Citation: Nayyar Mehmood, Niaz Ahmad. Existence results for fractional order boundary value problem with nonlocal non-separated type multi-point integral boundary conditions[J]. AIMS Mathematics, 2020, 5(1): 385-398. doi: 10.3934/math.2020026
[1] | S. Abbas, M. Benchohra, G. M. N'Guérékata, Topics in Fractional Differential Equations, Springer Science & Business Media, 2012. |
[2] | B. Ahmad, J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. value probl., 2009 (2009), 708576. |
[3] | B. Ahmad, S. Sivasundaram, Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Anal. Hybri., 4 (2010), 134-141. |
[4] | B. Ahmad, S. K. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Soliton. Fract., 1 (2016), 234-241. |
[5] | A. Alsaedi, M. Alsulami, R. P. Agarwal, et al. Some new nonlinear second-order boundary value problems on an arbitrary domain, Adv. Differ. Equ., 2018 (2018), 227. |
[6] | B. Ahmad, S. K. Ntouyas, A. Alsaedi, Fractional order differential systems involving right Caputo and left Riemann-Liouville fractional derivatives with nonlocal coupled conditions, Bound. Value Probl., 2019 (2019), 109. |
[7] | B. Ahmad, S. K. Ntouyas, A. Alsaedi, Existence theory for fractional differential equations with nonlocal integro-multipoint boundary conditions with applications, Appl. Eng. Life Soc. Sci., 1 (2019), 271. |
[8] | B. Ahmad, S. K. Ntouyas, A. Alsaedi, et al. Existence theory for fractional differential equations with non-separated type nonlocal multi-point and multi-strip boundary conditions, Adv. Differ. Equ., 2018 (2018), 89. |
[9] | R. P. Agarwal, A. Alsaedi, N, Alghamdi, et al. Existence results for multi-term fractional differential equations with nonlocal multi-point and multi-strip boundary conditions, Adv. Differ. Equ., 2018 (2018), 342. |
[10] | K. Balachandran, J. Y. Park, Nonlocal Cauchy problem for abstract fractional semilinear evolution equations, Nonlinear Anal. Theor., 71 (2009), 4471-4475. |
[11] | L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. anal. Appl., 162 (1991), 494-505. |
[12] | M. Caputo, Distributed order differential equations modelling dielectric induction and diffusion, Fract. Calc. Appl. Anal., 4 (2001), 421-442. |
[13] | R. J. DiPerna, P. L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Math., 1 (1989), 321-366. |
[14] | J. Ginibre, G. Velo, The global Cauchy problem for the non linear Klein-Gordon equation, Math. Z., 189 (1985), 487-505. |
[15] | D. H. Hyers, On the stability of the linear functional equation, P. Natl. Acad. Sci. USA, 27 (1941), 222. |
[16] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, 2006. |
[17] | V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. Theor., 69 (2008), 2677-2682. |
[18] | V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal. Theor., 69 (2008), 3337-3343. |
[19] | S. K. Ntouyas, A. Alsaedi, B. Ahmad, Existence theorems for mixed Riemann-Liouville and Caputo fractional differential equations and inclusions with nonlocal fractional integrodifferential boundary conditions, Fract. Fract., 3 (2019), 21. |
[20] | K. Oldham, J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Elsevier, 1974. |
[21] | I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Elsevier, 1998. |
[22] | T. M. Rassias, On the stability of the linear mapping in Banach spaces, P. Am. Math. Soc., 72 (1978), 297-300. |
[23] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 2010 (2010), 103-107. |
[24] | G. S. Teodoro, J. T. Machado, E. C. De Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195-208. |
[25] | S. M. Ulam, Problems in Modern mathematics, New York: John-Wiley & Sons Inc., 1964. |
[26] | Y. Zhou, J. R. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific, 2016. |