Citation: Teekam Singh, Ramu Dubey, Vishnu Narayan Mishra. Spatial dynamics of predator-prey system with hunting cooperation in predators and type I functional response[J]. AIMS Mathematics, 2020, 5(1): 673-684. doi: 10.3934/math.2020045
[1] | J. L. Aragon, M. Torres, D. Gil, et al. Turing patterns with pentagonal symmetry, Phys. Rev. E, 65 (2002), 051913-051921. doi: 10.1103/PhysRevE.65.051913 |
[2] | V. Ardizzone, P. Lewandowski, M. H. Luk, et al. Formation and control of turing patterns in a coherent quantum fluid, Sci. Rep., 3 (2013), 3016-3021. doi: 10.1038/srep03016 |
[3] | L. A. Segel, J. L. Jackson, Dissipative structure: An explanation and an ecological example, J. Theor. Biol., 37 (1972), 545-559. doi: 10.1016/0022-5193(72)90090-2 |
[4] | S. Yuan, C. Xu, T. Zhang, Spatial dynamics in a predator-prey model with herd behavior, Chaos, 23 (2013), 033102-033112. doi: 10.1063/1.4812724 |
[5] | X. C. Zhang, G. Q. Sun, Z. Jin, Spatial dynamics in a predator-prey model with Beddington-DeAngelis functional response, Phys. Rev. E, 85 (2012), 021924-021937. doi: 10.1103/PhysRevE.85.021924 |
[6] | U. Dieckmann, R. Law, J. A. Metz, The Geometry of Ecological Interactions: Simplifying Spatial Complexity, Cambridge University Press, 2000. |
[7] | S. A. Levin, L. A. Segel, Hypothesis for origin of planktonic patchiness, Nature, 259 (1976), 659-659. |
[8] | P. K. Maini, D. L. Benson, J. A. Sherratt, Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients, Math. Med. Biol., 9 (1992), 197-213. doi: 10.1093/imammb/9.3.197 |
[9] | G. R. Shaver, Spatial Heterogeneity: Past, Present, and Future: Ecosystem Function in Heterogeneous Landscapes, Springer-Verlag, New York, 2005. |
[10] | F. Vinatier, P. Tixier, P. F. Duyck, et al. Factors and mechanisms explaining spatial heterogeneity: A review of methods for insect populations, Methods Ecol. Evol., 2 (2011), 11-22. doi: 10.1111/j.2041-210X.2010.00059.x |
[11] | A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. B, 237 (1952), 37-72. doi: 10.1098/rstb.1952.0012 |
[12] | A. Okubo, S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, Springer Science and Business Media, 2013. |
[13] | A. Goldbeter, Dissipative structures in biological systems: Bistability, oscillations, spatial patterns and waves, Philos. Trans. R. Soc. A, 376 (2018), 1-25. |
[14] | X. Guan, W. Wang, Y. Cai, Spatiotemporal dynamics of a Leslie-Gower predator-prey model incorporating a prey refuge, Nonlinear Anal. Real World Appl., 12 (2011), 2385-2395. doi: 10.1016/j.nonrwa.2011.02.011 |
[15] | K. Konishi, N. Hara, Stabilization of a spatially uniform steady state in two systems exhibiting Turing patterns, Phys. Rev. E, 97 (2018), 052201-052213. doi: 10.1103/PhysRevE.97.052201 |
[16] | A. Morozov, S. V. Petrovskii, B. L. Li, Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect, J. Theor. Biol., 238 (2006), 18-35. doi: 10.1016/j.jtbi.2005.05.021 |
[17] | J. D. Murray, A pre-pattern formation mechanism for animal coat markings, J. Theor. Biol., 88 (1981), 161-199. doi: 10.1016/0022-5193(81)90334-9 |
[18] | W. Wang, Q. X. Liu, Z. Jin, Spatiotemporal complexity of a ratio-dependent predator-prey system, Phys. Rev. E, 75 (2007), 051913-051925. doi: 10.1103/PhysRevE.75.051913 |
[19] | T. Zhang, Y. Xing, H. Zang, et al. Spatiotemporal dynamics of a reaction-diffusion system for a predator-prey model with hyperbolic mortality, Nonlinear Dyn., 78 (2014), 265-277. doi: 10.1007/s11071-014-1438-6 |
[20] | F. Courchamp, L. Berec, J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, 2008. |
[21] | P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation, Trends Ecol. Evol., 14 (1999), 401-405. doi: 10.1016/S0169-5347(99)01684-5 |
[22] | P. Aguirre, E. González-Olivares, S. Torres, Stochastic predator-prey model with Allee effect on prey, Nonlinear Anal. Real World Appl., 14 (2013), 768-779. doi: 10.1016/j.nonrwa.2012.07.032 |
[23] | F. Courchamp, T. Clutton-Brock, B. Grenfell, Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14 (1999), 405-410. doi: 10.1016/S0169-5347(99)01683-3 |
[24] | L. A. Dugatkin, Cooperation Among Animals: An Evolutionary Perspective, Oxford University Press, 1997. |
[25] | E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma, et al. Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey, Appl. Math. Modell., 35 (2011), 366-381. doi: 10.1016/j.apm.2010.07.001 |
[26] | E. González-Olivares, H. Meneses-Alcay, B. González-Yañez, et al. Multiple stability and uniqueness of the limit cycle in a Gause-type predator-prey model considering the Allee effect on prey, Nonlinear Anal. Real World Appl., 12 (2011), 2931-2942. doi: 10.1016/j.nonrwa.2011.04.003 |
[27] | A. Morozov, S. V. Petrovskii, B. L. Li, Bifurcations and chaos in a predator-prey system with the Allee effect, Proc. Royal Soc. Lond. B, 271 (2004), 1407-1414. doi: 10.1098/rspb.2004.2733 |
[28] | F. Rao, Y. Kang, The complex dynamics of a diffusive prey-predator model with an Allee effect in prey, Ecol. Complex., 28 (2016), 123-144. doi: 10.1016/j.ecocom.2016.07.001 |
[29] | J. Wang, J. Shi, J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Differ. Equations, 251 (2011), 1276-1304. doi: 10.1016/j.jde.2011.03.004 |
[30] | S. R. Zhou, Y. F. Liu, G. Wang, The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., 67 (2005), 23-31. doi: 10.1016/j.tpb.2004.06.007 |
[31] | A. Bompard, I. Amat, X. Fauvergue, et al. Host-parasitoid dynamics and the success of biological control when parasitoids are prone to Allee effects, PLoS One, 8 (2013), 76768-76779. doi: 10.1371/journal.pone.0076768 |
[32] | A. De-Roos, L. Persson, H. R. Thieme, Emergent Allee effects in top predators feeding on structured prey populations, Proc. Royal Soc. Lond. B, 270 (2003), 611-618. doi: 10.1098/rspb.2002.2286 |
[33] | A. Verdy, Modulation of predator-prey interactions by the Allee effect, Ecol. Modell., 221 (2010), 1098-1107. doi: 10.1016/j.ecolmodel.2010.01.005 |
[34] | M. T. Alves, F. M. Hilker, Hunting cooperation and Allee effects in predators, J. Theor. Biol., 419 (2017), 13-22. doi: 10.1016/j.jtbi.2017.02.002 |
[35] | S. R. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in R4, Trans. Amer. Math. Soc., 286 (1984), 557-594. |
[36] | S. R. Dunbar, Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinc orbits, SIAM J. Appl. Math., 46 (1986), 1057-1078. doi: 10.1137/0146063 |
[37] | R. Gardner, J. Smoller, The existence of periodic travelling waves for singularly perturbed predator-prey equations via the Conley Index, J. Differ. Equations, 47 (1983), 133-161. doi: 10.1016/0022-0396(83)90031-1 |
[38] | X. Lin, P. Weng, C. Wu, Traveling wave solutions for a predator-prey system with sigmoidal response function, J. Dyn. Differ. Equations, 23 (2011), 903-921. doi: 10.1007/s10884-011-9220-7 |