Research article

Dual group inverses of dual matrices and their applications in solving systems of linear dual equations

  • Received: 08 December 2021 Revised: 19 January 2022 Accepted: 11 February 2022 Published: 15 February 2022
  • MSC : 15A09, 15A10

  • In this paper, we study a kind of dual generalized inverses of dual matrices, which is called the dual group inverse. Some necessary and sufficient conditions for a dual matrix to have the dual group inverse are given. If one of these conditions is satisfied, then compact formulas and efficient methods for the computation of the dual group inverse are given. Moreover, the results of the dual group inverse are applied to solve systems of linear dual equations. The dual group-inverse solution of systems of linear dual equations is introduced. The dual analog of the real least-squares solution and minimal $ P $-norm least-squares solution are obtained. Some numerical examples are provided to illustrate the results obtained.

    Citation: Jin Zhong, Yilin Zhang. Dual group inverses of dual matrices and their applications in solving systems of linear dual equations[J]. AIMS Mathematics, 2022, 7(5): 7606-7624. doi: 10.3934/math.2022427

    Related Papers:

  • In this paper, we study a kind of dual generalized inverses of dual matrices, which is called the dual group inverse. Some necessary and sufficient conditions for a dual matrix to have the dual group inverse are given. If one of these conditions is satisfied, then compact formulas and efficient methods for the computation of the dual group inverse are given. Moreover, the results of the dual group inverse are applied to solve systems of linear dual equations. The dual group-inverse solution of systems of linear dual equations is introduced. The dual analog of the real least-squares solution and minimal $ P $-norm least-squares solution are obtained. Some numerical examples are provided to illustrate the results obtained.



    加载中


    [1] J. Angeles, The dual generalized inverses and their applications in kinematic synthesis, In: Latest advances in robot kinematics, Springer, 2012, 1–10. https://doi.org/10.1007/978-94-007-4620-6_1
    [2] H. H. Cheng, S. Thompson, Dual polynomials and complex dual numbers for analysis of spatial mechanisms, In: Proceedings of the ASME 1996 Design Engineering Technical Conference and Computers in Engineering Conference, Irvine, California, USA, 1996. https://doi.org/10.1115/96-DETC/MECH-1221
    [3] G. F. Simmons, Introduction to topology and mordern analysis, Krieger Publishing Company, 1963.
    [4] J. Angeles, The application of dual algebra to kinematic analysis, In: J. Angeles, E. Zakhariev, Computational methods in mechanical systems, Springer-Verlag, Heidelberg, 1998, 3–31. https://doi.org/10.1007/978-3-662-03729-4_1
    [5] E. Pennestrì, R. Stefanelli, Linear algebra and numerical algorithms using dual numbers, Multibody Syst. Dyn., 18 (2007), 323–344. https://doi.org/10.1007/s11044-007-9088-9 doi: 10.1007/s11044-007-9088-9
    [6] M. A. Clifford, Preliminary sketch of biquaternions, Proc. Lond. Math. Soc., s1-4 (1871), 381–395. https://doi.org/10.1112/plms/s1-4.1.381 doi: 10.1112/plms/s1-4.1.381
    [7] E. Study, Geometrie der dynamen, Teubner, Leipzig, 1903.
    [8] Y. L. Gu, J. Luh, Dual-number transformation and its applications to robotics, IEEE J. Robot. Autom., 3 (1987), 615–623. https://doi.org/10.1109/JRA.1987.1087138 doi: 10.1109/JRA.1987.1087138
    [9] H. Hei$\beta$, Homogeneous and dual matrices for treating the kinematic problem of robots, JFAC Proc. Vol., 19 (1986), 51–55. https://doi.org/10.1016/S1474-6670(17)59452-5 doi: 10.1016/S1474-6670(17)59452-5
    [10] Y. Jin, X. Wang, The application of the dual number methods to Scara kinematic, In: International Conference on Mechanic Automation and Control Engineering, IEEE, 2010, 3871–3874. https://doi.org/10.1109/MACE.2010.5535409
    [11] E. Pennestrì, P. P. Valentini, Linear dual algebra algorithms and their application to kinematics, In: Multibody dynamics. Computational methods in applied sciences, Springer, 2009, https://doi.org/10.1007/978-1-4020-8829-2_11
    [12] F. E. Udwadia, Dual generalized inverses and their use in solving systems of linear dual euqation, Mech. Mach. Theory, 156 (2021), 104158. https://doi.org/10.1016/j.mechmachtheory.2020.104158 doi: 10.1016/j.mechmachtheory.2020.104158
    [13] F. E. Udwadia, E. Pennestrì, D. de Falco, Do all dual matrices have dual Moore-Penrose generalized inverses, Mech. Mach. Theory, 151 (2020), 103878. https://doi.org/10.1016/j.mechmachtheory.2020.103878 doi: 10.1016/j.mechmachtheory.2020.103878
    [14] D. de Falco, E. Pennestrì, F. E. Udwadia, On generalized inverses of dual matrices, Mech. Mach. Theory, 123 (2018), 89–106. https://doi.org/10.1016/j.mechmachtheory.2017.11.020 doi: 10.1016/j.mechmachtheory.2017.11.020
    [15] E. Pennestrì, P. P. Valentini, D. de Falco, The Moore-Penrose dual generalized inverse matrix with application to kinematic synthesis of spatial linkages, J. Mech. Des., 140 (2018), 1–7. https://doi.org/10.1115/1.4040882 doi: 10.1115/1.4040882
    [16] H. Wang, Characterizations and properties of the MPDGI and DMPGI, Mech. Mach. Theory, 158 (2021), 104212. https://doi.org/10.1016/j.mechmachtheory.2020.104212 doi: 10.1016/j.mechmachtheory.2020.104212
    [17] C. D. Meyer, The role of the group generalized inverse in the theory of finite Markov chains, SIAM Rev., 17 (1975), 443–464. http://dx.doi.org/10.1137/1017044 doi: 10.1137/1017044
    [18] N. J. Higham, P. A. Knight, Finite precision behavior of stationary iteration for solving singular systems, Linear Algebra Appl., 192 (1993), 165–186. http://dx.doi.org/10.1016/0024-3795(93)90242-G doi: 10.1016/0024-3795(93)90242-G
    [19] B. Mihailović, V. M. Jerković, B. Malešević, Solving fuzzy linear systems using a block representation of generalized inverses: The group inverse, Fuzzy Sets Syst., 353 (2018), 44–65. http://dx.doi.org/10.1016/j.fss.2017.11.007 doi: 10.1016/j.fss.2017.11.007
    [20] S. L. Campbell, C. D. Meyer, Generalized inverses of linear transformations, SIAM, 2009. http://dx.doi.org/10.1137/1.9780898719048
    [21] J. Levine, R. E. Hartwig, Applications of Drazin inverse to the Hill cryptographic systems, Cryptologia, 4 (1980), 71–85. http://dx.doi.org/10.1080/0161-118091854906 doi: 10.1080/0161-118091854906
    [22] G. Wang, Y. Wei, S. Qiao, Generalized inverses: Theory and computations, Springer, Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0146-9
    [23] X. Chen, R. E. Hartwig, The group inverse of a triangular matrix, Linear Algebra Appl., 237/238 (1996), 97–108. https://doi.org/10.1016/0024-3795(95)00561-7 doi: 10.1016/0024-3795(95)00561-7
    [24] Y. Tian, Rank equalities related to generalized inverses of matrices and their applications, Master Thesis, Montreal, Quebec, Canada, 2000.
    [25] Y. Wei, Index splitting for the Drazin inverse and the singular linear system, Appl. Math. Comput., 95 (1998), 115–124. https://doi.org/10.1016/S0096-3003(97)10098-4 doi: 10.1016/S0096-3003(97)10098-4
    [26] Y. Wei, H. Wu, Additional results on index splitting for Drazin inverse solutions of singular linear systems, Electron. J. Linear Al., 8 (2001), 83–93. https://doi.org/10.13001/1081-3810.1062 doi: 10.13001/1081-3810.1062
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1765) PDF downloads(120) Cited by(14)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog