Citation: A. M. Mishra, D. Kumar, S. D. Purohit. Unified integral inequalities comprising pathway operators[J]. AIMS Mathematics, 2020, 5(1): 399-407. doi: 10.3934/math.2020027
[1] | N. Ahmadmir, R. Ullah, Some inequalities of Ostrowski and Grüss type for triple integrals on time scales, Tamkang J. Math., 42 (2011), 415-426. doi: 10.5556/j.tkjm.42.2011.685 |
[2] | D. Baleanu, S. D. Purohit, J. C. Prajapati, Integral inequalities involving generalized Erdèlyi-Kober fractional integral operators, Open Math., 14 (2016), 89-99. |
[3] | D. Baleanu, S. D. Purohit, F. Ucar, On Gruss type integral inequality involving the Saigo's fractional integral operators, J. Comput. Anal. Appl., 19 (2015), 480-489. |
[4] | P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98. |
[5] | P. Cerone, S. S. Dragomir, New upper and lower bounds for the Chebyshev functional, J. Inequal. Pure App. Math., 3 (2002), Article 77. |
[6] | J. Choi, S. D. Purohit, A Gruss type integral inequality associated with Gauss hypergeometric function fractional integral operator, Commun. Korean Math. Soc., 30 (2015), 81-92. doi: 10.4134/CKMS.2015.30.2.081 |
[7] | Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev's functional involving a Riemann-Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38-44. |
[8] | S. S. Dragomir, A generalization of Grüss's inequality in inner product spaces and applications, J. Math. Anal. Appl., 237 (1999), 74-82. doi: 10.1006/jmaa.1999.6452 |
[9] | S. S. Dragomir, A Grüss type inequality for sequences of vectors in inner product spaces and applications, J. Inequal. Pure Appl. Math., 1 (2000), 1-11. |
[10] | S. S. Dragomir, Some integral inequalities of Grüss type, Indian J. Pure Appl. Math., 31 (2000), 397-415. |
[11] | S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type, Springer Briefs in Mathematics, Springer, New York, 2012. |
[12] | S. S. Dragomir, S. Wang, An inequality of Ostrowski-Grüss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 13 (1997), 15-20. |
[13] | H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl., 47 (2004), 281-300. doi: 10.1016/S0898-1221(04)90025-9 |
[14] | D. Grüss, Uber das maximum des absoluten Betrages von$\frac{1}{\left(b-a\right)} \int _{a}^{b}f\left(x\right)g\left(x\right)dx \, -\frac{1}{\left(b-a\right)^{2}} \int _{a}^{b}f\left(x\right) dx$ $\int _{a}^{b}g\left(x\right)dx$, Math. Z., 39 (1935), 215-226. |
[15] | S. L. Kalla, A. Rao, On Grüss type inequality for hypergeometric fractional integrals, Le Matematiche, 66 (2011), 57-64. |
[16] | V. Kiryakova, Generalized Fractional Calculus and Applications, (Pitman Res. Notes Math. Ser. 301), Longman Scientific & Technical, Harlow, 1994. |
[17] | D. Kumar, J. Singh, S. D. Purohit, et al. A hybrid analytic algorithm for nonlinear wave-like equations, Math. Model. Nat. Phenom., 14 (2019), 304. |
[18] | D. Kumar, J. Singh, K. Tanwar, et al. A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler Laws, Int. J. Heat Mass Transf., 138 (2019), 1222-1227. doi: 10.1016/j.ijheatmasstransfer.2019.04.094 |
[19] | Z. Liu, Some Ostrowski-Grüss type inequalities and applications, Comput. Math. Appl., 53 (2007), 73-79. doi: 10.1016/j.camwa.2006.12.021 |
[20] | A. M. Mathai, A pathway to matrix-variate gamma and normal densities, Linear Algebra Appl., 396 (2005), 317-328. doi: 10.1016/j.laa.2004.09.022 |
[21] | A. M. Mathai, H. J. Haubold, Pathway model, superstatistics, Tsallis statistics and a generalize measure of entropy, Phys. A, 375 (2007), 110-122. doi: 10.1016/j.physa.2006.09.002 |
[22] | A. M. Mathai, H. J. Haubold, On generalized distributions and path-ways, Phys. Lett. A, 72 (2008), 2109-2113. |
[23] | M. Maticć, Improvment of some inequalities of Euler-Grüss type, Comput. Math. Appl., 46 (2003), 1325-1336. doi: 10.1016/S0898-1221(03)90222-7 |
[24] | McD A. Mercer, An improvement of the Grüss inequality, J. Inequa. Pure Appl. Math., 6 (2005), 1-4. |
[25] | D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, 1993. |
[26] | S. S. Nair, Pathway fractional integration operator, Fract. Calc. Appl. Anal., 12 (2009), 237-252. |
[27] | K. S. Nisar, S. D. Purohit, M. S. Abouzaid, et al. Generalized k-Mittag-Leffler function and its composition with pathway integral operators, J. Nonlinear Sci. Appl., 9 (2016), 3519-3526. doi: 10.22436/jnsa.009.06.07 |
[28] | K. S. Nisar, S. D. Purohit, S. R. Mondal, Generalized k-Mittag-Leffler function and its composition with pathway integral operators, J. King Saud Univ. Sci., 28 (2016), 167-171. doi: 10.1016/j.jksus.2015.08.005 |
[29] | B. G. Pachpatte, A note on Chebyshev-Grüss inequalities for differential equations, Tamsui Oxf. J. Math. Sci., 22 (2006), 29-36. |
[30] | S. D. Purohit, R. K. Raina, Chebyshev type inequalities for the Saigo fractional integrals and their q-analogues, J. Math. Inequal., 7 (2013), 239-249. |
[31] | S. D. Purohit, R. K. Raina, Certain fractional integral inequalities involving the Gauss hypergeometric function, Rev. Téc. Ing. Univ. Zulia, 37 (2014), 167-175. |
[32] | S. D. Purohit, F. Uçar, R. K. Yadav, On fractional integral inequalities and their q-analogues, Revista Tecnocientifica URU, 6 (2014), 53-66. |
[33] | R. K. Saxena, S. D. Purohit, D. Kumar, Integral inequalities associated with Gauss hypergeometric function fractional integral operators, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 88 (2018), 27-31. doi: 10.1007/s40010-016-0316-7 |
[34] | J. Singh, D. Kumar, D. Baleanu, New aspects of fractional Biswas-Milovic model with MittagLeffler law, Math. Model. Nat. Phenom., 14 (2019), 303. |
[35] | J. Singh, D. Kumar, D. Baleanu, et al. On the local fractional wave equation in fractal strings, Math. Method. Appl. Sci., 42 (2019), 1588-1595. doi: 10.1002/mma.5458 |
[36] | J. Tariboon, S. K. Ntouyas, W. Sudsutad, Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Math. Sci., 6 (2014), Article ID 869434. |
[37] | G. Wang, H. Harsh, S. D. Purohit, et al. A note on Saigo's fractional integral inequalities, Turkish J. Anal. Number Theory, 2 (2014), 65-69. doi: 10.12691/tjant-2-3-2 |
[38] | G. Wang, K. Pei, Y. Chen, Stability analysis of nonlinear Hadamard fractional differential system, J. Franklin Inst., 356 (2019), 6538-6546. doi: 10.1016/j.jfranklin.2018.12.033 |
[39] | G. Wang, X. Ren, Z. Bai, et al. Radial symmetry of standing waves for nonlinear fractional HardySchrödinger equation, Appl. Math. Lett., 96 (2019), 131-137. doi: 10.1016/j.aml.2019.04.024 |