Research article Special Issues

Blow-up dynamic of solution to the semilinear Moore-Gibson-Thompson equation with memory terms

  • Received: 27 August 2022 Revised: 11 November 2022 Accepted: 21 November 2022 Published: 06 December 2022
  • MSC : 35L70, 58J45

  • This article is mainly concerned with the formation of singularity for a solution to the Cauchy problem of the semilinear Moore-Gibson-Thompson equation with general initial values and different types of nonlinear memory terms $ N_{\gamma, \, q}(u) $, $ N_{\gamma, \, p}(u_{t}) $, $ N_{\gamma, \, p, \, q}(u, \, u_{t}) $. The proof of the blow-up phenomenon for the solution in the whole space is based on the test function method ($ \psi(x, t) = \varphi_{R}(x)D_{t|T}^{\alpha}(w(t)) $). It is worth pointing out that the Moore-Gibson-Thompson equation with memory terms can be regarded as an approximation of the nonlinear Moore-Gibson-Thompson equation when $ \gamma\rightarrow 1^{-} $. To the best of our knowledge, the results in Theorems 1.1–1.3 are new.

    Citation: Sen Ming, Xiongmei Fan, Cui Ren, Yeqin Su. Blow-up dynamic of solution to the semilinear Moore-Gibson-Thompson equation with memory terms[J]. AIMS Mathematics, 2023, 8(2): 4630-4644. doi: 10.3934/math.2023228

    Related Papers:

  • This article is mainly concerned with the formation of singularity for a solution to the Cauchy problem of the semilinear Moore-Gibson-Thompson equation with general initial values and different types of nonlinear memory terms $ N_{\gamma, \, q}(u) $, $ N_{\gamma, \, p}(u_{t}) $, $ N_{\gamma, \, p, \, q}(u, \, u_{t}) $. The proof of the blow-up phenomenon for the solution in the whole space is based on the test function method ($ \psi(x, t) = \varphi_{R}(x)D_{t|T}^{\alpha}(w(t)) $). It is worth pointing out that the Moore-Gibson-Thompson equation with memory terms can be regarded as an approximation of the nonlinear Moore-Gibson-Thompson equation when $ \gamma\rightarrow 1^{-} $. To the best of our knowledge, the results in Theorems 1.1–1.3 are new.



    加载中


    [1] W. H. Chen, R. Ikehata, The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case, J. Differ. Equations, 292 (2021), 176–219. https://doi.org/10.1016/j.jde.2021.05.011 doi: 10.1016/j.jde.2021.05.011
    [2] W. H. Chen, A. Palmieri, Non-existence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case, Discrete Cont. Dyn. Syst., 40 (2020), 5513–5540. https://doi.org/10.3934/dcds.2020236 doi: 10.3934/dcds.2020236
    [3] W. H. Chen, A. Palmieri, A blow-up result for the semilinear Moore-Gibson-Thompson equation with nonlinearity of derivative type in the conservative case, Evol. Equ. Control The., 10 (2021), 673–687. https://doi.org/10.3934/eect.2020085 doi: 10.3934/eect.2020085
    [4] J. C. Shi, Y. Zhang, Z. H. Cai, Y. Liu, Semilinear viscous Moore-Gibson-Thompson equation with the derivative type nonlinearity: Global existence versus blow-up, AIMS Mathematics, 7 (2022), 247–257. https://doi.org/10.3934/math.2022015 doi: 10.3934/math.2022015
    [5] S. Ming, H. Yang, X. M. Fan, J. Y. Yao, Blow-up and lifespan estimates of solutions to semilinear Moore-Gibson-Thompson equations, Nonlinear Anal. Real World Appl., 62 (2021), 103360. https://doi.org/10.1016/j.nonrwa.2021.103360 doi: 10.1016/j.nonrwa.2021.103360
    [6] S. Ming, H. Yang, X. M. Fan, Blow-up and lifespan estimates of solutions to the weakly coupled system of semilinear Moore-Gibson-Thompson equations, Math. Methods Appl. Sci., 44 (2021), 10972–10992. https://doi.org/10.1002/mma.7462 doi: 10.1002/mma.7462
    [7] F. Bucci, M. Eller, The Cauchy Dirichlet problem for the Moore-Gibson-Thompson equation, CR Math., 359 (2021), 881–903. https://doi.org/10.5802/crmath.231 doi: 10.5802/crmath.231
    [8] W. Dai, D. Y. Fang, C. B. Wang, Global existence and lifespan for semilinear wave equations with mixed nonlinear terms, J. Differ. Equations, 267 (2019), 3328–3354. https://doi.org/10.1016/j.jde.2019.04.007 doi: 10.1016/j.jde.2019.04.007
    [9] J. H. Hao, F. Q. Du, Decay and blow-up for a viscoelastic wave equation of variable coefficients with logarithmic nonlinearity, J. Math. Anal. Appl., 506 (2022), 125608. https://doi.org/10.1016/j.jmaa.2021.125608 doi: 10.1016/j.jmaa.2021.125608
    [10] M. Jleli, B. Samet, C. Vetro, A general non-existence result for inhomogeneous semilinear wave equations with double damping and potential terms, Chaos Soliton Fract., 144 (2021), 110673. https://doi.org/10.1016/j.chaos.2021.110673 doi: 10.1016/j.chaos.2021.110673
    [11] N. A. Lai, M. Y. Liu, Z. H. Tu, C. B. Wang, Lifespan estimates for semilinear wave equations with space dependent damping and potential, 2021. https://doi.org/10.48550/arXiv.2102.10257
    [12] N. A. Lai, N. M. Schiavone, H. Takamura, Heat like and wave like lifespan estimates for solutions of semilinear damped wave equations via a Katos type lemma, J. Differ. Equations, 269 (2020), 11575–11620. https://doi.org/10.1016/j.jde.2020.08.020 doi: 10.1016/j.jde.2020.08.020
    [13] N. A. Lai, Z. H. Tu, Strauss exponent for semilinear wave equations with scattering space dependent damping, J. Math. Anal. Appl., 489 (2020), 124189. https://doi.org/10.1016/j.jmaa.2020.124189 doi: 10.1016/j.jmaa.2020.124189
    [14] M. Y. Liu, C. B. Wang, Blow up for small amplitude semilinear wave equations with mixed nonlinearities on asymptotically Euclidean manifolds, J. Differ. Equations, 269 (2020), 8573–8596. https://doi.org/10.1016/j.jde.2020.06.032 doi: 10.1016/j.jde.2020.06.032
    [15] S. Ming, S. Y. Lai, X. M. Fan, Lifespan estimates of solutions to quasilinear wave equations with scattering damping, J. Math. Anal. Appl., 492 (2020), 124441. https://doi.org/10.1016/j.jmaa.2020.124441 doi: 10.1016/j.jmaa.2020.124441
    [16] A. Palmieri, Blow-up results for semilinear damped wave equations in Einstein-de Sitter spacetime, Z. Angew. Math. Phys., 72 (2021). https://doi.org/10.1007/s00033-021-01494-x doi: 10.1007/s00033-021-01494-x
    [17] A. Palmieri, H. Takamura, Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities, Nonlinear Anal., 187 (2019), 467–492. https://doi.org/10.1016/j.na.2019.06.016 doi: 10.1016/j.na.2019.06.016
    [18] W. H. Chen, A. Palmieri, Blow-up result for a semilinear wave equation with nonlinear memory term, In: Anomalies in partial differential equations, Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-61346-4_4
    [19] B. P. Ouyang, S. Z. Xiao, Blow-up result for a semilinear wave equation with a nonlinear memory term of derivative term, Chin. Quar. J. Math., 36 (2021), 235–243.
    [20] S. Kitamura, K. Morisawa, H. Takamura, The lifespan of classical solutions of semilinear wave equations with spatial weights and compactly supported data in one space dimension, J. Differ. Equations, 307 (2022), 486–516. https://doi.org/10.1016/j.jde.2021.10.062 doi: 10.1016/j.jde.2021.10.062
    [21] N. A. Lai, M. Y. Liu, K. Wakasa, C. B. Wang, Lifespan estimates for 2-dimensional semilinear wave equations in asymptotically Euclidean exterior domains, J. Funct. Anal., 281 (2021), 109253. https://doi.org/10.1016/j.jfa.2021.109253 doi: 10.1016/j.jfa.2021.109253
    [22] D. B. Zha, Global stability of solutions to two dimension and one dimension systems of semilinear wave equations, J. Funct. Anal., 282 (2022), 109219. https://doi.org/10.1016/j.jfa.2021.109219 doi: 10.1016/j.jfa.2021.109219
    [23] Y. Zhou, Cauchy problem for semilinear wave equations in four space dimensions with small initial data, J. Part. Diff. Eq., 8 (1995), 135–144.
    [24] Y. Zhou, Blow up of solutions to semilinear wave equations with critical exponent in high dimensions, Chin. Ann. Math. Ser. B, 28 (2007), 205–212. https://doi.org/10.1007/s11401-005-0205-x doi: 10.1007/s11401-005-0205-x
    [25] Y. Zhou, W. Han, Lifespan of solutions to critical semilinear wave equations, Commun. Part. Diff. Eq., 39 (2014), 439–451. https://doi.org/10.1080/03605302.2013.863914 doi: 10.1080/03605302.2013.863914
    [26] K. Hidano, C. B. Wang, K. Yokoyama, The Glassey conjecture with radially symmetric data, J. Math. Pures Appl., 98 (2012), 518–541. https://doi.org/10.1016/j.matpur.2012.01.007 doi: 10.1016/j.matpur.2012.01.007
    [27] Y. Zhou, Blow up of solutions to the Cauchy problem for nonlinear wave equations, Chin. Ann. Math. Ser. B, 22 (2001), 275–280. https://doi.org/10.1142/s0252959901000280 doi: 10.1142/s0252959901000280
    [28] M. Ikeda, M. Sobajima, K. Wakasa, Blow-up phenomena of semilinear wave equations and their weakly couples system, J. Differ. Equations, 267 (2019), 5165–5201. https://doi.org/10.1016/j.jde.2019.05.029 doi: 10.1016/j.jde.2019.05.029
    [29] W. H. Chen, A. Z. Fino, A competition on blow-up of solutions to semilinear wave equations with scale invariant damping and nonlinear memory term, Discrete Cont. Dyn. S, 2022. https://doi.org/10.3934/dcdss.2022169 doi: 10.3934/dcdss.2022169
    [30] M. D'Abbicco, A wave equation with structural damping and nonlinear memory, Nonlinear Differ. Equ. Appl., 21 (2014), 751–773. https://doi.org/10.1007/s00030-014-0265-2 doi: 10.1007/s00030-014-0265-2
    [31] I. Dannawi, M. Kirane, A. Z. Fino, Finite time blow-up for damped wave equations with space time dependent potential and nonlinear memory, Nonlinear Differ. Equ. Appl., 25 (2018), 38. https://doi.org/10.1007/s00030-018-0533-7 doi: 10.1007/s00030-018-0533-7
    [32] T. A. Dao, A. Z. Fino, Blow up results for semilinear structural damped wave model with nonlinear memory, Math. Nachr., 295 (2022), 309–322. https://doi.org/10.1002/mana.202000159 doi: 10.1002/mana.202000159
    [33] A. Z. Fino, Critical exponent for damped wave equations with nonlinear memory, Nonlinear Anal., 74 (2011), 5495–5505. https://doi.org/10.1016/j.na.2011.01.039 doi: 10.1016/j.na.2011.01.039
    [34] N. A. Lai, J. L. Liu, J. L. Zhao, Blow up for initial boundary value problem of wave equation with a nonlinear memory in 1-D, Chin. Ann. Math. Ser. B, 38 (2017), 827–838. https://doi.org/10.1007/s11401-017-1098-1 doi: 10.1007/s11401-017-1098-1
    [35] H. Yang, J. L. Shi, S. H. Zhu, Global existence of solutions for damped wave equations with nonlinear memory, Appl. Anal., 92 (2013), 1691–1703. https://doi.org/10.1080/00036811.2012.698268 doi: 10.1080/00036811.2012.698268
    [36] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Switzerland: Gordon and Breach Science Publishers, 1993.
    [37] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam, Boston: Elsevier, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0
    [38] T. A. Dao, A result for non-existence of global solutions to semilinear structural damped wave model, 2019. https://doi.org/10.48550/arXiv.1912.07066
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1222) PDF downloads(52) Cited by(1)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog