Soft set has limitation for the consideration of disjoint attribute-valued sets corresponding to distinct attributes whereas hypersoft set, an extension of soft set, fully addresses this scarcity by replacing the approximate function of soft sets with multi-argument approximate function. Some structures (i.e., possibility fuzzy soft set, possibility intuitionistic fuzzy soft set) exist in literature in which a possibility of each element in the universe is attached with the parameterization of fuzzy sets and intuitionistic fuzzy sets while defining fuzzy soft set and intuitionistic fuzzy soft set respectively. This study aims to generalize the existing structure (i.e., possibility intuitionistic fuzzy soft set) and to make it adequate for multi-argument approximate function. Therefore, firstly, the elementary notion of possibility intuitionistic fuzzy hypersoft set is developed and some of its elementary properties i.e., subset, null set, absolute set and complement, are discussed with numerical examples. Secondly, its set-theoretic operations i.e., union, intersection, AND, OR and relevant laws are investigated with the help of numerical examples, matrix and graphical representations. Moreover, algorithms based on AND/OR operations are proposed and are elaborated with illustrative examples. Lastly, similarity measure between two possibility intuitionistic fuzzy hypersoft sets is characterized with the help of example. This concept of similarity measure is successfully applied in decision making to judge the eligibility of a candidate for an appropriate job. The proposed similarity formulation is compared with the relevant existing models and validity of the generalization of the proposed structure is discussed.
Citation: Atiqe Ur Rahman, Muhammad Saeed, Hamiden Abd El-Wahed Khalifa, Walaa Abdullah Afifi. Decision making algorithmic techniques based on aggregation operations and similarity measures of possibility intuitionistic fuzzy hypersoft sets[J]. AIMS Mathematics, 2022, 7(3): 3866-3895. doi: 10.3934/math.2022214
Soft set has limitation for the consideration of disjoint attribute-valued sets corresponding to distinct attributes whereas hypersoft set, an extension of soft set, fully addresses this scarcity by replacing the approximate function of soft sets with multi-argument approximate function. Some structures (i.e., possibility fuzzy soft set, possibility intuitionistic fuzzy soft set) exist in literature in which a possibility of each element in the universe is attached with the parameterization of fuzzy sets and intuitionistic fuzzy sets while defining fuzzy soft set and intuitionistic fuzzy soft set respectively. This study aims to generalize the existing structure (i.e., possibility intuitionistic fuzzy soft set) and to make it adequate for multi-argument approximate function. Therefore, firstly, the elementary notion of possibility intuitionistic fuzzy hypersoft set is developed and some of its elementary properties i.e., subset, null set, absolute set and complement, are discussed with numerical examples. Secondly, its set-theoretic operations i.e., union, intersection, AND, OR and relevant laws are investigated with the help of numerical examples, matrix and graphical representations. Moreover, algorithms based on AND/OR operations are proposed and are elaborated with illustrative examples. Lastly, similarity measure between two possibility intuitionistic fuzzy hypersoft sets is characterized with the help of example. This concept of similarity measure is successfully applied in decision making to judge the eligibility of a candidate for an appropriate job. The proposed similarity formulation is compared with the relevant existing models and validity of the generalization of the proposed structure is discussed.
[1] | L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. doi: 10.1016/S0019-9958(65)90241-X. doi: 10.1016/S0019-9958(65)90241-X |
[2] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. doi: 10.1016/S0165-0114(86)80034-3. doi: 10.1016/S0165-0114(86)80034-3 |
[3] | D. Molodtsov, Soft set theory – First results, Comput. Math. Appl., 37 (1999), 19–31. doi: 10.1016/S0898-1221(99)00056-5. doi: 10.1016/S0898-1221(99)00056-5 |
[4] | P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. doi: 10.1016/S0898-1221(03)00016-6. doi: 10.1016/S0898-1221(03)00016-6 |
[5] | P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, Journal of Fuzzy Mathematics, 9 (2001), 589–602. doi: 10.1016/j.camwa.2010.07.014 |
[6] | D. Pei, D. Miao, From soft set to information system, In: 2005 IEEE International Conference on Granular Computing, 2005,617–621. doi: 10.1109/GRC.2005.1547365. |
[7] | M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Sabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. doi: 10.1016/j.camwa.2008.11.009. doi: 10.1016/j.camwa.2008.11.009 |
[8] | K. V. Babitha, J. J. Sunil, Soft set relations and functions, Comput. Math. Appl., 60 (2010), 1840–1849. doi: 10.1016/j.camwa.2010.07.014. doi: 10.1016/j.camwa.2010.07.014 |
[9] | K. V. Babitha, J. J. Sunil, Transitive closure and ordering in soft set, Comput. Math. Appl., 61 (2011), 2235–2239. doi: 10.1016/j.camwa.2011.07.010. doi: 10.1016/j.camwa.2011.07.010 |
[10] | A. Sezgin, A. O. Atagün, On operations of soft sets, Comput. Math. Appl., 61 (2011), 1457–1467. doi: 10.1016/j.camwa.2011.01.018. doi: 10.1016/j.camwa.2011.01.018 |
[11] | X. Ge, S. Yang, Investigations on some operations of soft sets, World Academy of Science, Engineering and Technology, 51 (2011), 1112–1115. |
[12] | F. Li, Notes on soft set operations, ARPN Journal of Systems and Softwares, 1 (2011), 205–208. |
[13] | P. K. Maji, R. Biswas, A. R. Roy, Intuitionistic fuzzy soft sets, The Journal of Fuzzy Mathematics, 9 (2001), 677–692. |
[14] | S. Alkhazaleh, A. R. Salleh, N. Hassan, Possibility fuzzy soft set, Advances in Decision Sciences, 2011 (2011), 479756. doi: 10.1155/2011/479756. doi: 10.1155/2011/479756 |
[15] | M. Bashir, A. R. Salleh, S. Alkhazaleh, Possibility intuitionistic fuzzy soft set, Advances in Decision Sciences, 2012 (2012), 404325. doi: 10.1155/2012/404325. doi: 10.1155/2012/404325 |
[16] | F. Smarandache, Extension of soft set of hypersoft set, and then to plithogenic hypersoft set, Neutrosophic Sets Syst., 22 (2018), 168–170. doi: 10.5281/zenodo.2838716. doi: 10.5281/zenodo.2838716 |
[17] | M. Saeed, M. Ahsan, M. K. Siddique, M. R. Ahmad, A study of the fundamentals of hypersoft set theory, International Journal of Scientific and Engineering Research, 11 (2020), 320–329. |
[18] | M. Saeed, A. U. Rahman, M. Ahsan, F. Smarandache, An inclusive study on fundamentals of hypersoft set, In: Theory and application of hypersoft set, Brussel: Pons Publishing House, 2021, 1–23. |
[19] | F. Abbas, G. Murtaza, F. Smarandache, Basic operations on hypersoft sets and hypersoft points, Neutrosophic Sets Syst., 35 (2020), 407–421. doi: 10.5281/zenodo.3951694. doi: 10.5281/zenodo.3951694 |
[20] | M. Saqlain, N. Jafar, S. Moin, M. Saeed, S. Broumi, Single and multi-valued neutrosophic hypersoft set and tangent similarity measure of single valued neutrosophic hypersoft sets, Neutrosophic Sets Syst., 32 (2020), 317–329. doi: 10.5281/zenodo.3723165. doi: 10.5281/zenodo.3723165 |
[21] | M. Saqlain, S. Moin, N. Jafar, M. Saeed, F. Smarandache, Aggregate operators of neutrosophic hypersoft sets, Neutrosophic Sets Syst., 32 (2020), 235–247. doi: 10.5281/zenodo.3723155. doi: 10.5281/zenodo.3723155 |
[22] | M. Saeed, M. Ahsan, A. U. Rahman, M. H. Saeed, A. Mehmood, An application of neutrosophic hypersoft mapping to diagnose brain tumor and propose appropriate treatment, J. Intell. Fuzzy Syst., 41 (2021), 1677–1699. doi: 10.3233/JIFS-210482. doi: 10.3233/JIFS-210482 |
[23] | M. Ihsan, A. U. Rahman, M. Saeed, Hypersoft expert set with application in decision making for recruitment process, Neutrosophic Sets Syst., 42 (2021), 191–207. doi: 10.5281/zenodo.4711524. doi: 10.5281/zenodo.4711524 |
[24] | R. M. Zulqarnain, X. L. Xin, B. Ali, S. Broumi, S. Abdal, M. I. Ahamad, Decision-making ppproach based on correlation coefficient with its properties under interval-valued neutrosophic hypersoft set environment, Neutrosophic Sets Syst., 40 (2021), 12–28. doi: 10.5281/zenodo.4549309. doi: 10.5281/zenodo.4549309 |
[25] | A. U. Rahman, M. Saeed, F. Smarandache, M. R. Ahmad, Development of hybrids of hypersoft set with complex fuzzy set, complex intuitionistic fuzzy set and complex neutrosophic set, Neutrosophic Sets Syst., 38 (2020), 335–354. doi: 10.5281/zenodo.4300520. doi: 10.5281/zenodo.4300520 |
[26] | A. U. Rahman, M. Saeed, F. Smarandache, Convex and concave hypersoft sets with some properties, Neutrosophic Sets Syst., 38 (2020), 497–508. doi: 10.5281/zenodo.4300580. doi: 10.5281/zenodo.4300580 |
[27] | A. U. Rahman, M. Saeed, A. Dhital, Decision making application based on neutrosophic parameterized hypersoft set theory, Neutrosophic Sets Syst., 41 (2021), 1–14. doi: 10.5281/zenodo.4625665. doi: 10.5281/zenodo.4625665 |
[28] | H. Kamacı, On hybrid structures of hypersoft sets and rough sets, International Journal of Modern Science and Technology, 6 (2021), 69–82. |
[29] | H. Kamacı, M. Saqlain, n-ary Fuzzy hypersoft expert sets, Neutrosophic Sets Syst., 43 (2021), 180–211. doi: 10.5281/zenodo.4914849. doi: 10.5281/zenodo.4914849 |
[30] | M. Bashir, A. R. Salleh, Possibility fuzzy soft expert set, Open Journal of Applied Sciences, 12 (2012), 208–211. doi: 10.4236/ojapps.2012.24B047. doi: 10.4236/ojapps.2012.24B047 |
[31] | H. D. Zhang, L. Shu, Possibility multi-fuzzy soft set and its application in decision making, J. Intell. Fuzzy Syst., 27 (2014), 2115–2125. doi: 10.3233/IFS-141176. doi: 10.3233/IFS-141176 |
[32] | S. Kalaiselvi, V. Seenivasan, Decision making in sports via possibility fuzzy soft set, International Journal of Engineering Technology and Applied Science, 3 (2017), 1–5. |
[33] | K. Ponnalagu, P. Mounika, A study on possibility fuzzy soft expert set, International Journal of Engineering, Science and Mathematics, 7 (2018), 256–262. |
[34] | H. Garg, R. Arora, Algorithms based on COPRAS and aggregation operators with new information measures for possibility intuitionistic fuzzy soft decision-making, Math. Probl. Eng., 2020 (2020), 1563768. doi: 10.1155/2020/1563768. doi: 10.1155/2020/1563768 |
[35] | A. M. Khalil, S. G. Li, H. X. Li, S. Q. Ma, Possibility m-polar fuzzy soft sets and its application in decision-making problems, J. Intell. Fuzzy Syst., 37 (2019), 929–940. doi: 10.3233/JIFS-181769. doi: 10.3233/JIFS-181769 |
[36] | S. Debnath, Fuzzy hypersoft sets and its weightage operator for decision making, Journal of Fuzzy Extension and Applications, 2 (2021), 163–170. doi: 10.22105/jfea.2021.275132.1083. doi: 10.22105/jfea.2021.275132.1083 |
[37] | M. N. Jafar, M. Saeed, M. Haseeb, A. Habib, Matrix theory for intuitionistic fuzzy hypersoft sets and its application in multi-attributive decision-making problems, In: Theory and application of hypersoft set, Brussel: Pons Publishing House, 2021, 65–84. doi: 10.5281/zenodo.4787683. |
[38] | P. Majumdar, S. K. Samanta, Generalised fuzzy soft sets, Comput. Math. Appl., 59 (2010), 1425–1432. doi: 10.1016/j.camwa.2009.12.006. doi: 10.1016/j.camwa.2009.12.006 |
[39] | P. Majumdar, S. K. Samanta, On similarity measure of fuzzy soft sets, Int. J. Advance. Soft Comput. Appl., 3 (2011), 1–8. |
[40] | P. Majumdar, S. K. Samanta, Similarity measure of soft sets, New Math. Nat. Comput., 4 (2008), 1–12. doi: 10.1142/S1793005708000908. doi: 10.1142/S1793005708000908 |