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γ → 1−. To the best of our knowledge, the results in Theorems 1.1–1.3 are new.

Keywords: Moore-Gibson-Thompson equation; general initial values; nonlinear memory terms;
blow-up; test function method
Mathematics Subject Classification: 35L70, 58J45

1. Introduction

In this article, we are interested in exploring the Cauchy problem of the Moore-Gibson-Thompson
equation (MGT) with memory termsβuttt + utt − ∆u − β∆ut = N(u, ut), x ∈ Rn, t > 0,

(u, ut, utt)(x, 0) = (u0, u1, u2)(x), x ∈ Rn,
(1.1)

where the nonlinear term N(u, ut) is illustrated in the forms of

N(u, ut) = Nγ, q(u) = cγ

∫ t

0
(t − s)−γ|u(x, s)|qds,
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N(u, ut) = Nγ, p(ut) = cγ

∫ t

0
(t − s)−γ|ut(x, s)|pds,

and

N(u, ut) = Nγ, p, q(u, ut)

= cγ

∫ t

0
(t − s)−γ|ut(x, s)|pds + cγ

∫ t

0
(t − s)−γ|u(x, s)|qds,

with cγ = 1
Γ(1−γ) , γ ∈ (0, 1). Γ(·) represents the second kind of the Euler integral, namely, Γ(s) =∫ ∞

0
ts−1e−tdt for s > 0. The exponents of nonlinear terms satisfy 1 < p, q < ∞. We assume BR(0) =

{x
∣∣∣ |x| ≤ R}, where the constant R satisfies R > 2. The initial values (u0, u1, u2) ∈ H2(Rn) × H1(Rn) ×

L2(Rn) are non-negative functions.
Recently, the research on the MGT equation which is a third order hyperbolic equation

τuttt + utt − c2∆u − b∆ut = 0 (1.2)

has caught a lot of attention. The MGT equation is one of the equations of nonlinear acoustics, and it
describes acoustic wave propagation in gas and liquid. In the physical background of acoustic waves,
a solution u(x, t) to Eq (1.2) stands for scalar acoustic velocity. The coefficient τ represents thermal
relaxation. The constant c denotes the speed of sound. The parameter b = βc2 concerns the diffusivity
of sound when τ ∈ (0, β]. The behavior of the solution to Eq (1.2) is divided into the dissipative case
when τ ∈ (0, β), and the conservative case when τ = β. More precisely, there exists a transition from
the case τ ∈ (0, β) with an energy being exponentially stable to the limit case τ = β with energy being
conserved in the bounded domain. Employing the test function method, Chen and Ikehata [1]
investigated the blow-up result of the solution to the Cauchy problem of the semilinear MGT equation
in the dissipative case. Non-existence of the global solution to the semilinear MGT equation with the
power nonlinear term |u|p in the conservative case is verified in [2]. Local (in time) existence of the
solution is obtained by taking advantage of the fixed-point theorem method. Blow-up of the solution
is derived by applying an iteration argument. Chen and Palmieri [3] discussed the blow-up
phenomenon of the solution to the semilinear MGT equation with the derivative nonlinear term |ut|

p in
the conservative case in n space dimensions. The lifespan estimate of the solution in the sub-critical
and critical cases is established by exploiting the iteration method. Shi et al. [4] verified the global
existence and blow-up of solutions to the viscous MGT equation. Ming et al. [5] presented the
upper-bound lifespan estimate of the solution to the semilinear MGT equation with the nonlinear
terms |u|p, |ut|

p and |ut|
p + |u|q, respectively. The proof is based on the test function technique

(ϕ(x, t) = η2p′

T (t)Φ(x, t), η2p′

M (t)bq(x, t)). Taking advantage of the test function method, Ming et al. [6]
established the formation of singularities of solutions to the weakly coupled system of semilinear
Moore-Gibson-Thompson equations with power nonlinearities |v|p, |u|q, derivative nonlinearities
|vt|

p, |ut|
q, mixed nonlinearities |v|q, |ut|

p and combined nonlinearities |vt|
p1 + |v|q1 , |ut|

p2 + |u|q2 ,
respectively. Upper bound lifespan estimates of solutions to the problem in the sub-critical and
critical cases were obtained. We refer the readers to [7–17] for more details.

Let us state a historical overview concerning several results for the semilinear wave equation with
memory terms utt − ∆u = N(u, ut), x ∈ Rn, t > 0,

u(x, 0) = εu0(x), ut(x, 0) = εu1(x), x ∈ Rn,
(1.3)
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where N(u, ut) = Nγ, p(u), Nγ, p(ut). Chen and Palmieri [18] considered Problem (1.3) with a nonlinear
memory term of the power type N(u, ut) = Nγ, p(u) in the sub-critical and critical cases. The blow-up
dynamics of solutions were proved by making use of an iteration argument in the sub-critical case and
the slicing approach in the critical case. Non-existence of the global solution to Problem (1.3) with
a nonlinear memory term of the derivative type N(u, ut) = Nγ, p(ut) was investigated in [19], where
the iteration method and ODE (ordinary differential equation) blow-up approach were performed. It
is worth noticing that Problem (1.3) with N(u, ut) = Nγ, p(u) possesses the critical exponent pc(n, γ),
which is the maximal solution to the quadratic equation

−(n − 1)p2 + (n + 3 − 2γ)p + 2 = 0.

Moreover, pc(n, γ) satisfies lim
γ→1−

pc(n, γ) = pc(n). We observe that pc(n) stands for the Strauss critical

exponent of the classical wave equation

utt − ∆u = |u|p.

Here, the meaning of the Strauss critical exponent pc(n) represents the threshold between the global
(in time) existence of the solution and blow-up dynamic of the solution with small initial values
(see [20–25] and the references therein). The non-existence and existence of the global solution to the
Cauchy problem of the classical wave equation with the derivative type nonlinearity |ut|

p are
considered in [26, 27]. Applying the test function related to the hypergeometric function method
(ψ(x, t) = Φβ, λ(x, t)(ηR(t))k), Ikeda et al. [28] established the blow-up results and lifespan estimates of
solutions to the classical wave equation with combined-type nonlinearities |ut|

p + |u|q and a
corresponding weakly coupled system.

Many scholars are committed to the Cauchy problem of the semilinear wave equation with nonlinear
memory terms utt − ∆u + h(ut) = Nγ, p(u), x ∈ Rn, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn,
(1.4)

(see detailed illustrations in [29–35]). Taking into account the test function method, Fino [33] deduced
the blow-up result of the solution to Problem (1.4) with the weak damping term h(ut) = ut. Global
existence of the solution to the problem when 1 ≤ n ≤ 3 is demonstrated by using the weighted energy
method. Chen and Ikehata [29] studied the formation of a singularity for the solution to Problem
(1.4) with scaling invariant damping, i.e, h(ut) =

µ

1+t ut. The proof is based on the Kato lemma in the
case 1 < p < pS (n + µ, γ) and the iteration method in the case p = pS (n + 2, γ). Non-existence of the
global solution to Problem (1.4) with the structural damping term h(ut) = 2(−∆)

1
2 ut is verified by taking

advantage of the test function technique (ϕ(x, t) = Dα
t|T (w(t))β(ΨR(x))ℓ) (see [30]). Problem (1.4) with

h(ut) = µ(−∆)
σ
2 ut (µ > 0, 0 < σ < 2) is considered in [32]. The blow-up of the solution is obtained

by applying the method of the test function. Dannawi et al. [31] showed the blow-up phenomenon of
the solution to the Cauchy problem of the semilinear wave equation with space- and time-dependent
potential, as well as nonlinear memory, where the test function method was employed.

Motivated by the works in [2, 3, 5, 29, 32], our main aim of this article is to verify the blow-up
dynamic of the solution to Problem (1.1) with the different nonlinear memory terms Nγ, q(u), Nγ, p(ut)
and Nγ, p, q(u, ut), where the test function technique is performed (ψ(x, t) = φR(x)Dα

t|T (w(t))). It is
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worth noting that Chen and Ikehata [29] presented the blow-up dynamic of the solution to the Cauchy
problem for the semilinear wave equation with a scaling invariant damping term and memory term in
the case p = pc(n + 2, γ). The main tool performed in the proof is the iteration method together with a
slicing procedure. Non-existence of the global solution to the semilinear wave equation with a
structural damping term and memory term has been deduced by applying the test function technique
(ϕR(x)Dα

t|T (w(t))) (see [32]). Taking advantage of the test function technique and iteration approach,
Chen and Palmieri [2, 3] investigated the upper-bound lifespan estimate of the solution to the
semilinear MGT equation with power nonlinearity (|u|p) and derivative nonlinearity (|ut|

p). We extend
the problems studied in [2, 32] to Problem (1.1) with N(u, ut) = Nγ, q(u) by employing the test
function technique (see Theorem 1.1). The blow-up phenomenon of the solution to Problem (1.1)
with small initial values and nonlinear terms |u|p, |ut|

p, |ut|
p + |u|q is discussed in [5]. From our

observation, the non-existence of the global solution to Problem (1.1) with
N(u, ut) = Nγ, p(ut), Nγ, p, q(u, ut) is still unknown. Consequently, we apply the test function technique
to supplement the blow-up result of the solution to Problem (1.1), which is different from the method
in [5] (see Theorems 1.2 and 1.3). Moreover, our results in Theorems 1.1–1.3 exactly coincide with
the blow-up results of solutions to Problem (1.1) with N(u, ut) = |u|p, |ut|

p, |ut|
p + |u|q when γ → 1−.

Due to the similarity of structure in the equations, we observe that our results in Theorems 1.1–1.3 are
the same as the blow-up of the solution to the classical wave equation with the nonlinear memory
terms Nγ, q(u), Nγ, p(ut) and Nγ, p, q(u, ut). To the best of our knowledge, the results in
Theorems 1.1–1.3 are new.

Throughout this paper, we write f ≲ g when there exists a positive constant C such that f ≤ Cg.
The main results in this paper are presented as follows.
We consider Problem (1.1) with N(u, ut) = Nγ,q(u) with general initial values in Rn.

Theorem 1.1. Assume q ∈ (1, 1 + 3−γ
n+γ−2 ] and

(u0, u1, u2)(x) ∈ H2(Rn) × H1(Rn) × L2(Rn).

It holds that ∫
Rn

(
βu2(x) + u1(x)

)
dx > 0.

Then, there is no global weak solution to Problem (1.1) with N(u, ut) = Nγ, q(u).

We discuss Problem (1.1) with N(u, ut) = Nγ,p(ut) with general initial values in Rn.

Theorem 1.2. Let p ∈ (1, 1 + 2−γ
n+γ−1 ] and

(u0, u1, u2)(x) ∈ H2(Rn) × H1(Rn) × L2(Rn).

It holds that ∫
Rn

(
βu2(x) + u1(x)

)
dx > 0.

Then, there is no global weak solution to Problem (1.1) with N(u, ut) = Nγ, p(ut).

We study Problem (1.1) with N(u, ut) = Nγ,p,q(u, ut) with general initial values in Rn.
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Theorem 1.3. Let p and q satisfy
1 < p < 1 +

2 − γ
n + γ − 1

and q > 1,

p > 1 and 1 < q < 1 +
3 − γ

n + γ − 2
.

Suppose that (u0, u1, u2)(x) ∈ H2(Rn) × H1(Rn) × L2(Rn) and∫
Rn

(
βu2(x) + u1(x)

)
dx > 0.

Then, there is no global weak solution to Problem (1.1) with

N(u, ut) = Nγ, p, q(u, ut).

Remark 1.1. Applying the Poincare’s inequality, we deduce∫
Rn
|∇xu|qψdx ≥

1
(t + R)q

∫
Rn
|u|qψdx ≥ C

∫
Rn
|u|qψdx.

This means that the blow-up result of the solution to Problem (1.1) with

N(u, ut) = Nγ, q(∇xu) = cγ

∫ t

0
(t − s)−γ|∇xu(x, s)|qds

is the same as Theorem 1.1.
Remark 1.2. It is worth noting that our results in Theorems 1.1–1.3 exactly coincide with the blow-up
dynamics of solutions to Problem (1.1) with N(u, ut) = |u|p, |ut|

p, |ut|
p + |u|q when γ → 1−. Due to the

similarity of structure in the equations, our results in Theorems 1.1–1.3 are the same as the blow-up
results of the solution to the classical wave equation with the nonlinear memory terms Nγ, q(u), Nγ, p(ut)
and Nγ, p, q(u, ut).

2. Proof of Theorem 1.1

2.1. Several definitions and related lemmas

Definition 2.1. [36] Let f (t) ∈ L1(0,T ). The Riemann Liouville left- and right-sided fractional
integrals of the order α ∈ (0, 1) are defined by

Iα0|t f (t) =
1
Γ(α)

∫ t

0
(t − τ)−(1−α) f (τ)dτ, t > 0, (2.1)

Iαt|T f (t) =
1
Γ(α)

∫ T

t
(τ − t)−(1−α) f (τ)dτ, t < T.

Definition 2.2. [36] Set f (t) ∈ AC[0,T ]. The Riemann Liouville left- and right-sided fractional
derivatives of the order α ∈ (0, 1) are defined by

Dα
0|t f (t) =

d
dt

I1−α
0|t f (t) =

1
Γ(1 − α)

d
dt

∫ t

0
(t − τ)−α f (τ)dτ, t > 0,

Dα
t|T f (t) = −

d
dt

I1−α
t|T f (t) = −

1
Γ(1 − α)

d
dt

∫ T

t
(τ − t)−α f (τ)dτ, t < T. (2.2)
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Definition 2.3. Let (u0, u1, u2) ∈ H2(Rn) × H1(Rn) × L2(Rn) and
u ∈ C([0,∞),H2(Rn)) ∩ C1([0,∞),H1(Rn)) ∩ C2([0,∞), L2(Rn)). u ∈ Lq

loc([0,∞) × Rn) when
N(u, ut) = Nγ, q(u). ut ∈ Lp

loc([0,∞) × Rn) when N(u, ut) = Nγ, p(ut). u ∈ Lq
loc([0,∞) × Rn) and

ut ∈ Lp
loc([0,∞) × Rn) when N(u, ut) = Nγ, p, q(u, ut). It holds that∫ ∞

0

∫
Rn

(−βuttϕt − utϕt − u∆ϕ + βu∆ϕt)(x, s)dxds

−β

∫
Rn
ϕ(x, 0)u2(x)dx −

∫
Rn
ϕ(x, 0)u1(x)dx + β

∫
Rn
∆ϕ(x, 0)u0(x)dx

=

∫ ∞

0

∫
Rn

N(u, ut)ϕ(x, s)dxds, (2.3)

where ϕ ∈ C∞0 ([0,∞) × Rn). Then, u is called a global (in time) weak solution to Problem (1.1).

Lemma 2.1. [36] Let T > 0 and α ∈ (0, 1). It holds that∫ T

0
f (t)Dα

0|tg(t)dt =
∫ T

0
g(t)Dα

t|T f (t)dt (2.4)

for f (t) ∈ Iαt|T (Lp(0,T )) and g(t) ∈ Iα0|t(L
q(0,T )) such that 1

p +
1
q = 1 + α with 1 < p, q < ∞, where

Iα0|t(L
q(0,T )) = { f (t) = Iα0|th(t)

∣∣∣ h(t) ∈ Lq(0,T )},

Iαt|T (Lp(0,T )) = { f (t) = Iαt|T h(t)
∣∣∣ h(t) ∈ Lp(0,T )}.

Lemma 2.2. [37] Let α ∈ (0, 1) and t ∈ (0,T ). Then

Dα
0|tI

α
0|t f (t) = f (t)

for f (t) ∈ Lr(0,T ) with 1 ≤ r ≤ ∞. Moreover, it holds that

(−1)mDmDα
t|T f (t) = Dm+α

t|T f (t)

for f (t) ∈ ACm+1[0,T ].

Lemma 2.3. [32] Assume that w(t) = (1 − t
T )β with T > 0 and β ≫ 1. It holds that

Dm+α
t|T w(t) =

Γ(β + 1)
Γ(β + 1 − m − α)

T−(m+α)(1 −
t
T

)β−α−m,

where m ≥ 0 and 0 < α < 1. For some positive constant C, it holds that∫ T

0
(w(t))−

1
p−1 |Dm+α

t|T w(t)|
p

p−1 dt = CT 1−(m+α) p
p−1 .
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Lemma 2.4. [38] Let φ(x) ∈ C∞0 (Rn) satisfy

φ(x) =

1, |x| ≤
1
2
,

0, |x| ≥ 1.

Moreover, it holds that ∫
Rn

(φR(x))−
1

p−1 |(−∆)sφR(x)|
p

p−1 dx ≲ R−
2sp
p−1+n,

where φR(x) = φ(R−1x), 0 < s ≤ 1.

2.2. Proof of Theorem 1.1

We set ψ̃ = φR(x)w(t) and the test function ψ(x, t) = Dα
t|T (ψ̃(x, t)) = φR(x)Dα

t|T (w(t)) with α = 1 − γ.
Replacing ϕ(x, s) in (2.3) with N(u, ut) = Nγ, q(u) by applying ψ(x, s) and exploiting (2.1), (2.2) and

Lemmas 2.1 and 2.2, we obtain

JR + T−α
∫
Rn

(βu2(x) + u1(x))φR(x)dx

−T−1−αβ

∫
Rn

(u1(x) − T−1u0(x))φR(x)dx

−T−αβ
∫
Rn
∆u0(x)φR(x)dx − T−1−α

∫
Rn

u0(x)φR(x)dx

=

∫ T

0

∫
Rn

u(x, s)
(
− βψttt + ψtt − ∆ψ + β∆ψt

)
(x, s)dxds

= J1 + J2 + J3 + J4, (2.5)

where JR =
∫ T

0

∫
Rn |u(x, s)|qψ̃(x, s)dxds.

Utilizing the change of variables t̃ = t
T , x̃ = x

R , Lemmas 2.2 and 2.3 and (2.5) gives rise to

|J1| ≲

∫ T

0

∫
Rn
|u(x, s)|φR(x)|D3+α

t|T (w(s))|dxds

≲ J
1
q

R (
∫ T

0

∫
Rn
φR(x)(w(s))−

q′
q |D3+α

t|T (w(s))|q
′

dxds)
1
q′

≲ J
1
q

R R
n
q′ T

1
q′ −3−α, (2.6)

|J2| ≲

∫ T

0

∫
Rn
|u(x, s)|φR(x)|D2+α

t|T (w(s))|dxds

≲ J
1
q

R R
n
q′ T

1
q′ −2−α. (2.7)

From Lemmas 2.3 and 2.4 with s = 1 and (2.5), we achieve

|J3| ≲

∫ T

0

∫
Rn
|u(x, s)|∆φR(x)|Dα

t|T (w(s))|dxds
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≲ J̃
1
q

R (
∫ T

0
(w(s))−

q′
q |Dα

t|T (w(s))|q
′

ds)
1
q′

× (
∫
{|x|≥R}

(φR(x))−
q′
q |∆φR(x)|q

′

dx)
1
q′

≲ J̃
1
q

R R
n
q′ −2T

1
q′ −α, (2.8)

|J4| ≲

∫ T

0

∫
Rn
|u(x, s)|∆φR(x)|D1+α

t|T (w(s))|dxds

≲ J̃
1
q

R (
∫ T

0
(w(s))−

q′
q |D1+α

t|T (w(s))|q
′

ds)
1
q′

× (
∫
{|x|≥R}

(φR(x))−
q′
q |∆φR(x)|q

′

dx)
1
q′

≲ J̃
1
q

R R
n
q′ −2T

1
q′ −1−α, (2.9)

where J̃R =
∫ T

0

∫
{|x|≥R}

|u(x, s)|qψ̃(x, s)dxds.
Making use of (2.5)–(2.9) and |∆φR(x)| ≲ R−2φR(x) and taking R = T yields

JR + T−α
∫
Rn

(βu2(x) + u1(x))φR(x)dx

≲ J
1
q

R R
n
q′ (T

1
q′ −3−α

+ T
1
q′ −2−α) + J̃

1
q

R R
n
q′ −2(T

1
q′ −α + T

1
q′ −1−α)

+T−1−αβ

∫
Rn

(u1(x) − T−1u0(x))φR(x)dx

+T−2−αβ

∫
Rn

u0(x)φR(x)dx + T−1−α
∫
Rn

u0(x)φR(x)dx

≲ J
1
q

R T
n+1
q′ −2−α

+ T−1−αβ

∫
Rn

(u1(x) − T−1u0(x))φR(x)dx

+T−2−αβ

∫
Rn

u0(x)φR(x)dx + T−1−α
∫
Rn

u0(x)φR(x)dx. (2.10)

It is worth noting that q ∈ (1, 1 + 3−γ
n+γ−2 ] is equivalent to −(2 + α)q′ + n + 1 ≤ 0. Therefore, our

considerations are divided into two cases.
In the sub-critical case −(2 + α)q′ + n + 1 < 0, by sending T → ∞ in (2.10), we arrive at a

contradiction.
In the critical case −(2 + α)q′ + n + 1 = 0, according to (2.10), we acquire JR ≤ C for a certain

positive constant C as T → ∞. Taking R = T K−1 in (2.10), we conclude

JR ≲ J
1
q

R (T−1K−
n
q′ + K−

n
q′ ) + J̃

1
q

R (K−( n
q′ −2)
+ T−1K−( n

q′ −2)). (2.11)

It follows from u ∈ Lq((0,∞) × Rn) that

lim
T→∞

J̃R = lim
T→∞

∫ T

0

∫
{|x|≥T K−1}

|u(x, s)|qψ̃(x, s)dxds = 0.

Consequently, we acquire the desired result by taking K big enough. This finishes the proof of
Theorem 1.1. ■
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3. Proof of Theorem 1.2

We assume

IR =

∫ T

0

∫
Rn
|ut(x, s)|pψ̃(x, s)dxds,

ĨR =

∫ T

0

∫
{|x|≥R}

|ut(x, s)|pψ̃(x, s)dxds.

Let Ψ(t) =
∫ ∞

t
w(τ)dτ. Then, we have Ψ′(t) = −w(t).

Replacing ϕ(x, s) in (2.3) with N(u, ut) = Nγ, p(ut) by using ψ = Dα
t|T (ψ̃(x, t)) = φR(x)Dα

t|T (w(t)) and
applying (2.1) and (2.2), Lemmas 2.1 and 2.2 lead to

IR + T−α
∫
Rn

(
βu2(x) + u1(x)

)
φR(x)dx

−βT−1−α
∫
Rn

u1(x)φR(x)dx +
∫
Rn

u0(x)Dα
t|TΨ(0)∆φR(x)dx

=

∫ T

0

∫
Rn

ut(x, s)
(
βψtt − ψt − Dα

t|TΨ(s)∆φR(x) − β∆ψ
)
(x, s)dxds

= I1 + I2 + I3 + I4. (3.1)

Combining Lemmas 2.2 and 2.3 and (3.1), we acquire

|I1| ≲

∫ T

0

∫
Rn
|ut(x, s)|φR(x)|D2+α

t|T (w(s))|dxds

≲ I
1
p

R (
∫ T

0

∫
Rn
φR(x)(w(s))−

p′
p |D2+α

t|T (w(s))|p
′

dxds)
1
p′

≲ I
1
p

R R
n
p′ T

1
p′ −2−α, (3.2)

|I2| ≲

∫ T

0

∫
Rn
|ut(x, s)|φR(x)|D1+α

t|T (w(s))|dxds

≲ I
1
p

R R
n
p′ T

1
p′ −1−α. (3.3)

Employing Lemmas 2.3 and 2.4 with s = 1 and (3.1) gives rise to

|I3| ≲

∫ T

0

∫
Rn
|ut(x, s)|∆φR(x)|Dα

t|T (Ψ(s))|dxds

≲ Ĩ
1
p

R (
∫ T

0
(w(s))−

p′
p |Dα

t|T (Ψ(s))|p
′

ds)
1
p′

× (
∫
{|x|≥R}

(φR(x))−
p′
p |∆φR(x)|p

′

dx)
1
p′

≲ Ĩ
1
p

R R
n
p′ −2T

1
p′ +1−α, (3.4)
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where we have utilized the fact that (w(s))−
p′
p (Dα

t|TΨ(s))p′ ≤ T (1−α)p′ .
Analogously, we acquire

|I4| ≲

∫ T

0

∫
Rn
|ut(x, s)|∆φR(x)|Dα

t|T (w(s))|dxds

≲ Ĩ
1
p

R (
∫ T

0
(w(s))−

p′
p |Dα

t|T (w(s))|p
′

ds)
1
p′

×(
∫
{|x|≥R}

(φR(x))−
p′
p |∆φR(x)|p

′

dx)
1
p′

≲ Ĩ
1
p

R R
n
p′ −2T

1
p′ −α. (3.5)

Taking into account (3.1)–(3.5) and choosing R = T , we derive

IR + T−α
∫
Rn

(
βu2(x) + u1(x)

)
φR(x)dx

≲ I
1
p

R R
n
p′ (T

1
p′ −2−α

+ T
1
p′ −1−α) + Ĩ

1
p

R R
n
p′ −2(T

1
p′ +1−α

+ T
1
p′ −α)

+βT−1−α
∫
Rn

u1(x)φR(x)dx −
∫
Rn

u0(x)Dα
t|TΨ(0)∆φR(x)dx

≲ I
1
p

R T
n+1
p′ −1−α

+ T−1−α
∫
Rn

(
βu1(x) − u0(x)

)
φR(x)dx, (3.6)

where we have applied the following:∫
Rn

u0(x)Dα
t|TΨ(0)∆φR(x)dx ≤ T−1−α

∫
Rn

u0(x)φR(x)dx.

It is worth noticing that p ∈ (1, 1+ 2−γ
n+γ−1 ] is equivalent to −(1+α)p′ + n+ 1 ≤ 0. Thus, our discussions

are divided into two cases.
In the sub-critical case −(1+α)p′ + n+ 1 < 0, by letting T → ∞ in (3.6), we obtain a contradiction.
In the critical case −(1 + α)p′ + n + 1 = 0, employing (3.6) yields IR ≤ C for a certain positive

constant C as T → ∞. Taking R = T K−1 in (3.6), we arrive at

IR ≲ I
1
p

R (T−1K−
n
p′ + K−

n
p′ ) + Ĩ

1
p

R (K−( n
p′ −2)
+ T−1K−( n

p′ −2)).

As a result, we conclude that the solution blows up in finite time when p ∈ (1, 1+ 2−γ
n+γ−1 ]. This ends the

proof of Theorem 1.2. ■

4. Proof of Theorem 1.3

Replacing JR in (2.5) and IR in (3.1) with IR + JR when N(u, ut) = Nγ, p, q(u, ut), we derive the
same estimates of J1–J4 and I1–I4 as in Theorems 1.1 and 1.2. Therefore, we need to consider the
following 16 cases in Table 1.
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Table 1. Combination of the estimates I1, J1, I2, J2, I3, J3, I4, J4.

Est. I1, J1 Est. I2, J2 Est. I3, J3 Est. I4, J4

Case 1 I1 I2 I3 I4

Case 2 J1 I2 I3 I4

Case 3 I1 I2 I3 J4

Case 4 J1 I2 I3 J4

Case 5 I1 I2 J3 I4

Case 6 J1 I2 J3 I4

Case 7 I1 J2 I3 I4

Case 8 J1 J2 I3 I4

Case 9 I1 J2 J3 J4

Case 10 J1 J2 J3 J4

Case 11 I1 I2 J3 J4

Case 12 J1 I2 J3 J4

Case 13 I1 J2 I3 J4

Case 14 J1 J2 I3 J4

Case 15 I1 J2 J3 I4

Case 16 J1 J2 J3 I4

To verify the blow-up dynamic of the solution, we recognize that it is sufficient to discuss Case 1
and Case 10 by direct calculation.

In Case 1, similar to the derivation in (3.6), we have

IR + JR + T−α
∫
Rn

(
βu2(x) + u1(x)

)
φR(x)dx

≲ I
1
p

R R
n
p′ (T

1
p′ −2−α

+ T
1
p′ −1−α) + Ĩ

1
p

R R
n
p′ −2(T

1
p′ +1−α

+ T
1
p′ −α)

+βT−1−α
∫
Rn

u1(x)φR(x)dx −
∫
Rn

u0(x)Dα
t|TΨ(0)∆φR(x)dx.

Therefore, we obtain that the solution blows up in finite time when 1 < p < 1 + 2−γ
n+γ−1 and q > 1.

In Case 10, similar to the derivation in (2.10), we achieve

IR + JR + T−α
∫
Rn

(βu2(x) + u1(x))φR(x)dx

≲ J
1
q

R R
n
q′ (T

1
q′ −3−α

+ T
1
q′ −2−α) + J̃

1
q

R R
n
q′ −2(T

1
q′ −α + T

1
q′ −1−α)

+T−1−αβ

∫
Rn

(u1(x) − T−1u0(x))φR(x)dx

+T−2−αβ

∫
Rn

u0(x)φR(x)dx + T−1−α
∫
Rn

u0(x)φR(x)dx.

As a consequence, we conclude that the solution blows up in finite time when p > 1 and 1 < q ≤
1 + 3−γ

n+γ−2 . The proof of Theorem 1.3 is completed. ■
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5. Conclusions

This paper is devoted to establishing the blow-up dynamic of the solution to the Cauchy problem
of the semilinear Moore-Gibson-Thompson equation with general initial values and the nonlinear
memory terms Nγ, q(u), Nγ, p(ut) and Nγ, p, q(u, ut), respectively. We have presented the main results by
utilizing the test function technique (ψ(x, t) = φR(x)Dα

t|T (w(t))) (see Theorems 1.1–1.3). Our main new
contribution is that the effects of nonlinear memory terms on the blow-up results of solutions have
been obtained. The problems studied in [2, 32] were extended to Problem (1.1) with
N(u, ut) = Nγ, q(u) (see Theorem 1.1). We have supplemented the formation of singularities for the
solution to Problem (1.1) with N(u, ut) = Nγ, p(ut) and Nγ, p, q(u, ut) by applying a method which is
different from the approach used [5] (see Theorems 1.2 and 1.3). It is worth noting that our results in
Theorems 1.1–1.3 exactly coincide with the blow-up results of the solution to Problem (1.1) with
N(u, ut) = |u|p, |ut|

p, |ut|
p + |u|q when γ → 1−. To the best of our knowledge, the results in

Theorems 1.1–1.3 are new.
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