssx.2010.1.47
    [22] Y. Cao, S. Li, Block triangular preconditioners based on symmetric-triangular decomposition for generalized saddle point problems, Appl. Math. Comput., 358 (2019), 262–277. https://doi.org/10.1016/j.amc.2019.04.039 doi: 10.1016/j.amc.2019.04.039
    [23] S. H. Cheng, L. T. Zhang, Generalized block triangular preconditioner for saddle point systems, Adv. Mater. Res., 571 (2012), 614–617. https://doi.org/10.4028/www.scientific.net/AMR.571.614 doi: 10.4028/www.scientific.net/AMR.571.614
    [24] G. F. Zhang, Q. H. Lu, On generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math., 219 (2008), 51–58. https://doi.org/10.1016/j.cam.2007.07.001 doi: 10.1016/j.cam.2007.07.001
    [25] M. T. Darvishi, P. Hessari, Symmetric SOR method for augmented systems, Appl. Math. Comput., 183 (2006), 409–415. https://doi.org/10.1016/j.amc.2006.05.094 doi: 10.1016/j.amc.2006.05.094
    [26] M. T. Darvishi, P. Hessari. A modified symmetric successive overrelaxation method for augmented systems, Comput. Appl. Math., 61 (2011), 3128–3135. https://doi.org/10.1016/j.camwa.2011.03.103 doi: 10.1016/j.camwa.2011.03.103
    [27] T. T. Feng, G. L. Chen, X. P. Guo, An accelerated SOR-LIKE method for generalised saddle point problems, East Asian J. Appl. Math., 8 (2018), 70–81. https://doi.org/10.4208/eajam.261016.260817a doi: 10.4208/eajam.261016.260817a
    [28] H. S. Najafi, S. A. Edalatpanah, On the modified symmetric successive over-relaxation method for augmented systems, Comp. Appl. Math., 34 (2015), 607–617. https://doi.org/10.1007/s40314-014-0127-x doi: 10.1007/s40314-014-0127-x
    [29] Z. Z. Bai, Z. Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 428 (2008), 2900–2932. https://doi.org/10.1016/j.laa.2008.01.018 doi: 10.1016/j.laa.2008.01.018
    [30] Y. Y. Zhou, G. Zhang, A generalization of parameterized inexact Uzawa method for generalized saddle point problems, Appl. Math. Comput., 215 (2009), 599–607. https://doi.org/10.1016/j.amc.2009.05.036 doi: 10.1016/j.amc.2009.05.036
    [31] L. T. Zhang, L. M. Shi, An improved generalized parameterized inexact Uzawa method for singular saddle point problems, J. Comput. Anal. Appl., 23 (2017), 671–683.
    [32] Z. G. Huang, L. G. Wang, Z. Xu, J. J. Cui, An efficient preconditioned variant of the PSS preconditioner for generalized saddle point problems, Appl. Math. Comput., 376 (2020), 125110. https://doi.org/10.1016/j.amc.2020.125110 doi: 10.1016/j.amc.2020.125110
    [33] H. L. Shen, H. Y. Wu, X. H. Shao, X. D. Song, The PPS method-based constraint preconditioners for generalized saddle point problems, Comp. Appl. Math., 38 (2019), 21. https://doi.org/10.1007/s40314-019-0792-x doi: 10.1007/s40314-019-0792-x
    [34] H. L. Shen, H. Y. Wu, X. H. Shao, A simplified PSS preconditioner for non-Hermitian generalized saddle point problems, Appl. Math. Comput., 394 (2021), 125810. https://doi.org/10.1016/j.amc.2020.125810 doi: 10.1016/j.amc.2020.125810
    [35] C. J. Li, Z. Li, Y. Y. Nie, D. J. Evans, Generalized AOR method for the augmented system, Int. J. Comput. Math., 81 (2004), 495–504. https://doi.org/10.1080/00207160410001661663 doi: 10.1080/00207160410001661663
    [36] Y. T. Li, C. X. Li, S. L. Wu, Improving AOR method for consistent linear systems, Appl. Math. Comput., 186 (2007), 379–388. https://doi.org/10.1016/j.amc.2006.07.097 doi: 10.1016/j.amc.2006.07.097
    [37] Y. X. Zhang, H. F. Ding, W. S. He, S. F. Wang, A class of new generalized AOR method for augmented systems, In: D. Liu, H. Zhang, M. Polycarpou, C. Alippi, H. He, Advances in neural networks-ISNN 2011, Lecture Notes in Computer Science, Springer, 6675 (2011), 158–165. https://doi.org/10.1007/978-3-642-21105-8_20
    [38] M. M. Martins, W. Yousif, J. L. Sants, A variants of the AOR method for augmented systems, Math. Comp., 81 (2012), 399–417. https://doi.org/10.1090/S0025-5718-2011-02483-X doi: 10.1090/S0025-5718-2011-02483-X
    [39] F. Chen, N. Gao, Y. L. Jiang, On product-type generalized block AOR method for augmented linear systems, Numer. Algebra Control Optim., 2 (2012), 797–809. http://dx.doi.org/10.3934/naco.2012.2.797 doi: 10.3934/naco.2012.2.797
    [40] C. H. Zhang, X. Wang, X. B. Tang, Generalized AOR method for solving a class of generalized saddle point problems, J. Comput. Appl. Math., 350 (2019), 67–79. https://doi.org/10.1016/j.cam.2018.10.001 doi: 10.1016/j.cam.2018.10.001
    [41] D. M. Young, Iterative solution of large linear systems, Academic Press, 1971. https://doi.org/10.1016/C2013-0-11733-3
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1614) PDF downloads(98) Cited by(0)

Article outline

Figures and Tables

Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog