Research article Special Issues

Numerical analysis of variable-order fractional KdV-Burgers-Kuramoto equation


  • Received: 25 December 2021 Revised: 19 February 2022 Accepted: 09 March 2022 Published: 16 March 2022
  • In this paper, a fully discrete local discontinuous Galerkin finite element method is proposed to solve the KdV-Burgers-Kuramoto equation with variable-order Riemann-Liouville time fractional derivative. The method proposed in this paper is based on the finite difference method in time and local discontinuous Galerkin method in space. For all $ \epsilon(t)\in (0, 1) $ with variable order, we prove the scheme is unconditional stable and convergent. Finally, numerical examples are provided to verify the theoretical analysis and the order of convergence for the proposed method.

    Citation: Leilei Wei, Xiaojing Wei, Bo Tang. Numerical analysis of variable-order fractional KdV-Burgers-Kuramoto equation[J]. Electronic Research Archive, 2022, 30(4): 1263-1281. doi: 10.3934/era.2022066

    Related Papers:

  • In this paper, a fully discrete local discontinuous Galerkin finite element method is proposed to solve the KdV-Burgers-Kuramoto equation with variable-order Riemann-Liouville time fractional derivative. The method proposed in this paper is based on the finite difference method in time and local discontinuous Galerkin method in space. For all $ \epsilon(t)\in (0, 1) $ with variable order, we prove the scheme is unconditional stable and convergent. Finally, numerical examples are provided to verify the theoretical analysis and the order of convergence for the proposed method.



    加载中


    [1] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [2] X. Gu, T. Huang, C. Ji, B. Carpentieri, A. A. Alikhanov, Fast iterative method with a second order implicit difference scheme for time-space fractional convection-diffusion equation, J. Sci. Comput., 72 (2017), 957–985. https://doi.org/10.1007/s10915-017-0388-9 doi: 10.1007/s10915-017-0388-9
    [3] J. H. He, Some applications of nonlinear fractional differential equations and their applications, Bull. Sci. Technol. Soc., 15 (1999), 86–90.
    [4] A. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340 (2008), 252–281. https://doi.org/10.1016/j.jmaa.2007.08.024 doi: 10.1016/j.jmaa.2007.08.024
    [5] M. Li, X. Gu, C. Huang, M. Fei, G. Zhang, A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Comput. Phys., 358 (2018), 256–282. https://doi.org/10.1016/j.jcp.2017.12.044 doi: 10.1016/j.jcp.2017.12.044
    [6] Y. Liu, M. Zhang, H. Li, J. C. Li, High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation, Comput. Math. Appl., 73 (2017), 1298–1314. https://doi.org/10.1016/j.camwa.2016.08.015 doi: 10.1016/j.camwa.2016.08.015
    [7] S. Rashid, A. Khalid, O. Bazighifan, G. I. Oros, New modifications of integral inequalities via-convexity pertaining to fractional calculus and their applications, Mathematics, 9 (2021), 1753. https://doi.org/10.3390/math9151753 doi: 10.3390/math9151753
    [8] E. Sousa, C. Li, A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, Appl. Numer. Math., 90 (2015), 22–37. https://doi.org/10.1016/j.apnum.2014.11.007 doi: 10.1016/j.apnum.2014.11.007
    [9] B. Yilmaz, A new type electromagnetic curves in optical fiber and rotation of the polarization plane using fractional calculus, Optik, 247 (2021), 168026. https://doi.org/10.1016/j.ijleo.2021.168026 doi: 10.1016/j.ijleo.2021.168026
    [10] Y. Chen, L. Liu, B. Li, Y. Sun, Numerical solution for the variable order linear cable equation with Bernstein polynomials, Appl. Math. Comput., 238 (2014), 329–341. https://doi.org/10.1016/j.amc.2014.03.066 doi: 10.1016/j.amc.2014.03.066
    [11] X. Gu, S. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576
    [12] X. Gu, H. Sun, Y. Zhao, X. Zheng, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021), 107270. https://doi.org/10.1016/j.aml.2021.107270 doi: 10.1016/j.aml.2021.107270
    [13] M. H. Heydari, A. Atangana, A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana-Baleanu-Caputo derivative, Chaos, Solitons Fractals, 128 (2019), 339–348. https://doi.org/10.1016/j.chaos.2019.08.009 doi: 10.1016/j.chaos.2019.08.009
    [14] M. Hosseininia, M. H. Heydari, Z. Avazzadeh, F. M. M. Ghaini, Two-dimensional Legendre wavelets for solving variable-order fractional nonlinear advection-diffusion equation with variable coefficients, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 793–802. https://doi.org/10.1515/ijnsns-2018-0168 doi: 10.1515/ijnsns-2018-0168
    [15] Y. M. Lin, C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [16] S. G. Samko, B. Ross, Integration and differentiation to a variable fractional order, Integr. Transforms Spec. Funct., 1 (1993), 277–300. https://doi.org/10.1080/10652469308819027 doi: 10.1080/10652469308819027
    [17] J. E. Solis-Perez, J. F. Gmez-Aguilar, A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws, Chaos, Solitons Fractals, 114 (2018), 175–185. https://doi.org/10.1016/j.chaos.2018.06.032 doi: 10.1016/j.chaos.2018.06.032
    [18] S. Shen, F. Liu, J. Chen, I. Turner, V. Anh, Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 218 (2012) 10861–10870. https://doi.org/10.1016/j.amc.2012.04.047
    [19] E. Alimirzaluo, M. Nadjafikhah, Some exact solutions of KdV-Burgers-Kuramoto equation, J. Phys. Commun., 3 (2019), 035025. https://doi.org/10.1088/2399-6528/ab103f doi: 10.1088/2399-6528/ab103f
    [20] B. I. Cohen, J. A. Krommes, W. M. Tang, M. N. Rosenbluth, Non-linear saturation of the dissipative trapped-ion mode by mode coupling, Nucl. Fusion, 16 (1976), 971–992. https://doi.org/10.1088/0029-5515/16/6/009 doi: 10.1088/0029-5515/16/6/009
    [21] J. Topper, T. Kawahara, Approximate equations for long nonlinear waves on a viscous fluid, J. Phys. Soc. Jpn., 44 (1978), 663–666. https://doi.org/10.1143/JPSJ.44.663 doi: 10.1143/JPSJ.44.663
    [22] J. Guo, C. Li, H. Ding, Finite difference methods for time subdiffusion equation with space fourth order, Commun. Appl. Math. Comput., 28 (2014), 96–108.
    [23] X. Hu, L. Zhang, On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems, Appl. Math. Comput., 218 (2012), 5019–5034. https://doi.org/10.1016/j.amc.2011.10.069 doi: 10.1016/j.amc.2011.10.069
    [24] X. R. Sun, C. Li, F. Q. Zhao, Local discontinuous Galerkin methods for the time tempered fractional diffusion equation, Appl. Math. Comput., 365 (2020), 124725. https://doi.org/10.1016/j.amc.2019.124725 doi: 10.1016/j.amc.2019.124725
    [25] M. Zhang, Y. Liu, H. Li, High-order local discontinuous Galerkin method for a fractal mobile/immobile transport equation with the Caputo-Fabrizio fractional derivative, Numer. Methods Partial Differ. Equations, 35 (2019), 1588–1612. https://doi.org/10.1002/num.22366 doi: 10.1002/num.22366
    [26] C. Li, Z. Wang, The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis, Appl. Numer. Math., 140 (2019), 1–22. https://doi.org/10.1016/j.apnum.2019.01.007 doi: 10.1016/j.apnum.2019.01.007
    [27] Y. Xu, C. W. Shu, Local discontinuous Galerkin method for the Camassa-Holm equation, SIAM J. Numer. Anal., 46 (2008), 1998–2021. https://doi.org/10.1137/070679764 doi: 10.1137/070679764
    [28] M. Fei, C. Huang, Galerkin-Legendre spectral method for the distributed-order time fractional fourth-order partial differential equation, Int. J. Comput. Math., 97 (2020), 1183–1196. https://doi.org/10.1080/00207160.2019.1608968 doi: 10.1080/00207160.2019.1608968
    [29] N. Khalid, M. Abbas, M. K. Iqbal, Non-polynomial quintic spline for solving fourth-order fractional boundary value problems involving product terms, Appl. Math. Comput., 349 (2019), 393–407. https://doi.org/10.1016/j.amc.2018.12.066 doi: 10.1016/j.amc.2018.12.066
    [30] Y. Liu, Y. Du, H. Li, Z. Fang, S. He, Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation, J. Comput. Phys., 344 (2017), 108–126. https://doi.org/10.1016/j.jcp.2017.04.078 doi: 10.1016/j.jcp.2017.04.078
    [31] M. Ran, C. Zhang, New compact difference scheme for solving the fourth order time fractional sub-diffusion equation of the distributed order, Appl. Numer. Math., 129 (2018), 58–70. https://doi.org/10.1016/j.apnum.2018.03.005 doi: 10.1016/j.apnum.2018.03.005
    [32] L. Wei, Y. He, Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems, Appl. Math. Model., 38 (2014), 1511–1522. https://doi.org/10.1016/j.apm.2013.07.040 doi: 10.1016/j.apm.2013.07.040
    [33] A. Secer, N. Ozdemir, An effective computational approach based on Gegenbauer wavelets for solving the time-fractional KdV-Burgers-Kuramoto equation, Adv. Differ. Equations, 386 (2019). https://doi.org/10.1186/s13662-019-2297-8
    [34] M. S. Bruzón, E. Recio, T. M. Garrido, A. P. Márquez, Conservation laws, classical symmetries and exact solutions of the generalized KdV-Burgers-Kuramoto equation, Open Phys., 15 (2017), 433–439. https://doi.org/10.1515/phys-2017-0048 doi: 10.1515/phys-2017-0048
    [35] J. M. Kim, C. B. Chun, New exact solutions to the KdV-Burgers-Kuramoto equation with the exp-function method, Abstr. Appl. Anal., 2012 (2012), 1–10. https://doi.org/10.1155/2012/892420 doi: 10.1155/2012/892420
    [36] D. Kaya, S. Glbahar, A. Yokus, Numerical solutions of the fractional KdV-Burgers-Kuramoto equation, Therm. Sci., 22 (2017), 153–158. https://doi.org/10.2298/TSCI170613281K doi: 10.2298/TSCI170613281K
    [37] D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749–1779. https://doi.org/10.1137/S0036142901384162 doi: 10.1137/S0036142901384162
    [38] H. L. Atkins, C. W. Shu, Quadrature-free implementation of the discontinuous Galerkin method for hyperbolic equations, AIAA J., 36 (1998), 775–782. https://doi.org/10.2514/2.436 doi: 10.2514/2.436
    [39] R. Biswas, K. D. Devine, J. E. Flaherty, Parallel, adaptive finite element methods for conservation laws, Appl. Numer. Math., 14 (1994), 255–283. https://doi.org/10.1016/0168-9274(94)90029-9 doi: 10.1016/0168-9274(94)90029-9
    [40] D. Levy, C. W. Shu, J. Yan, Local Discontinuous Galerkin methods for nonlinear dispersive equations, J. Comput. Phys., 196 (2004), 751–772. https://doi.org/10.1016/j.jcp.2003.11.013 doi: 10.1016/j.jcp.2003.11.013
    [41] T. Ma, K. Zhang, W. Shen, C. Guo, H. Xu, Discontinuous and continuous Galerkin methods for compressible single-phase and two-phase flow in fractured porous media, Adv. Water Resour., 156 (2021), 104039. https://doi.org/10.1016/j.advwatres.2021.104039 doi: 10.1016/j.advwatres.2021.104039
    [42] K. Shukla, J. Chan, M. V. de Hoop, A high order discontinuous Galerkin method for the symmetric form of the anisotropic viscoelastic wave equation, Comput. Math. Appl., 99 (2021), 113–132. https://doi.org/10.1016/j.camwa.2021.08.003 doi: 10.1016/j.camwa.2021.08.003
    [43] M. Hajipour, A. Jajarmi, D. Baleanu, H. Sun, On an accurate discretization of a variable-order fractional reaction-diffusion equation, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 119–133. https://doi.org/10.1016/j.cnsns.2018.09.004 doi: 10.1016/j.cnsns.2018.09.004
    [44] H. Wang, X. C. Zheng, Analysis and numerical solution of a nonlinear variable-order fractional differential equation, Adv. Comput. Math., 45 (2019), 2647–2675. https://doi.org/10.1007/s10444-019-09690-0 doi: 10.1007/s10444-019-09690-0
    [45] B. Cockburn, G. Kanschat, I. Perugia, D. Schotzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal., 39 (2001), 264–285. https://doi.org/10.1137/S0036142900371544 doi: 10.1137/S0036142900371544
    [46] Y. Xia, Y. Xu, C. W. Shu, Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system, Commun. Comput. Phys., 5 (2009), 821–835.
    [47] Q. Zhang, C. W. Shu, Error estimate for the third order explicit Runge-Kutta discontinuous Galerkin method for a linear hyperbolic equation with discontinuous initial solution, Numer. Math., 126 (2014), 703–740. https://doi.org/10.1007/s00211-013-0573-1 doi: 10.1007/s00211-013-0573-1
    [48] B. Cockburn, C. W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput., 52 (1989), 411–435. https://doi.org/10.1090/S0025-5718-1989-0983311-4 doi: 10.1090/S0025-5718-1989-0983311-4
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1677) PDF downloads(95) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog