Research article

Inhibition of absence seizures in a reduced corticothalamic circuit via closed-loop control


  • Received: 18 October 2022 Revised: 16 December 2022 Accepted: 27 February 2023 Published: 09 March 2023
  • Inhibition of spike-wave discharges (SWD) was thought to be associated with remission of seizure symptoms in absence epilepsy. In the previous studies, pulse stimulation was applied directly to the brain as an effective means to inhibit SWD. However, this method not only failed to provide a real-time tracking control of the disease, but also caused incalculable damage to the patient's brain tissue. To fill the gap, this work studied the mitigation and elimination effects of SWD by applying single-pulse coordinated resetting stimulation (SCRS) to three different neurons, firstly. Secondly, based on the 2I:2O cortical-thalamic model (2I:2O SCT model), four kinds of m:n on-off SCRS with the same period were compared, and the control efficiency and impulse energy consumption were combined to investigate these different stimulations. Finally, we further optimized the regulation strategies, including the weighted structure of stimulation and closed-loop control. Simulation results show that the weighted stimulation and closed-loop control strategy proposed here further improve control performance by reducing energy consumption, which may be more reliable in applications. Moreover, this study provides a new method for optimizing SCRS by the weighted processing and closed-loop control of electrical pulses to alleviate the absence epileptic state.

    Citation: Yan Xie, Rui Zhu, Xiaolong Tan, Yuan Chai. Inhibition of absence seizures in a reduced corticothalamic circuit via closed-loop control[J]. Electronic Research Archive, 2023, 31(5): 2651-2666. doi: 10.3934/era.2023134

    Related Papers:

  • Inhibition of spike-wave discharges (SWD) was thought to be associated with remission of seizure symptoms in absence epilepsy. In the previous studies, pulse stimulation was applied directly to the brain as an effective means to inhibit SWD. However, this method not only failed to provide a real-time tracking control of the disease, but also caused incalculable damage to the patient's brain tissue. To fill the gap, this work studied the mitigation and elimination effects of SWD by applying single-pulse coordinated resetting stimulation (SCRS) to three different neurons, firstly. Secondly, based on the 2I:2O cortical-thalamic model (2I:2O SCT model), four kinds of m:n on-off SCRS with the same period were compared, and the control efficiency and impulse energy consumption were combined to investigate these different stimulations. Finally, we further optimized the regulation strategies, including the weighted structure of stimulation and closed-loop control. Simulation results show that the weighted stimulation and closed-loop control strategy proposed here further improve control performance by reducing energy consumption, which may be more reliable in applications. Moreover, this study provides a new method for optimizing SCRS by the weighted processing and closed-loop control of electrical pulses to alleviate the absence epileptic state.



    加载中


    [1] A. Vezzani, S. Balosso, T. Ravizza, Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy, Nat. Rev. Neurol., 15 (2019), 459-472. https://doi.org/10.1038/s41582-019-0217-x doi: 10.1038/s41582-019-0217-x
    [2] W. O. Pickrell, M. P. Kerr, SUDEP and mortality in epilepsy: The role of routinely collected healthcare data, registries, and health inequalities, Epilepsy Behav., 103 (2020), 106453. https://doi.org/10.1016/j.yebeh.2019.106453
    [3] A. Ali, S. Wu, N. P. Issa, S. Rose, V. L. Towle, P. Warnke, et al., Association of sleep with sudden unexpected death in epilepsy, Epilepsy Behav., 76 (2017), 1-6. https://doi.org/10.1016/j.yebeh.2017.08.021 doi: 10.1016/j.yebeh.2017.08.021
    [4] E. C. Wirrell, R. Nabbout, I. E. Scheffer, T. Alsaadi, A. Bogacz, J. A. French, et al., Methodology for classification and definition of epilepsy syndromes with list of syndromes: Report of the ILAE Task Force on Nosology and Definitions, Epilepsia, 63 (2022), 1333-1348. https://doi.org/10.1111/epi.17237 doi: 10.1111/epi.17237
    [5] M. Bosak, A. Słowik, R. Kacorzyk, W. Turaj, Implementation of the new ILAE classification of epilepsies into clinical practice—A cohort study, Epilepsy Behav., 96 (2019), 28-32. https://doi.org/10.1016/j.yebeh.2019.03.045 doi: 10.1016/j.yebeh.2019.03.045
    [6] C. M. Korff, I. E. Scheffer, Epilepsy classification: a cycle of evolution and revolution, Curr. Opin. Neurol., 26 (2013), 163-167. https://doi.org/10.1097/WCO.0b013e32835ee58e doi: 10.1097/WCO.0b013e32835ee58e
    [7] S. A. Demin, O. Y. Panischev, S. F. Timashev, R. R. Latypov, Analysis of Interictal EEG Signal Correlations for Diagnostics of Epilepsy, Bull. Russ. Acad. Sci. Phys., 84 (2020), 1349-1353. https://doi.org/10.3103/S1062873820110088 doi: 10.3103/S1062873820110088
    [8] R. Sharma, R. B. Pachori, Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions, Expert Syst. Appl., 42 (2015), 1106-1117. https://doi.org/10.1016/j.eswa.2014.08.030 doi: 10.1016/j.eswa.2014.08.030
    [9] H. Soh, R. Pant, J. J. LoTurco, A. V. Tzingounis, Conditional deletions of epilepsy-associated KCNQ2 and KCNQ3 channels from cerebral cortex cause differential effects on neuronal excitability, J. Neurosci., 34 (2014), 5311-5321. https://doi.org/10.1523/JNEUROSCI.3919-13.2014 doi: 10.1523/JNEUROSCI.3919-13.2014
    [10] P. A. Winkler, C. Vollmar, K. G. Krishnan, T. Pfluger, H. Brückmann, S. Noachtar, Usefulness of 3-D reconstructed images of the human cerebral cortex for localization of subdural electrodes in epilepsy surgery, Epilepsy Res., 41 (2000), 169-178. https://doi.org/10.1016/S0920-1211(00)00137-6 doi: 10.1016/S0920-1211(00)00137-6
    [11] J. T. Paz, T. J. Davidson, E. S. Frechette, B. Delord, I. Parada, K. Peng, et al., Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury, Nat. Neurosci., 16 (2013), 64-70. https://doi.org/10.1038/nn.3269 doi: 10.1038/nn.3269
    [12] N. Li, J. E. Downey, A. Bar-Shir, A. A. Gilad, P. Walczak, H. Kim, et al., Optogenetic-guided cortical plasticity after nerve injury, Proc. Natl. Acad. Sci. USA, 108 (2011), 8838-8843. https://doi.org/10.1073/pnas.1100815108 doi: 10.1073/pnas.1100815108
    [13] L. van Veen, K. R. Green, Periodic solutions to a mean-field model for electrocortical activity, Eur. Phys. J. Spec. Top., 223 (2014), 2979-2988. https://doi.org/10.1140/epjst/e2014-02311-y doi: 10.1140/epjst/e2014-02311-y
    [14] P. N. Taylor, Y. Wang, M. Goodfellow, J. Dauwels, F. Moeller, U. Stephani, et al., A computational study of stimulus driven epileptic seizure abatement, PLoS One, 9 (2014), e114316. https://doi.org/10.1371/journal.pone.0114316 doi: 10.1371/journal.pone.0114316
    [15] M. Chen, D. Guo, T. Wang, W. Jing, Y Xia, P. Xu, et al., Bidirectional control of absence seizures by the basal ganglia: A computational evidence, PLoS Comput. Biol., 10 (2014), e1003495. https://doi.org/10.1371/journal.pcbi.1003495 doi: 10.1371/journal.pcbi.1003495
    [16] I. S. Cooper, A. R. Upton, I. Amin, Chronic cerebellar stimulation (CCS) and deep brain stimulation (DBS) in involuntary movement disorders, Appl. Neurophysiol., 45 (1982), 209-217. https://doi.org/10.1159/000101601 doi: 10.1159/000101601
    [17] S. F. Lempka, M. D. Johnson, S. Miocinovic, J. L. Vitek, C. C. McIntyre, Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation, Clin. Neurophysiol., 121 (2010), 2128-2133. https://doi.org/10.1016/j.clinph.2010.04.026 doi: 10.1016/j.clinph.2010.04.026
    [18] R. G. Cury, V. Fraix, A. Castrioto, M. A. P. Fernández, P. Krack, C. S. habardes, et al., Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia, Neurology, 89 (2017), 1416-1423. https://doi.org/10.1212/WNL.0000000000004295 doi: 10.1212/WNL.0000000000004295
    [19] V. A. Coenen, N. Allert, B. Mädler, A role of diffusion tensor imaging fiber tracking in deep brain stimulation surgery: DBS of the dentato-rubro-thalamic tract (drt) for the treatment of therapy-refractory tremor, Acta. Neurochir., 153 (2011), 1579-1585. https://doi.org/10.1007/s00701-011-1036-z doi: 10.1007/s00701-011-1036-z
    [20] R. Arya, H. M. Greiner, A. Lewis, F. T. Mangano, C. Gonsalves, K. D. Holland, et al., Vagus nerve stimulation for medically refractory absence epilepsy, Seizure, 22 (2013), 267-270. https://doi.org/10.1016/j.seizure.2013.01.008 doi: 10.1016/j.seizure.2013.01.008
    [21] Z. Ye, L. McQuillan, A. Poduri, T. E. Green, N. Matsumoto, H. C. Mefford, et al., Somatic mutation: the hidden genetics of brain malformations and focal epilepsies, Epilepsy Res., 155 (2019), 106161. https://doi.org/10.1016/j.eplepsyres.2019.106161 doi: 10.1016/j.eplepsyres.2019.106161
    [22] E. A. Van Vliet, E. Aronica, A. Vezzani, T. Ravizza, Neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy: emerging evidence from preclinical and clinical studies, Neuropath. Appl. Neuro., 44 (2018), 91-111. https://doi.org/10.1111/nan.12444 doi: 10.1111/nan.12444
    [23] T. Lundgren, J. Dahl, N. Yardi, L. Melin, Acceptance and commitment therapy and yoga for drug-refractory epilepsy: A randomized controlled trial, Epilepsy Behav., 13 (2008), 102-108. https://doi.org/10.1016/j.yebeh.2008.02.009 doi: 10.1016/j.yebeh.2008.02.009
    [24] C. Joint, D. Nandi, S. Parkin, R. Gregory, T. Aziz, Hardware-related problems of deep brain stimulation, Movement Disord., 17 (2002), S175-S180. https://doi.org/10.1002/mds.10161 doi: 10.1002/mds.10161
    [25] Z. Peng-Chen, T. Morishita, D. Vaillancourt, C. Favilla, K. D. Foote, M. S. Okun, et al., Unilateral thalamic deep brain stimulation in essential tremor demonstrates long-term ipsilateral effects, Parkinsonism Relat. Disord., 19 (2013), 1113-1117. https://doi.org/10.1016/j.parkreldis.2013.08.001 doi: 10.1016/j.parkreldis.2013.08.001
    [26] M. K. Hosain, A. Kouzani, S. Tye, Closed loop deep brain stimulation: an evolving technology, Australas. Phys. Eng. Sci. Med., 37 (2014), 619-634. https://doi.org/10.1007/s13246-014-0297-2 doi: 10.1007/s13246-014-0297-2
    [27] J. Volkmann, E. Moro, R. Pahwa, Basic algorithms for the programming of deep brain stimulation in Parkinson's disease, Movement Disord., 21 (2006), S284-S289. https://doi.org/10.1002/mds.20961 doi: 10.1002/mds.20961
    [28] D. Fan, Q. Wang, Closed-loop control of absence seizures inspired by feedback modulation of basal ganglia to the corticothalamic circuit, IEEE Trans. Neur. Sys. Reh., 28 (2020), 581-590. https://doi.org/10.1109/TNSRE.2020.2969426 doi: 10.1109/TNSRE.2020.2969426
    [29] C. Liu, J. Wang, B. Deng, X. Wei, H. Yu, H. Li, et al., Closed-loop control of tremor-predominant parkinsonian state based on parameter estimation, IEEE Trans. Neur. Sys. Reh., 24 (2016), 1109-1121. https://doi.org/10.1109/TNSRE.2016.2535358 doi: 10.1109/TNSRE.2016.2535358
    [30] B. Rosin, M. Slovik, R. Mitelman, M. Rivlin-Etzion, S. N. Haber, Z. Israel, et al., Closed-loop deep brain stimulation is superior in ameliorating parkinsonism, Neuron, 72 (2011), 370-384. https://doi.org/10.1016/j.neuron.2011.08.023 doi: 10.1016/j.neuron.2011.08.023
    [31] B. Hu, Q. Wang, Controlling absence seizures by deep brain stimulus applied on substantia nigra pars reticulata and cortex, Chaos Soliton. Fract., 80 (2015), 13-23. https://doi.org/10.1016/j.chaos.2015.02.014 doi: 10.1016/j.chaos.2015.02.014
    [32] C. Liu, J. Wang, H. Li, C. Fietkiewicz, K. A. Loparo, Modeling and analysis of beta oscillations in the basal ganglia, IEEE Trans. Neur. Net. Lear. Sys., 29 (2017), 1864-1875. https://doi.org/10.1109/TNNLS.2017.2688426 doi: 10.1109/TNNLS.2017.2688426
    [33] P. A. Robinson, P. N. Loxley, S. C. O'connor, C. J. Rennie, Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials, Phys. Rev. E, 63 (2001), 041909. https://doi.org/10.1103/PhysRevE.63.041909
    [34] V. K. Jirsa, H. Haken, Field theory of electromagnetic brain activity, Phys. Rev. Lett., 77 (1996), 960. https://doi.org/10.1103/PhysRevLett.77.960 doi: 10.1103/PhysRevLett.77.960
    [35] D. L. Rowe, P. A. Robinson, C. J. Rennie, Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics, J. Theor. Biol., 231 (2004), 413-433. https://doi.org/10.1016/j.jtbi.2004.07.004 doi: 10.1016/j.jtbi.2004.07.004
    [36] S. Coombes, Large-scale neural dynamics: simple and complex, NeuroImage, 52 (2010), 731-739. https://doi.org/10.1016/j.neuroimage.2010.01.045 doi: 10.1016/j.neuroimage.2010.01.045
    [37] D. Terman, J. E. Rubin, A. C. Yew, C. J. Wilson, Activity patterns in a model for the subthalamopallidal network of the basal ganglia, J. Neurosci., 22 (2002), 2963-2976. https://doi.org/10.1523/JNEUROSCI.22-07-02963.2002 doi: 10.1523/JNEUROSCI.22-07-02963.2002
    [38] M. E. Anderson, N. Postupna, M. Ruffo, Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey, J. Neurophysi., 89 (2003), 1150-1160. https://doi.org/10.1152/jn.00475.2002 doi: 10.1152/jn.00475.2002
    [39] A. Benazzouz, D. M. Gao, Z. G. Ni, B. Piallat, R. Bouali-Benazzouz, A. L. Benabid, Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat, Neuroscience, 99 (2000), 289-295. https://doi.org/10.1016/S0306-4522(00)00199-8 doi: 10.1016/S0306-4522(00)00199-8
    [40] Z. Wang, Q. Wang, Stimulation strategies for absence seizures: targeted therapy of the focus in coupled thalamocortical model, Nonlinear Dyn., 96 (2019), 1649-1663. https://doi.org/10.1007/s11071-019-04876-z doi: 10.1007/s11071-019-04876-z
    [41] D. Fan, Y. Zheng, Z. Yang, Q. Wang, Improving control effects of absence seizures using single-pulse alternately resetting stimulation (SARS) of corticothalamic circuit, Appl. Math. Mech., 41 (2020), 1287-1302. https://doi.org/10.1007/s10483-020-2644-8 doi: 10.1007/s10483-020-2644-8
    [42] M. Chen, D. Guo, M. Li, T. Ma, S. Wu, J. Ma, et al., Critical roles of the direct GABAergic pallido-cortical pathway in controlling absence seizures, PLoS Comput. Biol., 11 (2015), e1004539. https://doi.org/10.1371/journal.pcbi.1004539 doi: 10.1371/journal.pcbi.1004539
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(950) PDF downloads(64) Cited by(1)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog