Loading [MathJax]/jax/output/SVG/jax.js
Research article

On a boundary value problem of arbitrary orders differential inclusion with nonlocal, integral and infinite points boundary conditions

  • Received: 11 August 2021 Accepted: 24 November 2021 Published: 10 December 2021
  • MSC : 26A33, 34K45, 47G10

  • In this work, we are concerned with a boundary value problem of fractional orders differential inclusion with nonlocal, integral and infinite points boundary conditions. We prove some existence results for that nonlocal boundary value problem. Next, the existence of maximal and minimal solutions is proved. Finally, the sufficient condition for the uniqueness and continuous dependence of solution are studied.

    Citation: A. M. A. El-Sayed, W. G. El-Sayed, Somyya S. Amrajaa. On a boundary value problem of arbitrary orders differential inclusion with nonlocal, integral and infinite points boundary conditions[J]. AIMS Mathematics, 2022, 7(3): 3896-3911. doi: 10.3934/math.2022215

    Related Papers:

    [1] Ahmed M.A. El-Sayed, Eman M.A. Hamdallah, Hameda M. A. Alama . Multiple solutions of a Sturm-Liouville boundary value problem of nonlinear differential inclusion with nonlocal integral conditions. AIMS Mathematics, 2022, 7(6): 11150-11164. doi: 10.3934/math.2022624
    [2] Murugesan Manigandan, Kannan Manikandan, Hasanen A. Hammad, Manuel De la Sen . Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions. AIMS Mathematics, 2024, 9(6): 15505-15542. doi: 10.3934/math.2024750
    [3] Mouffak Benchohra, John R. Graef, Nassim Guerraiche, Samira Hamani . Nonlinear boundary value problems for fractional differential inclusions with Caputo-Hadamard derivatives on the half line. AIMS Mathematics, 2021, 6(6): 6278-6292. doi: 10.3934/math.2021368
    [4] Bashir Ahmad, Badrah Alghamdi, Ahmed Alsaedi, Sotiris K. Ntouyas . Existence results for Riemann-Liouville fractional integro-differential inclusions with fractional nonlocal integral boundary conditions. AIMS Mathematics, 2021, 6(7): 7093-7110. doi: 10.3934/math.2021416
    [5] Madeaha Alghanmi, Shahad Alqurayqiri . Existence results for a coupled system of nonlinear fractional functional differential equations with infinite delay and nonlocal integral boundary conditions. AIMS Mathematics, 2024, 9(6): 15040-15059. doi: 10.3934/math.2024729
    [6] Abdissalam Sarsenbi, Abdizhahan Sarsenbi . Boundary value problems for a second-order differential equation with involution in the second derivative and their solvability. AIMS Mathematics, 2023, 8(11): 26275-26289. doi: 10.3934/math.20231340
    [7] Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad . On a class of differential inclusions in the frame of generalized Hilfer fractional derivative. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193
    [8] Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene . Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112
    [9] Nayyar Mehmood, Niaz Ahmad . Existence results for fractional order boundary value problem with nonlocal non-separated type multi-point integral boundary conditions. AIMS Mathematics, 2020, 5(1): 385-398. doi: 10.3934/math.2020026
    [10] Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632
  • In this work, we are concerned with a boundary value problem of fractional orders differential inclusion with nonlocal, integral and infinite points boundary conditions. We prove some existence results for that nonlocal boundary value problem. Next, the existence of maximal and minimal solutions is proved. Finally, the sufficient condition for the uniqueness and continuous dependence of solution are studied.



    The models of the differential and integral equations have been appeared in different applications (see [1,2,3,4,6,7,9,12,13,14,15,16,17,18,19,20]).

    Boundary value problems involving fractional differential equations arise in physical sciences and applied mathematics. In some of these problems, subsidiary conditions are imposed locally. In some other cases, nonlocal conditions are imposed. It is sometimes better to impose nonlocal conditions since the measurements needed by a nonlocal condition may be more precise than the measurement given by a local condition. Consequently, a variety of excellent results on fractional boundary value problems (abbreviated BVPs) with resonant conditions have been achieved. For instance, Bai [4] studied a type of fractional differential equations with m-points boundary conditions. The existence of nontrivial solutions was established by using coincidence degree theory. Applying the same method, Kosmatov [17] investigated the fractional order three points BVP with resonant case.

    Although the study of fractional BVPs at resonance has acquired fruitful achievements, it should be noted that such problems with Riemann-Stieltjes integrals are very scarce, so it is worthy of further explorations. Riemann-Stieltjes integral has been considered as both multipoint and integral in a single framework, which is more common, see the relevant works due to Ahmad et al. [1].

    The boundary value problems with nonlocal, integral and infinite points boundary conditions have been studied by some authors (see, for example [8,10,11,12]).

    Here, we discuss the boundary value problem of the nonlinear differential inclusions of arbitrary (fractional) orders

    dxdtF1(t,x(t),Iγf2(t,Dαx(t))),α,γ(0,1]t(0,1) (1.1)

    with the nonlocal boundary condition

    mk=1akx(τk)=x0,ak>0τk[0,1], (1.2)

    the integral condition

    10x(s)dg(s)=x0 (1.3)

    and the infinite point boundary condition

    k=1akx(τk)=x0,ak>0andτk[0,1]. (1.4)

    We study the existence of solutions xC[0,1] of the problems (1.1) and (1.2), and deduce the existence of solutions of the problem of (1.1) with the conditions (1.3) and (1.4). Then the existence of the maximal and minimal solutions will be proved. The sufficient condition for the uniqueness and continuous dependence of the solution will be studied.

    This paper is organised as: In Section 2, we prove the existence of continuous solutions of the problems (1.1) and (1.2), and deduce the existence of solutions of the problem of (1.1) with the conditions (1.3) and (1.4). In Section 3, the existence of the maximal and minimal solutions is proved. In Section 4, the sufficient condition for the uniqueness and continuous dependence of the solution are studied. Next, in Section 5, we extend our results to the nonlocal problems (1.3) and (2.1). Finally, some existence results is proved for the nonlocal problems (1.4) and (2.1) in Section 6.

    Consider the following assumptions:

    (I) (i) The set F1(t,x,y) is nonempty, closed and convex for all (t,x,y)[0,1]×R×R.

    (ii) F1(t,x,y) is measurable in t[0,1] for every x,yR.

    (iii) F1(t,x,y) is upper semicontinuous in x and y for every t[0,1].

    (iv) There exist a bounded measurable function a1:[0,1]R and a positive constant K1, such that

    F1(t,x,y)=sup{|f1|:f1F1(t,x,y)}|a1(t)|+K1(|x|+|y|).

    Remark 2.1. From the assumptions (i)–(iv) we can deduce that (see [3,6,7,13]) there exists f1F1(t,x,y), such that

    (v) f1:[0,1]×R×RR is measurable in t for every x,yR and continuous in x,y for t[0,1], and there exist a bounded measurable function a1:[0,1]R and a positive constant K1>0 such that

    |f1(t,x,y)||a1(t)|+K1(|x|+|y|),

    and the functional f1 satisfies the differential equation

    dxdt=f1(t,x(t),Iγf2(t,Dαx(t))),α,γ(0,1]andt(0,1]. (2.1)

    (II) f2:[0,1]×RR is measurable in t for any xR and continuous in x for t[0,1], and there exist a bounded measurable function a2:[0,1]R and a positive constant K2>0 such that

    |f2(t,x)||a2(t)|+K2|x|,t[0,1]andxR

    and

    supt[0,1]|ai(t)|ai,i=1,2.

    (III) 2K1γ+K1K2α<αγΓ(2α),α,γ(0,1].

    Remark 2.2. From (I) and (v) we can deduce that every solution of (1.1) is a solution of (2.1). Now, we shall prove the following lemma.

    Lemma 2.1. If the solution of the problems (1.2)–(2.1) exists then it can be expressed by the integral equation

    y(t)=t0(ts)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)y(θ)dθ]+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(ϕ,y(θ))dθ)ds. (2.2)

    Proof. Consider the boundary value problems (1.2)–(2.1) be satisfied. Operating by I1α on both sides of (2.1) we can obtain

    Dαx(t)=I1αdxdt=I1αf1(t,x(t),Iγf2(t,Dαx(t))). (2.3)

    Taking

    Dαx(t)=y(t), (2.4)

    then we obtain

    x(t)=x(0)+Iαy(t). (2.5)

    Putting t=τ and multiplying (2.5) by Σmk=1ak, then we get

    Σmk=1akx(τk)=Σmk=1akx(0)+Σmk=1akIαy(τk), (2.6)
    x0=Σmk=1akx(0)+Σmk=1akIαy(τk) (2.7)

    and

    x(0)=1Σmk=1ak[x0Σmk=1akIαy(τk)]. (2.8)

    Then

    x(t)=1Σmk=1ak[x0Σmk=1akIαy(τk)]+Iαy(t). (2.9)

    Substituting (2.8) and (2.9) in (2.5), which completes the proof.

    Theorem 2.1. Let assumptions (I)–(III) be satisfied. Then the integral equation (2.2) has at least one continuous solution.

    Proof. Define a set Qr as

    Qr={yC[0,1]:yr},
    r=Γ(γ+1)[a1+K1A|x0|]+k1a2αγΓ(2α)[2K1α+K1K2γ],(mk=1ak)1=A,

    and the operator F by

    Fy(t)=t0(ts)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)y(θ)dθ]+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(θ,y(θ))dθ)ds.

    For yQr, then

    |Fy(t)|=|t0(ts)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)y(θ)dθ]+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(θ,y(θ))dθ)ds|K1t0(ts)αΓ(1α)[|x0|mk=1ak+mk=1akτk0(τkθ)α1Γ(α)|y(θ)|dθmk=1ak+s0(sθ)α1Γ(α)|y(θ)|dθ+s0(sϕ)γ1Γ(γ)(K2|y(θ)|+|a2(t)|)dθ]+|a1(t)|)ds1Γ(2α)[K1A|x0|+K1yΓ(α+1)+K1yΓ(α+1)+K1K2yΓ(γ+1)+K1a2Γ(γ+1)+a1]1Γ(2α)[K1A|x0|+K1rΓ(α+1)+K1rΓ(α+1)+K1K2rΓ(γ+1)+K1a2Γ(γ+1)+a1]1Γ(2α)[K1A|x0|+2K1rΓ(α+1)+K1K2rΓ(γ+1)+K1a2Γ(γ+1)+a1]r.

    Thus, the class of functions {Fy} is uniformly bounded on Qr and F:QrQr. Let yQr and t1,t2[0,1] such that |t2t1|<δ, then

    |Fy(t2)Fy(t1)|=|t20(t2s)αΓ(1α)(f1(s,x(s),Iγf2(s,y(s)))dst10(t1s)αΓ(1α)(f1(s,x(s),Iγf2(s,y(s)))ds||t20(t2s)αΓ(1α)(f1(s,x(s),Iγf2(s,y(s)))dst10(t2s)αΓ(1α)(f1(s,x(s),Iγf2(s,y(s)))ds+t10(t2s)αΓ(1α)(f1(s,x(s),Iγf2(s,y(s)))dst10(t1s)αΓ(1α)(f1(s,x(s),Iγf2(s,y(s)))ds|t2t1(t2s)αΓ(1α)|(f1(s,x(s),Iγf2(s,y(s)))|ds+t10(t2s)α(t1s)αΓ(1α)|(f1(s,x(s),Iγf2(s,y(s)))ds|t2t1(t2s)αΓ(1α)|(f1(s,x(s),Iγf2(s,y(s)))|ds+t10(t2s)α(t1s)αΓ(1α)(t2s)α(t1s)α.|(f1(s,x(s),Iγf2(s,y(s)))|ds.

    Thus, the class of functions {Fy} is equicontinuous on Qr and {Fy} is compact operator by the Arzela-Ascoli Theorem [5].

    Now we prove that F is continuous operator. Let ynQr be convergent sequence such that yny, then

    Fyn(t)=t0(ts)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)yn(θ)dθ]+s0(sθ)α1Γ(α)yn(θ)dθ,s0(sθ)γ1Γ(γ)f2(θ,yn(θ)))ds.

    Using Lebesgue dominated convergence Theorem [5] and assumptions (iv)–(II) we have

    limnFyn(t)=limnt0(ts)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)yn(θ)dθ]+s0(sθ)α1Γ(α)yn(θ)dθ,s0(sθ)γ1Γ(γ)f2(θ,yn(θ)))ds=t0(ts)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)limnyn(θ)dθ]+s0(sθ)α1Γ(α)limnyn(θ)dθ,s0(sθ)γ1Γ(γ)f2(θ,limnyn(θ)))ds=t0(ts)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)y(θ)dθ]+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(θ,y(θ)))ds=Fy(t).

    Then F:QrQr is continuous, and by Schauder Fixed Point Theorem[5] there exists at least one solution yC[0,1] of (2.2). Now

    dxdt=ddt[x(0)+Iαy(t)]=ddtIαI1αf1(t,x(t),Iγf2(t,y(t)))=ddtIf1(t,x(t),Iγf2(t,y(t)))=f1(t,x(t),Iγf2(t,y(t))).

    Putting t=τ and using (2.9), we obtain

    x(t)=1Σmk=1ak[x0Σmk=1akIαy(τk)]+Iαy(t),Σmk=1akx(τk)=Σmk=1ak1Σmk=1ak[x0Σmk=1akIαy(τk)]+Σmk=1akIαy(τk),

    then

    Σmk=1akx(τk)=x0,ak>0andτk[0,1].

    This proves the equivalence between the problems (1.2)–(2.1) and the integral equation (2.2). Then there exists at least one solution yC[0,1] of the problems (1.2)–(2.1).

    Here, we shall study the maximal and minimal solutions for the problems (1.2) and (2.1). Let y(t) be any solution of (2.2), let u(t) be a solution of (2.2), then u(t) is said to be a maximal solution of (2.2) if it satisfies the inequality

    y(t)u(t),t[0,1].

    A minimal solution can be defined by similar way by reversing the above inequality.

    Lemma 3.1. Let the assumptions of Theorem 2.1 be satisfied. Assume that x(t) and y(t) are two continuous functions on [0,1] satisfying

    y(t)t0(ts)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)y(θ)dθ]+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(θ,y(θ)))dst[0,1],x(t)t0(ts)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)x(θ)dθ]+s0(sθ)α1Γ(α)x(θ)dθ,s0(sθ)γ1Γ(γ)f2(θ,x(θ)))dst[0,1],

    where one of them is strict.

    Let functions f1 and f2 be monotonic nondecreasing in y, then

    y(t)<x(t),t>0. (3.1)

    Proof. Let the conclusion (3.1) be not true, then there exists t1 with

    y(t1)<x(t1),t1>0andy(t)<x(t),0<t<t1.

    Since f1 and f2 are monotonic functions in y, then we have

    y(t1)t10(t1s)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)y(θ)dθ]+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(θ,y(θ)))ds<t10(ts)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)x(θ)dθ]+s0(sθ)α1Γ(α)x(θ)dθ,s0(sθ)γ1Γ(γ)f2(θ,x(θ)))ds<x(t1),t1[0,1].

    This contradicts the fact that y(t1)=x(t1), then y(t)<x(t). This completes the proof.

    For the existence of the continuous maximal and minimal solutions for (2.1), we have the following theorem.

    Theorem 3.1. Let the assumptions of Theorem 2.1 be hold. Moreover, if f1 and f2 are monotonic nondecreasing functions in y for each t[0,1], then Eq (2.1) has maximal and minimal solutions.

    Proof. First, we should demonstrate the existence of the maximal solution of (2.1). Let ϵ>0 be given. Now consider the integral equation

    yϵ(t)=t0(ts)αΓ(1α)f1,ϵ(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)yϵ(θ)dθ]+s0(sθ)α1Γ(α)yϵ(θ)dθ,s0(sθ)γ1Γ(γ)f2,ϵ(θ,yϵ(θ))dθ)ds,t[0,1],

    where

    f1,ϵ(s,xϵ(s),yϵ(s))=f1(s,xϵ(s),yϵ(s))+ϵ,
    f2,ϵ(s,xϵ(s))=f2(s,xϵ(s))+ϵ.

    For ϵ2>ϵ1, we have

    yϵ2(t)=t0(ts)αΓ(1α)f1,ϵ2(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)yϵ2(θ)dθ]+s0(sθ)α1Γ(α)yϵ2(θ)dθ,s0(sθ)γ1Γ(γ)f2,ϵ2(θ,yϵ2(θ))dθ)ds,t[0,1],
    yϵ2(t)=t0(ts)αΓ(1α)[f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)yϵ2(θ)dθ]+s0(sθ)α1Γ(α)yϵ2(θ)dθ,s0(sθ)γ1Γ(γ)(f2(θ,yϵ2(θ))+ϵ2)dθ)+ϵ2]ds,t[0,1].

    Also

    yϵ1(t)=t0(ts)αΓ(1α)f1,ϵ1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)yϵ1(θ)dθ]+s0(sθ)α1Γ(α)yϵ1(θ)dθ,s0(sθ)γ1Γ(γ)f2,ϵ1(θ,yϵ1(θ))dθ)ds,yϵ1(t)=t0(ts)αΓ(1α)[f1(s,1mk=1ak[x0mk=1akτk0(τkϕ)α1Γ(α)yϵ1(θ)dθ]+s0(sθ)α1Γ(α)yϵ1(θ)dθ,s0(sθ)γ1Γ(γ)(f2(θ,yϵ1(θ))+ϵ1)dθ)+ϵ1]ds>t0(ts)αΓ(1α)[f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)yϵ2(θ)dθ]+s0(sθ)α1Γ(α)yϵ2(θ)dθ,s0(sθ)γ1Γ(γ)(f2(θ,yϵ2(τ))+ϵ2)dθ)+ϵ2]ds.

    Applying Lemma 3.1, we obtain

    yϵ2<yϵ1,t[0,1].

    As shown before, the family of function yϵ(t) is equi-continuous and uniformly bounded, then by Arzela Theorem, there exist decreasing sequence ϵn, such that ϵn0 as n, and u(t)=limnyϵn(t) exists uniformly in [0,1] and denote this limit by u(t). From the continuity of the functions, f2,ϵn(t,yϵn(t)), we get f2,ϵn(t,yϵn(t))f2(t,y(t)) as n and

    u(t)=limnyϵn(t)=t0(ts)αΓ(1α)[f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)yϵn(θ)dθ]+s0(sθ)α1Γ(α)yϵn(θ)dθ,s0(sθ)γ1Γ(γ)(f2(θ,yϵn(θ))+ϵn))+ϵn]ds,t[0,1].

    Now we prove that u(t) is the maximal solution of (2.1). To do this, let y(t) be any solution of (2.1), then

    y(t)=t0(ts)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)y(θ)dθ]+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(θ,y(θ))dθ)ds,yϵ(t)=t0(ts)αΓ(1α)[f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)yϵ(θ)dθ]+s0(sθ)α1Γ(α)yϵ(θ)dθ,s0(sθ)γ1Γ(γ)(f2(θ,yϵ(θ))+ϵ)dθ)+ϵ]ds

    and

    yϵ(t)>t0(ts)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)yϵ(θ)dθ]+s0(sθ)α1Γ(α)yϵ(θ)dθ,s0(sθ)γ1Γ(γ)f2(θ,yϵ(θ)))ds.

    Applying Lemma 3.1, we obtain

    y(t)<yϵ(t),t[0,1].

    From the uniqueness of the maximal solution it clear that yϵ(t) tends to u(t) uniformly in [0,1] as ϵ0.

    By a similar way as done above, we can prove the existence of the minimal solution.

    Here, we study the sufficient condition for the uniqueness of the solution yC[0,1] of problems (1.2) and (2.1). Consider the following assumptions:

    (I) (i) The set F1(t,x,y) is nonempty, closed and convex for all (t,x,y)[0,1]×R×R.

    (ii) F1(t,x,y) is measurable in t[0,1] for every x,yR.

    (iii) F1 satisfies the Lipschitz condition with a positive constant K1 such that

    H(F1(t,x1,y1),F1(t,x2,y2)|K1(|x1x2|+|y1y2|),

    where H(A,B) is the Hausdorff metric between the two subsets A,B[0,1]×E.

    Remark 4.1. From this assumptions we can deduce that there exists a function f1F1(t,x,y), such that

    (iv) f1:[0,1]×R×RR is measurable in t[0,1] for every x,yR and satisfies Lipschitz condition with a positive constant K1 such that (see [3,7])

    |f1(t,x1,y1)f1(t,x2,y2)|K1(|x1x2|+|y1y2|).

    (II)f2:[0,1]×RR is measurable in t[0,T] and satisfies Lipschitz condition with positive constant K2, such that

    |f2(t,x)f2(t,y)|K2|xy|.

    From the assumption (I), we have

    |f1(t,x,y)||f1(t,0,0)||f1(t,x,y)f1(t,0,0)|K1(|x|+|y|).

    Then

    |f1(t,x,y)|K1(|x|+|y|)+|f1(t,0,0)|K1(|x|+|y|)+a1(t),

    where |a1(t)|=suptI|f1(t,0,0)|.

    From the assumption (II), we have

    |f2(t,y)||f2(t,0)||f2(t,y)f2(t,0)|K2|y|.

    Then

    |f2(t,x)|K2|x|+|f2(t,0)|K2|x|+a2(t),

    where |a2(t)|=suptI|f1(t,0)|.

    Theorem 4.1. Let the assumptions (I) and (II) be satisfied. Then the solution of the problems (1.2) and (2.1) is unique.

    Proof. Let y1(t) and y2(t) be solutions of the problems (1.2) and (2.1), then

    Then

    y1y2[αγΓ(2α)(2K1α+K1K2γ)]<0.

    Since (αγΓ(2α)(2K1α+K1K2γ))<1, then y1(t)=y2(t) and the solution of (1.2) and (2.1) is unique.

    Definition 4.1. The unique solution of the problems (1.2) and (2.1) depends continuously on initial data x0, if ϵ>0, δ>0, such that

    |x0x0|δyyϵ,

    where y is the unique solution of the integral equation

    y(t)=t0(ts)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)y(θ)dθ]+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(θ,y(θ))dθ)ds|.

    Theorem 4.2. Let the assumptions (I) and (II) be satisfied, then the unique solution of (1.2) and (2.1) depends continuously on x0.

    Proof. Let y(t) and y(t) be the solutions of problems (1.2) and (2.1), then

    then we obtain

    |y(t)y(t)|(AK1δ)(αγΓ(2α)(2K1α+K1K2γ))1ϵ

    and

    y(t)y(t)ϵ.

    Definition 4.2. The unique solution of the problems (1.2) and (2.1) depends continuously on initial data ak, if ϵ>0, δ>0, such that

    mk=1|akak|δyyϵ,

    where y is the unique solution of the integral equation

    y(t)=t0(ts)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)y(θ)dθ]+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(θ,y(θ))dθ)ds|.

    Theorem 4.3. Let the assumptions (I) and (II) be satisfied, then the unique solution of problems (1.2) and (2.1) depends continuously on ak.

    Proof. Let y(t) and y(t) be the solutions of problems (1.2) and (2.1) and (mk=1ak)1=A,

    |y(t)y(t)|=|t0(ts)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)y(θ)dθ]+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(θ,y(θ))dθ)dst0(ts)αΓ(1α)f1(s,1mk=1ak[x0mk=1akτk0(τkθ)α1Γ(α)y(θ)dθ]+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(θ,y(θ))dθ)ds|t0(ts)αΓ(1α)[|x0|(mk=1akmk=1ak)mk=1akmk=1ak+mk=1akτk0(τkθ)α1Γ(α)|y(θ)|dθmk=1akmk=1akτk0(τkθ)α1Γ(α)|y(θ)|dθmk=1ak+K1s0(sθ)α1Γ(α)|y(θ)y(θ)|dθ+K1K2s0(sθ)γ1Γ(γ)|y(ϕ)y(θ)|dθ]ds1Γ(2α)[K1|x0|mk=1|akak|mk=1akmk=1ak+K1mk=1ak(mk=1akτk0(τkθ)α1Γ(α)|y(θ)|dθmk=1akτk0(τkθ)α1Γ(α)|y(θ)|dθ)mk=1akmk=1ak+K1mk=1ak(mk=1akτk0(τkθ)α1Γ(α)|y(θ)|dθmk=1akτk0(τkθ)α1Γ(α)|y(θ)|dθ)mk=1akmk=1ak+K1s0(sθ)α1Γ(α)|y(θ)y(θ)|dθ+K1K2s0(sθ)γ1Γ(γ)|y(ϕ)y(θ)|dθ]ds1Γ(2α)[K1|x0|δmk=1akmk=1ak+K1(mk=1akδrΓ(α+1)+mk=1akδrΓ(α+1))mk=1akmk=1ak+K1yyΓ(α+1)+K1K2yyΓ(γ+1)K1δ|x0|Γ(2α)mk=1akmk=1ak+K1(mk=1akδrΓ(α+1)+mk=1akδrΓ(α+1))Γ(2α)Γ(α+1)mk=1akmk=1ak+K1yyΓ(2α)Γ(α+1)+K1K2yyΓ(γ+1)Γ(2α),

    then we obtain

    |y(t)y(t)|(AAK1δ[|x0|+r(mk=1ak+mk=1ak)]).(αγΓ(2α)(2K1α+K1K2γ))1ϵ

    and

    y(t)y(t)ϵ.

    Let yC[0,1] be the solution of the nonlocal boundary value problems (1.2) and (2.1). Let ak=(g(tk)g(tk1), g is increasing function, τk(tk1tk), 0=t0<t1<t2,...<tm=1, then, as m the nonlocal condition (1.2) will be

    mk=1(g(tk)g(tk1)y(τk)=x0.

    As the limit m, we obtain

    limmmk=1(g(tk)g(tk1)y(τk)=10y(s)dg(s)=x0.

    Theorem 5.1. Let the assumptions (I)–(III) be satisfied. If mk=1ak be convergent, then the nonlocal boundary value problems of (1.3) and (2.1) have at least one solution given by

    y(t)=t0(ts)αΓ(1α)f1(s,1g(1)g(0)[x010s0(sθ)α1Γ(α)y(θ)dθdg(s)]+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(ϕ,y(θ))dθ)ds.

    Proof. As m, the solution of the nonlocal boundary value problem (2.1) will be

    limmy(t)=t0(ts)αΓ(1α)f1(s,(g(1)g(0))1x0(g(1)g(0))1.limmmk=1[g(tk)g(tk1]τk0(τkθ)α1Γ(α)y(θ)dθ+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(ϕ,y(θ))dθ)ds=t0(ts)αΓ(1α)f1(s,1g(1)g(0)[x010s0(sθ)α1Γ(α)y(θ)dθdg(s)]+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(ϕ,y(θ))dθ)ds.

    Theorem 6.1. Let the assumptions (I)–(III) be satisfied, then the nonlocal boundary value problems of (1.4) and (2.1) have at least one solution given by

    y(t)=t0(ts)αΓ(1α)f1(s,1k=1ak[x0k=1akτk0(τkθ)α1Γ(α)y(θ)dθ]+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(ϕ,y(θ))dθ)ds.

    Proof. Let the assumptions of Theorem 2.1 be satisfied. Let mk=1ak be convergent, then take the limit to (1.4), we have

    limmy(t)=t0(ts)αΓ(1α)f1(s,limmm1mk=1ak[x0limmmk=1akτk0(τkθ)α1Γ(α)y(θ)dθ]+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(ϕ,y(θ))dθ)ds.

    Now

    |akτk0(τkθ)α1Γ(α)y(θ)dθ||ak|τk0(τkθ)α1Γ(α)|y(θ)|dθ|ak|yΓ(α+1)|ak|rΓ(α+1)

    and by the comparison test (mk=1akτk0(τkθ)α1Γ(α)y(θ)dθ) is convergent,

    y(t)=t0(ts)αΓ(1α)f1(s,1k=1ak[x0k=1akτk0(τkθ)α1Γ(α)y(θ)dθ]+s0(sθ)α1Γ(α)y(θ)dθ,s0(sθ)γ1Γ(γ)f2(ϕ,y(θ))dθ)ds.

    Furthermore, from (2.9) we have

    k=1akx(τk)=k=1ak[1k=1ak(x0k=1akτk0(τks)α1Γ(α)y(s)ds)]+τk0(τks)α1Γ(α)y(s)ds)]=x0.

    Example 6.1. Consider the following nonlinear integro-differential equation

    dxdt=t4et+x(t)t+2+13Iγ(cos(5t+1)+19[t5sinD13x(t)+e3tx(t)]) (6.1)

    with boundary condition

    mk=1[1k1k+1]x(τk)=x0,ak>0τk[0,1]. (6.2)

    Let

    f1(t,x(t),Iγf2(t,Dαx(t)))=t4et+x(t)t+2+13Iγ(cos(5t+1)+19[t5sinD13x(t)+e3tx(t)]),

    then

    |f1(t,x(t),Iγf2(t,Dαx(t)))=|t4et+x(t)2t+4+14(43Iγ(cos(5t+1)+19[t5sinD13x(t)+e3tx(t)]))|

    and also

    |Iγf2(t,Dαx(t))|14(43Iγ|cos(5t+1)+13[t5sinD13x(t)+e3tx(t)]|.

    It is clear that the assumptions (I) and (II) of Theorem 2.1 are satisfied with a1(t)=t4etL1[0,1], a2(t)=43Iγ|(cos(5t+1)|L1[0,1], and let α=13, γ=23, then 2K1γ+K1K2α=12<αγΓ(2α)=12Γ(2α). Therefore, by applying Theorem 2.1, the nonlocal problems (6.1) and (6.2) has a continuous solution.

    In this paper, we have studied a boundary value problem of fractional order differential inclusion with nonlocal, integral and infinite points boundary conditions. We have prove some existence results for that a single nonlocal boundary value problem, in of proving some existence results for a boundary value problem of fractional order differential inclusion with nonlocal, integral and infinite points boundary conditions. Next, we have proved the existence of maximal and minimal solutions. Then we have established the sufficient conditions for the uniqueness of solutions and continuous dependence of solution on some initial data and on the coefficients ak are studied. Finally, we have proved the existence of a nonlocal boundary value problem with Riemann-Stieltjes integral condition and with infinite-point boundary condition. An example is given to illustrate our results.

    The authors declare no conflict of interest.



    [1] B. Ahmad, S. K. Ntouyas, Nonlocal fractional boundary value problems with slit-strips boundary conditions, Fract. Calc. Appl. Anal., 18 (2015), 261–280. doi: 10.1515/fca-2015-0017. doi: 10.1515/fca-2015-0017
    [2] E. Ahmed, A. M. A. El-Sayed, A. E. M. El-Mesiry, H. A. A. El-Saka, Numerical solution for the fractional replicator equation, Int. J. Mod. Phys. C, 16 (2005), 1017–1025. doi: 10.1142/S0129183105007698. doi: 10.1142/S0129183105007698
    [3] J. P. Aubin, A. Cellina, Differential inclusions: Set-valued maps and viability theory, Berlin: Springer, 2012.
    [4] Z. B. Bai, Solvability for a class of fractional m-point boundary value problem at resonance, Comput. Math. Appl., 62 (2011), 1292–1302. doi: 10.1016/j.camwa.2011.03.003. doi: 10.1016/j.camwa.2011.03.003
    [5] R. F. Curtain, A. J. Pritchard, Functional analysis in modern appliedmathematics, London: Academic Press, 1977.
    [6] A. M. A. El-Sayed, A. G. Ibrahim, Multivalued fractional differential equations, Appl. Math. Comput., 68 (1995), 15–25. doi: 10.1016/0096-3003(94)00080-N. doi: 10.1016/0096-3003(94)00080-N
    [7] A. M. A. El-Sayed, A. G. Ibrahim, Set-valued integral equation of fractional-orders, Appl. Math. Comput., 118 (2001), 113–121. doi: 10.1016/S0096-3003(99)00087-9. doi: 10.1016/S0096-3003(99)00087-9
    [8] A. M. A. El-Sayed, E. O. Bin-Taher, Positive nondecreasing solutions for a multi-term fractional-order functional differential equation with integral conditions, Electron. J. Differ. Eq., 2011 (2011), 1–8.
    [9] A. M. A. El-Sayed, A. Elsonbaty, A. A. Elsadany, A. E. Matouk, Dynamical analysis and circuit simulation of a new fractional-order hyperchaotic system and its discretization, Int. J. Bifurcat. Chaos, 26 (2016), 1–35. doi: 10.1142/S0218127416502229. doi: 10.1142/S0218127416502229
    [10] A. El-Sayed, R. Gamal, Infinite point and Riemann-Stieltjes integral conditions for an integro-differential equation, Nonlinear Anal. Model. Control, 24 (2019), 733–754. doi: 10.15388/NA.2019.5.4. doi: 10.15388/NA.2019.5.4
    [11] A. M. A. El-Sayed, R. G. Ahmed, Solvability of a coupled system of functional integro-differential equations with infinite point and Riemann-Stieltjes integral conditions, Appl. Math. Comput., 370 (2020), 124918. doi: 10.1016/j.amc.2019.124918. doi: 10.1016/j.amc.2019.124918
    [12] A. R. Elsonbaty, A. M. A. El-Sayed, Further nonlinear dynamical analysis of simple jerk system with multiple attractors, Nonlinear Dyn., 87 (2017), 1169–1186. doi: 10.1007/s11071-016-3108-3. doi: 10.1007/s11071-016-3108-3
    [13] R. Fierro, C. Martínez, C. H. Morales, Carathéodory selections for multi-valued mappings, Nonlinear Anal.-Theor., 64 (2006), 1229–1235. doi: 10.1016/j.na.2005.05.063. doi: 10.1016/j.na.2005.05.063
    [14] H. H. G. Hashem, H. M. H. Alsehail, Qualitative aspects of the fractional Air-Borne diseases model with Mittage-Leffler kernel, Adv. Math. Sci. J., 10 (2021), 2335–2349. doi: 10.37418/amsj.10.5.4. doi: 10.37418/amsj.10.5.4
    [15] A. Khalid, A. Rehan, K. S. Nisar, M. S. Osman, Splines solutions of boundary value problems that arises in sculpturing electrical process of motors with two rotating mechanism circuit, Phys. Scr., 96 (2021), 104001. doi: 10.1088/1402-4896/ac0bd0
    [16] A. Khalid, M. N. Naeem, Z. Ullah, A. Ghaffar, D. Baleanu, K. S. Nisar, et al. Numerical solution of the boundary value problems arising in magnetic fields and cylindrical shells, Mathematics, 7 (2019), 1–20. doi: 10.3390/math7060508. doi: 10.3390/math7060508
    [17] N. Kosmatov, A boundary value problem of fractional order at resonance, Electron. J. Differ. Eq., 2010 (2010), 1–10.
    [18] D. O'Regan, Multivalued differential equations in Banach spaces, Comp. Math. Appl., 38 (1999), 109–116. doi: 10.1016/S0898-1221(99)00218-7
    [19] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [20] S. Z. Rida, A. M. A. El-Sayed, A. A. M. Arafa, Effect of bacterial memory dependent growth by using fractional derivatives reaction-diffusion chemotactic model, J. Stat. Phys., 140 (2010), 797–811. doi: 10.1007/s10955-010-0007-8. doi: 10.1007/s10955-010-0007-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2065) PDF downloads(83) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog