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1. Introduction

Real world problems deal with mathematical modeling in different discipline of sciences and such
mathematical model generally consists of partial differential equations, either in integer form or in
fractional form (arbitrary), for instance see [17, 18, 28, 34, 35, 38, 39] and references therein. We often
interested to find the bounds of solutions for such partial differential equations which can be achieved
by fractional integral inequalities in an efficient manner. Because of this, fractional integral inequalities
are always been a focusing area for researchers (see [1,4,5,11,12,25,29]). Many authors have studied
a number of generalization of well known integral inequalities for suitable choices of functions [8, 10,
13, 19–24]. Tariboon et al. [36], Wang et al. [37] and Saxena et al. [33] studied different types of
inequalities for the integrable functions. We try to find a general extensions of the results available
in [36] and [37]. We have established new integral inequalities inherent in the integrable functions,
concerning pathway fractional integral operators, given by Nair [26]. We have also discussed some
ensuing results and special cases of the main results [20–22].

Pathway fractional integral operator is a generalized Riemann Liouville fractional integral operator
in higher dimensions. Indeed, pathway fractional integral operator has been used to define certain
probability density functions and having interesting applications in statistics also, see [20, 21].
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Let λ be an arbitrary real number preferably less than 1. A class of conformal functions

C(k)
λ = { f (t) = tp f̃ (t); p > λ, f̃ ∈ C(k)([a, b])}

be Banach space for our consideration for different non negative values of k. The space we have chosen
for k = 0 [16] induced by the norm

|| f ||r =

[∫ b

a
| f (x)|rdx

] 1
r

< ∞.

Suppose φ(t) ∈ C(k)
λ for k = 0 and ν ∈ C which has positive real part and a is positive. Pathway

fractional integral operator is defined as [20]

P(ν,λ)
0+ (φ(t)) =

∫ t
a(1−λ)

0
tν

[
1 −

a(1 − λ)u
t

]ν/(1−λ)

φ(u)du. (1.1)

We call λ the pathway parameter and ν, order of the integral operator. While λ converges to 1 from left
side, the operator gets the form

P(ν,1)
0+ (φ(t)) = tνLφ

{aν
t

}
, (1.2)

where Lφ {s} is a Laplace transform of the function φ(.) with parameter s. Meaning thereby, the
fractional integral operator of pathway type reduces to the Laplace transform with factor (aν/t) for a
particular value of λ.

Pathway integral operator reduces to left sided Riemann-Liouville fractional integral operator
Iν0+

(φ(t)) for particular value of λ = 0 and a = 1∫ t

0
(t − u)ν−1φ(u)du = Γ(ν)Iν0+(φ(t)), (1.3)

by replacing ν to ν− 1. The reader may refer the papers of Mathai and Haubold [21,22], Nair [26] and
Nisar et al. [27] for more details of pathway operators. Pathway fractional integral operator yields the
following expression on an application of polynomial functions:

P(ν,λ)
0+

(zn) =
Γ(n + 1)

[a(1 − λ)]n+1

Γ
(
1 + ν

1−λ

)
Γ
(
2 + n + ν

1−λ

)zν+n+1, (1.4)

generally known as image formula. Pathway fractional integral operator acts as vector space over the
field of real numbers so value of pathway operator can be evaluated by

P(ν,λ)
0+

(1) =
1

a(1 − λ)

Γ
(
1 + ν

1−λ

)
Γ
(
2 + ν

1−λ

)zν+1. (1.5)

Recently, several extensions of the classical inequalities have been studied by many authors, see [2, 3,
6, 7, 30, 31] and references therein. Our article has organized as follows: First we state and prove the
main inequality of the article and take a specific case when pathway parameters coincide. Moreover,
we discuss certain generalized versions of this theorem, associated with the two bounded integrable
functions. Special cases of these results have also been discussed in a separate section with some
concluding remarks.
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2. Main result

The results are stated as the following theorems:

Theorem 2.1. Let F be an integrable bounded function such that

γ1(z) ≤ F(z) ≤ γ2(z)

for all z ∈ [a, b]. Then,

P(ν′,λ′)
0+

(γ1(z))P(ν,λ)
0+

(F(z)) + P(ν,λ)
0+

(γ2(z))P(ν′,λ′)
0+

(F(z)) ≥ P(ν,λ)
0+

(γ2(z))P(ν′,λ′)
0+

(γ1(z))

+P(ν,λ)
0+

(F(z))P(ν′,λ′)
0+

((F(z))
(2.1)

where γ1(z), γ2(z) and F(z) are integrable functions over the interval [a, b].

Proof. Taking into account of the inequality γ1(z) ≤ F(z) ≤ γ2(z), for any u, v > 0, we have

(γ2(u) − F(u))(F(v) − γ1(v)) ≥ 0, (2.2)

and it follows that

γ2(u)F(v) + γ1(v)F(u) ≥ γ1(v)γ2(u) + F(u)F(v). (2.3)

Let us consider

F(z, u) = zν
[
1 −

a(1 − λ)u
z

]ν/(1−λ)

, (2.4)

u ∈ [0, z], z > 0.

Multiply (2.3) by F(z, u)p(u) (where p(u) is a weight function) and integrate u over 0 to z/a(1 − λ),
we get ∫ z/a(1−λ)

0
F(z, u)p(u)γ2(u)F(v)du +

∫ z/a(1−λ)

0
F(z, u)p(u)γ1(v)F(u)du

≥

∫ z/a(1−λ)

0
F(z, u)p(u)γ1(v)γ2(u)du +

∫ z/a(1−λ)

0
F(z, u)p(u)F(u)F(v)du

(2.5)

i.e.,

F(v)
∫ z/a(1−λ)

0
F(z, u)p(u)γ2(u)du + γ1(v)

∫ z/a(1−λ)

0
F(z, u)p(u)F(u)du

≥ γ1(v)
∫ z/a(1−λ)

0
F(z, u)p(u)γ2(u)du + F(v)

∫ z/a(1−λ)

0
F(z, u)p(u)F(u)du.

(2.6)

This implies,

F(v)P(ν,λ)
0+

(γ2(z)) + γ1(v)P(ν,λ)
0+

(F(z)) ≥ γ1(v)P(ν,λ)
0+

(γ2(z)) + F(v)P(ν,λ)
0+

(F(z)). (2.7)
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In the same way, we consider the function

H(z, v) = zν
′

[
1 −

a(1 − λ′)v
z

]ν′/(1−λ′)
. (2.8)

Now, Multiply (2.7) by H(z, v)p(v) and integrate with respect to v from 0 to ν′/a(1 − λ′), we get:∫ z/a(1−λ′)

0
H(z, v)p(v)F(v)dv

(
P(ν,λ)

0+
(γ2(z)

)
+

∫ z/a(1−λ′)

0
H(z, v)p(v)γ1(v)dv

(
P(ν,λ)

0+
(F(z))

)
≥

∫ z/a(1−λ′)

0
H(z, v)p(v)γ1(v)dv

(
P(ν,λ)

0+
(γ2(z))

)
+

∫ z/a(1−λ′)

0
H(z, v)p(v)F(v)dv

(
P(ν,λ)

0+
(F(z))

) (2.9)

or,

P(ν′,λ′)
0+

(γ1(z))P(ν,λ)
0+

(F(z)) + P(ν,λ)
0+

(γ2(z))P(ν′,λ′)
0+

(F(z)) ≥ P(ν,λ)
0+

(γ2(z))P(ν′,λ′)
0+

(γ1(z))

+P(ν,λ)
0+

(F(z))P(ν′,λ′)
0+

((F(z)).
(2.10)

This proves the theorem. �

The following corollary is an immediate result of the above theorem, when both pathway parameter
and order of pathway operator coincides.

Corollary 1. Under the hypothesis of Theorem 1, the following inequality holds:

P(ν,λ)
0+

(γ1(z))P(ν,λ)
0+

(F(z)) + P(ν,λ)
0+

(γ2(z))P(ν,λ)
0+

(F(z)) ≥ P(ν,λ)
0+

(γ2(z))P(ν,λ)
0+

(γ1(z)) +
(
P(ν,λ)

0+
(F(z))

)2
. (2.11)

Now, we can also extend this result for two bounded functions.

Theorem 2.2. Suppose F and G are two integrable functions over the interval [a, b] and γ1, γ2, δ1 and
δ2 are four integrable functions on [a, b], such that

γ1(z) ≤ F(z) ≤ γ2(z), δ1(z) ≤ G(z) ≤ δ2(z), f or all z ∈ [a, b]. (2.12)

Then the following inequalities holds true:

P(ν,λ)
0+

δ1(z)P(ν′,λ′)
0+

F(z) + P(ν′,λ′)
0+

γ2(z)P(ν,λ)
0+

G(z) ≥ P(ν′,λ′)
0+

γ2(z)P(ν,λ)
0+

δ1(z) + P(ν′,λ′)
0+

F(z)P(ν,λ)
0+

G(z) (2.13)

P(ν,λ)
0+

γ1(z)P(ν′,λ′)
0+

G(z) + P(ν′,λ′)
0+

δ2(z)P(ν,λ)
0+

F(z) ≥ P(ν′,λ′)
0+

δ2(z)P(ν,λ)
0+

γ1(z) + P(ν′,λ′)
0+

G(z)P(ν,λ)
0+

F(z) (2.14)

P(ν,λ)
0+

γ2(z)P(ν′,λ′)
0+

δ2(z) + P(ν′,λ′)
0+

F(z)P(ν,λ)
0+

G(z) ≥ P(ν′,λ′)
0+

γ2(z)P(ν,λ)
0+

G(z) + P(ν′,λ′)
0+

F(z)P(ν,λ)
0+

δ2(z) (2.15)

P(ν,λ)
0+

γ1(z)P(ν′,λ′)
0+

δ1(z) + P(ν′,λ′)
0+

F(z)P(ν,λ)
0+

G(z) ≥ P(ν′,λ′)
0+

γ1(z)P(ν,λ)
0+

G(z) + P(ν′,λ′)
0+

F(z)P(ν,λ)
0+

δ1(z) (2.16)

Proof. Assuming F and G are two integrable functions which are satisfying inequality (2.12), then in
order to prove (2.13), we can write

(γ2(u) − F(u))(G(v) − δ1(v)) ≥ 0, (2.17)

or we can deduce
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γ2(u)G(v) + δ1(v)F(u) ≥ δ1(v)γ2(u) + F(u)G(v). (2.18)

Multiplying both sides of (2.18) by F(z, u) and integrating with respect to u from 0 to z, we get

G(v)P(ν′,λ′)
0+

γ2(z) + δ1(v)P(ν′,λ′)
0+

F(z) ≥ δ1(v)P(ν′,λ′)
0+

γ2(z) + G(v)P(ν′,λ′)
0+

F(z). (2.19)

Again we multiply both sides of (2.19) by H(z, v), given in (2.8), and integrate with respect to v
from 0 to z, we can easily find the result (2.13).
The proofs of remaining inequalities (2.14), (2.15) and (2.16) follows on similar manners, as we did
in the case of (2.13), we can prove other inequalities by taking into account the following identities,
respectively:

(δ2(u) −G(u))(F(v) − γ1(v)) ≥ 0,

(γ2(u) − F(u))(G(v) − δ2(v)) ≥ 0

and
(γ1(u) − F(u))(G(v) − δ1(v)) ≥ 0.

We omit details of the proof. �

3. Special cases and concluding remarks

On the account of general nature of the pathway fractional integral operator, a number of new and
known results involving Riemann-Liouville and Laplace transforms follow as special cases of theorems
given above. To this end, let us set λ = 0, and use the relation (1.3), we recognize that Theorem 1 yields
known integral inequality involving Riemann Liouville integral operators, due to [36]

Corollary 2. Suppose F is an integrable bounded function such that

γ1(z) ≤ F(z) ≤ γ2(z)

for all z ∈ [a, b]. Then,

I(ν′)
0+

(γ1(z))I(ν)
0+

(F(z)) + I(ν)
0+

(γ2(z))I(ν′)
0+

(F(z)) ≥ I(ν)
0+

(γ2(z))I(ν′)
0+

(γ1(z)) + I(ν)
0+

(F(z))I(ν′)
0+

((F(z)) (3.1)

where γ1(z), γ2(z) and F(z) are integrable functions over the interval [a, b].

Similarly, if λ tends to 1 from left side then we get the following inequality:

Corollary 3. Suppose F is an integrable bounded function such that

γ1(z) ≤ F(z) ≤ γ2(z)

for all z ∈ [a, b]. Then,

Lγ1{u}LF{v} + Lγ2{v}LF{u} > Lγ1{u}Lγ2{v} + LF{v}LF{u} (3.2)

where u = aν′
z and v = aν

z .
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Further, if we set γ1(t) = m, γ2(t) = M, δ1(t) = p and δ2(t) = P, where m,M, p, P ∈ R,∀ t ∈ [0,∞)
and use of equation (1.6), then Theorems 1 & 2 lead to the following inequalities:

Corollary 4. Suppose F is an integrable function defined on [a, b], such that

A ≤ F(z) ≤ B, A, B ∈ R f or all z ∈ [a, b],

Thereupon, for z > 0, we have

A
a(1 − λ′)

Γ
(
1 + ν′

1−λ′

)
Γ
(
2 + ν′

1−λ′

)zν
′+1P(ν,λ)

0+
(F(z)) +

A
a(1 − λ)

Γ
(
1 + ν

1−λ

)
Γ
(
2 + ν

1−λ

)zν+1P(ν′,λ′)
0+

(F(z))

≥
AB

a2(1 − λ)(1 − λ′)

Γ
(
1 + ν

1−λ

)
Γ
(
2 + ν

1−λ

) Γ
(
1 + ν′

1−λ′

)
Γ
(
2 + ν′

1−λ′

)zν
′+ν+2 + P(ν,λ)

0+
(F(z))P(ν′,λ′)

0+
(F(z)).

(3.3)

Corollary 5. Suppose F and G are two integrable functions over [a, b], such that

A ≤ F(z) ≤ B, C ≤ G(z) ≤ D, A, B,C,D ∈ R f or all z ∈ [a, b]

Then, for z > 0, these results follow:

C
a(1 − λ)

Γ
(
1 + ν

1−λ

)
Γ
(
2 + ν

1−λ

)zν+1P(ν′,λ′)
0+

F(z) +
B

a(1 − λ′)

Γ
(
1 + ν′

1−λ′

)
Γ
(
2 + ν′

1−λ′

)zν
′+1P(ν,λ)

0+
G(z)

≥
CB

a2(1 − λ)(1 − λ′)

Γ
(
1 + ν

1−λ

)
Γ
(
2 + ν

1−λ

) Γ
(
1 + ν′

1−λ′

)
Γ
(
2 + ν′

1−λ′

)zν
′+ν+2 + P(ν′,λ′)

0+
F(z)P(ν,λ)

0+
G(z),

(3.4)

A
a(1 − λ)

Γ
(
1 + ν

1−λ

)
Γ
(
2 + ν

1−λ

)zν+1P(ν′,λ′)
0+

G(z) +
D

a(1 − λ′)

Γ
(
1 + ν′

1−λ′

)
Γ
(
2 + ν′

1−λ′

)zν
′+1P(ν,λ)

0+
F(z)

≥
AD

a2(1 − λ)(1 − λ′)

Γ
(
1 + ν

1−λ

)
Γ
(
2 + ν

1−λ

) Γ
(
1 + ν′

1−λ′

)
Γ
(
2 + ν′

1−λ′

)zν
′+ν+2 + P(ν′,λ′)

0+
G(z)P(ν,λ)

0+
F(z),

(3.5)

BD
a2(1 − λ)(1 − λ′)

Γ
(
1 + ν

1−λ

)
Γ
(
2 + ν

1−λ

) Γ
(
1 + ν′

1−λ′

)
Γ
(
2 + ν′

1−λ′

)zν
′+ν+2 + P(ν′,λ′)

0+
F(z)P(ν,λ)

0+
G(z)

≥
B

a(1 − λ′)

Γ
(
1 + ν′

1−λ′

)
Γ
(
2 + ν′

1−λ′

)zν
′+1P(ν,λ)

0+
G(z) + P(ν′,λ′)

0+
F(z)

D
a(1 − λ)

Γ
(
1 + ν

1−λ

)
Γ
(
2 + ν

1−λ

)zν+1,

(3.6)

and
AC

a2(1 − λ)(1 − λ′)

Γ
(
1 + ν

1−λ

)
Γ
(
2 + ν

1−λ

) Γ
(
1 + ν′

1−λ′

)
Γ
(
2 + ν′

1−λ′

)zν
′+ν+2 + P(ν′,λ′)

0+
F(z)P(ν,λ)

0+
G(z)

≥
A

a(1 − λ′)

Γ
(
1 + ν′

1−λ′

)
Γ
(
2 + ν′

1−λ′

)zν
′+1P(ν,λ)

0+
G(z) +

C
a(1 − λ)

Γ
(
1 + ν

1−λ

)
Γ
(
2 + ν

1−λ

)zν+1P(ν′,λ′)
0+

F(z).

(3.7)
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By setting specific functions in place of γ1(z) and γ2(z) we can get a number of inequalities. For
example, we may take γ1(z) = z and γ2(z) = z+1. Same will work with corollaries, i.e., we can suitably
choose δ1(z) and δ2(z). Pathway fractional integral operator converges to Riemann-Liouville fractional
integral operator and Laplace transform under suitable values of parameters. Thus we can deduce
standard inequalities involving Riemann-Liouville fractional integral operator and Laplace transform
from the theorems stated in this paper.
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