In this paper, we explore the dynamic properties of discrete predator-prey models with diffusion on a coupled mapping lattice. We conducted a stability analysis of the equilibrium points, provided the normal form of the Neimark-Sacker and Flip bifurcations, and explored a range of Turing instabilities that emerged in the system upon the introduction of diffusion. Our numerical simulations aligned with the theoretical derivations, incorporating the computation of the maximum Lyapunov exponent to validate obtained bifurcation diagrams and elucidated the system's progression from bifurcations to chaos. By adjusting the self-diffusion and cross-diffusion coefficients, we simulated the shifts between different Turing instabilities. These findings highlight the complex dynamic behavior of discrete predator-prey models and provide valuable insights for biological population conservation strategies.
Citation: Wei Li, Qingkai Xu, Xingjian Wang, Chunrui Zhang. Dynamics analysis of spatiotemporal discrete predator-prey model based on coupled map lattices[J]. AIMS Mathematics, 2025, 10(1): 1248-1299. doi: 10.3934/math.2025059
In this paper, we explore the dynamic properties of discrete predator-prey models with diffusion on a coupled mapping lattice. We conducted a stability analysis of the equilibrium points, provided the normal form of the Neimark-Sacker and Flip bifurcations, and explored a range of Turing instabilities that emerged in the system upon the introduction of diffusion. Our numerical simulations aligned with the theoretical derivations, incorporating the computation of the maximum Lyapunov exponent to validate obtained bifurcation diagrams and elucidated the system's progression from bifurcations to chaos. By adjusting the self-diffusion and cross-diffusion coefficients, we simulated the shifts between different Turing instabilities. These findings highlight the complex dynamic behavior of discrete predator-prey models and provide valuable insights for biological population conservation strategies.
[1] |
S. Motta, F. Pappalardo, Mathematical modeling of biological systems, Brief. Bioinform., 14 (2013), 411–422. https://doi.org/10.1093/bib/bbs061 doi: 10.1093/bib/bbs061
![]() |
[2] |
J. B. Johnson, K. S. Omland, Model selection in ecology and evolution, Trends Ecol. Evol., 19 (2004), 101–108. https://doi.org/10.1016/j.tree.2003.10.013 doi: 10.1016/j.tree.2003.10.013
![]() |
[3] |
Y. Q. Liu, X. Y. Li, Dynamics of a discrete predator-prey model with Holling-Ⅱ functional response, Int. J. Biomath., 14 (2021), 2150068. https://doi.org/10.1142/S1793524521500686 doi: 10.1142/S1793524521500686
![]() |
[4] |
R. Saadeh, A. Abbes, A. Al-Husban, A. Ouannas, G. Grassi, The fractional discrete predator-prey model: chaos, control and synchronization, Fractal Fract., 7 (2023), 120. https://doi.org/10.3390/fractalfract7020120 doi: 10.3390/fractalfract7020120
![]() |
[5] |
W. Li, C. R. Zhang, M. Wang, Analysis of the dynamical properties of discrete predator‐prey systems with fear effects and refuges, Discrete Dyn. Nat. Soc., 2024 (2024), 9185585. https://doi.org/10.1155/2024/9185585 doi: 10.1155/2024/9185585
![]() |
[6] |
S. Ruan, On nonlinear dynamics of predator-prey models with discrete delay, Math. Model. Nat. Phenom., 4 (2009), 140–188. https://doi.org/10.1051/mmnp/20094207 doi: 10.1051/mmnp/20094207
![]() |
[7] |
R. Ahmed, N. Tahir, N. A. Shah, An analysis of the stability and bifurcation of a discrete-time predator-prey model with the slow-fast effect on the predator, Chaos, 34 (2024), 033127. https://doi.org/10.1063/5.0185809 doi: 10.1063/5.0185809
![]() |
[8] |
T. S. Huang, H. Y. Zhang, X. B. Cong, G. Pan, X. M. Zhang, Z. Liu, Exploring spatiotemporal complexity of a predator‐prey system with migration and diffusion by a three‐chain coupled map lattice, Complexity, 2019 (2019), 3148323. https://doi.org/10.1155/2019/3148323 doi: 10.1155/2019/3148323
![]() |
[9] |
X. T. Zhang, C. R. Zhang, Y. Z. Zhang, Discrete kinetic analysis of a general reaction-diffusion model constructed by Euler discretization and coupled map lattices, Math. Comput. Simul., 225 (2024), 1218–1236. https://doi.org/10.1016/j.matcom.2024.03.028 doi: 10.1016/j.matcom.2024.03.028
![]() |
[10] |
X. T. Zhang, C. R. Zhang, Y. Z. Zhang, Pattern dynamics analysis of a time-space discrete FitzHugh-Nagumo (FHN) model based on coupled map lattices, Comput. Math. Appl., 157 (2024), 92–123. https://doi.org/10.1016/j.camwa.2023.12.030 doi: 10.1016/j.camwa.2023.12.030
![]() |
[11] | A. J. Lotka, Elements of physical biology, Williams and Wilkins, 1925. |
[12] |
V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558–560. https://doi.org/10.1038/118558a0 doi: 10.1038/118558a0
![]() |
[13] |
Z. M. He, B. Li, Complex dynamic behavior of a discrete-time predator-prey system of Holling-Ⅲ type, Adv. Differ. Equ., 2014 (2014), 1–13. https://doi.org/10.1186/1687-1847-2014-180 doi: 10.1186/1687-1847-2014-180
![]() |
[14] |
S. G. Mortoja, P. Panja, S. K. Mondal, Dynamics of a predator-prey model with nonlinear incidence rate, Crowley-Martin type functional response and disease in prey population, Ecol. Genet. Genomics, 10 (2019), 100035. https://doi.org/10.1016/j.egg.2018.100035 doi: 10.1016/j.egg.2018.100035
![]() |
[15] |
D. P. Hu, H. J. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal. Real World Appl., 33 (2017), 58–82. https://doi.org/10.1016/j.nonrwa.2016.05.010 doi: 10.1016/j.nonrwa.2016.05.010
![]() |
[16] | H. I. Freedman, R. M. Mathsen, Persistence in predator-prey systems with ratio-dependent predator influence, Bull. Math. Biol., 55 (1993), 817–827. |
[17] |
H. J. Alsakaji, S. Kundu, F. A. Rihan, Delay differential model of one-predator two-prey system with Monod-Haldane and holling type Ⅱ functional responses, Appl. Math. Comput., 397 (2021), 125919. https://doi.org/10.1016/j.amc.2020.125919 doi: 10.1016/j.amc.2020.125919
![]() |
[18] |
V. Ajraldi, M. Pittavino, E. Venturino, Modeling herd behavior in population systems, Nonlinear Anal. Real World Appl., 12 (2011), 2319–2338. https://doi.org/10.1016/j.nonrwa.2011.02.002 doi: 10.1016/j.nonrwa.2011.02.002
![]() |
[19] |
X. Y. Wang, L. Zanette, X. F. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
![]() |
[20] |
H. S. Zhang, Y. L. Cai, S. M. Fu, W. M. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 356 (2019), 328–337. https://doi.org/10.1016/j.amc.2019.03.034 doi: 10.1016/j.amc.2019.03.034
![]() |
[21] |
H. N. Fakhry, R. K. Naji, The dynamics of a square root prey-predator model with fear, Iraqi J. Sci., 61 (2020), 139–146. https://doi.org/10.24996/ijs.2020.61.1.15 doi: 10.24996/ijs.2020.61.1.15
![]() |
[22] |
J. I. Tello, D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129–2162. https://doi.org/10.1142/S0218202516400108 doi: 10.1142/S0218202516400108
![]() |
[23] |
J. P. Wang, M. X. Wang, The dynamics of a predator-prey model with diffusion and indirect prey-taxis, J. Dyn. Differ. Equ., 32 (2020), 1291–1310. https://doi.org/10.1007/s10884-019-09778-7 doi: 10.1007/s10884-019-09778-7
![]() |
[24] |
M. Sambath, K. Balachandran, L. N. Guin, Spatiotemporal patterns in a predator-prey model with cross-diffusion effect, Int. J. Bifur. Chaos, 28 (2018), 1830004. https://doi.org/10.1142/S0218127418300045 doi: 10.1142/S0218127418300045
![]() |
[25] |
W. M. Wang, Y. Z. Lin, L. Zhang, F. Rao, Y. J. Tan, Complex patterns in a predator-prey model with self and cross-diffusion, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 2006–2015. https://doi.org/10.1016/j.cnsns.2010.08.035 doi: 10.1016/j.cnsns.2010.08.035
![]() |
[26] |
L. N. Guin, Existence of spatial patterns in a predator-prey model with self- and cross-diffusion, Appl. Math. Comput., 226 (2014), 320–335. https://doi.org/10.1016/j.amc.2013.10.005 doi: 10.1016/j.amc.2013.10.005
![]() |
[27] |
R. Han, L. N. Guin, B. X. Dai, Cross-diffusion-driven pattern formation and selection in a modified Leslie-Gower predator-prey model with fear effect, J. Biol. Syst., 28 (2020), 27–64. https://doi.org/10.1142/S0218339020500023 doi: 10.1142/S0218339020500023
![]() |
[28] |
Y. Sun, J. L. Wang, Y. Li, Y. H. Zhu, H. K. Tai, X. Y. Ma, Spatiotemporal complexity analysis of a discrete space-time cancer growth model with self-diffusion and cross-diffusion, Adv. Contin. Discrete Models, 28 (2024), 37. https://doi.org/10.1186/s13662-024-03839-y doi: 10.1186/s13662-024-03839-y
![]() |
[29] |
F. X. Mai, L. J. Qin, G. Zhang, Turing instability for a semi-discrete Gierer-Meinhardt system, Phys. A, 391 (2012), 2014–2022. https://doi.org/10.1016/j.physa.2011.11.034 doi: 10.1016/j.physa.2011.11.034
![]() |
[30] |
L. Xu, L. J. Zhao, Z. X. Chang, J. T. Feng, G. Zhang, Turing instability and pattern formation in a semi-discrete Brusselator model, Modern Phys. Lett. B, 27 (2013), 1350006. https://doi.org/10.1142/S0217984913500061 doi: 10.1142/S0217984913500061
![]() |
[31] |
F. F. Zhang, H. Y. Zhang, T. S. Huang, T. X. Meng, S. N. Ma, Coupled effects of Turing and Neimark-Sacker bifurcations on vegetation pattern self-organization in a discrete vegetation-sand model, Entropy, 19 (2017), 478. https://doi.org/10.3390/e19090478 doi: 10.3390/e19090478
![]() |
[32] |
A. M. Turing, The chemical basis of morphogenesis, Bull. Math. Biol., 52 (1990), 153–197. https://doi.org/10.1007/BF02459572 doi: 10.1007/BF02459572
![]() |
[33] |
Y. Zhou, X. P. Yan, C. H. Zhang, Turing patterns induced by self-diffusion in a predator-prey model with schooling behavior in predator and prey, Nonlinear Dyn., 105 (2021), 3731–3747. https://doi.org/10.1007/s11071-021-06743-2 doi: 10.1007/s11071-021-06743-2
![]() |
[34] |
T. H. Li, X. T. Zhang, C. R. Zhang, Pattern dynamics analysis of a space-time discrete spruce budworm model, Chaos Solitons Fract., 179 (2024), 114423. https://doi.org/10.1016/j.chaos.2023.114423 doi: 10.1016/j.chaos.2023.114423
![]() |
[35] |
X. T. Zhang, C. R. Zhang, The diffusion‐driven instability for a general time‐space discrete host‐parasitoid model, Discrete Dyn. Nat. Soc., 2023 (2023), 7710701. https://doi.org/10.1155/2023/7710701 doi: 10.1155/2023/7710701
![]() |
[36] |
S. Djilali, Spatiotemporal patterns induced by cross-diffusion in predator-prey model with prey herd shape effect, Int. J. Biomath., 13 (2020), 2050030. https://doi.org/10.1142/s1793524520500308 doi: 10.1142/s1793524520500308
![]() |
[37] |
Z. M. Bi, S. T. Liu, M. Ouyang, Three-dimensional pattern dynamics of a fractional predator-prey model with cross-diffusion and herd behavior, Appl. Math. Comput., 412 (2022), 126955. https://doi.org/10.1016/j.amc.2022.126955 doi: 10.1016/j.amc.2022.126955
![]() |
[38] |
R. J. Han, L. N. Guin, S. Acharya, Complex dynamics in a reaction-cross-diffusion model with refuge depending on predator-prey encounters, Eur. Phys. J. Plus, 137 (2022), 134. https://doi.org/10.1140/epjp/s13360-022-02358-7 doi: 10.1140/epjp/s13360-022-02358-7
![]() |
[39] |
F. Souna, S. Djilali, A. Lakmeche, Spatiotemporal behavior in a predator-prey model with herd behavior and cross-diffusion and fear effect, Eur. Phys. J. Plus, 136 (2021), 474. https://doi.org/10.1140/epjp/s13360-021-01489-7 doi: 10.1140/epjp/s13360-021-01489-7
![]() |
[40] |
E. Tulumello, M. C. Lombardo, M. Sammartino, Cross-diffusion driven instability in a predator-prey system with cross-diffusion, Acta Appl. Math., 132 (2014), 621–633. https://doi.org/10.1007/s10440-014-9935-7 doi: 10.1007/s10440-014-9935-7
![]() |
[41] |
S. Ghorai, S. Poria, Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity, Chaos Solitons Fract., 91 (2016), 421–429. https://doi.org/10.1016/j.chaos.2016.07.003 doi: 10.1016/j.chaos.2016.07.003
![]() |
[42] |
H. L. Yuan, J. H. Wu, Y. F. Jia, H. Nie, Coexistence states of a predator-prey model with cross-diffusion, Nonlinear Anal. Real World Appl., 41 (2018), 179–203. https://doi.org/10.1016/j.nonrwa.2017.10.009 doi: 10.1016/j.nonrwa.2017.10.009
![]() |
[43] |
X. S. Tang, Y. L. Song, T. H. Zhang, Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion, Nonlinear Dyn., 86 (2016), 73–89. https://doi.org/10.1007/s11071-016-2873-3 doi: 10.1007/s11071-016-2873-3
![]() |
[44] | J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-1140-2 |
[45] |
L. Bai, G. Zhang, Nontrivial solutions for a nonlinear discrete elliptic equation with periodic boundary conditions, Appl. Math. Comput., 210 (2009), 321–333. https://doi.org/10.1016/j.amc.2008.12.024 doi: 10.1016/j.amc.2008.12.024
![]() |