Research article

Fractional heat transfer DPL model incorporating an exponential Rabotnov kernel to study an infinite solid with a spherical cavity

  • Received: 09 February 2024 Revised: 16 May 2024 Accepted: 21 May 2024 Published: 31 May 2024
  • MSC : 35B35, 37L30, 74F05, 74H10, 80A19

  • The objective of this study was to investigate the thermodynamic reactions of thermoelastic materials by utilizing a modified mathematical fractional thermoelastic model. This model combines a fractional derivative with Rabotnov's exponential kernel and the idea of a two-phase delay, which makes it possible to show thermoelastic behavior more accurately. The model was utilized to investigate an unbounded material with a spherical cavity subjected to a decreasing and shifting heat flux on its inner surface. The problem was solved using analytical approaches, with a strong focus on the Laplace transform. The transform was numerically inverted to provide time-domain results. The study presented graphs that compared the outcomes of utilizing a single kernel fractional derivative with the results obtained using the Rabotnov kernel and fractional order. These graphs showed how the Rabotnov kernel and fractional order affected the physical fields under investigation. This novel theoretical framework has the potential to be advantageous in diverse domains, including engineering, solid mechanics, and materials science.

    Citation: Ahmed E. Abouelregal, Faisal Alsharif, Hashem Althagafi, Yazeed Alhassan. Fractional heat transfer DPL model incorporating an exponential Rabotnov kernel to study an infinite solid with a spherical cavity[J]. AIMS Mathematics, 2024, 9(7): 18374-18402. doi: 10.3934/math.2024896

    Related Papers:

  • The objective of this study was to investigate the thermodynamic reactions of thermoelastic materials by utilizing a modified mathematical fractional thermoelastic model. This model combines a fractional derivative with Rabotnov's exponential kernel and the idea of a two-phase delay, which makes it possible to show thermoelastic behavior more accurately. The model was utilized to investigate an unbounded material with a spherical cavity subjected to a decreasing and shifting heat flux on its inner surface. The problem was solved using analytical approaches, with a strong focus on the Laplace transform. The transform was numerically inverted to provide time-domain results. The study presented graphs that compared the outcomes of utilizing a single kernel fractional derivative with the results obtained using the Rabotnov kernel and fractional order. These graphs showed how the Rabotnov kernel and fractional order affected the physical fields under investigation. This novel theoretical framework has the potential to be advantageous in diverse domains, including engineering, solid mechanics, and materials science.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [2] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
    [3] X. J. Yang, General fractional derivatives: Theory, methods and applications, CRC Press, 2019.
    [4] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI16011108A doi: 10.2298/TSCI16011108A
    [5] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Frac. Diff. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [6] X. J. Yang, M. Abdel-Aty, C. Cattani, A new general fractional-order derivative with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer, Therm. Sci., 23 (2019), 1677–1681. https://doi.org/10.2298/TSCI180320239Y doi: 10.2298/TSCI180320239Y
    [7] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [8] V. V. Uchaikin, Fractional derivatives for physicists and engineers, Berlin: Springer, 2013.
    [9] X. J. Yang, F. Gao, Y. Ju, General fractional derivatives with applications in viscoelasticity, Academic Press, 2020.
    [10] K. A. Abro, A. Atangana, A comparative study of convective fluid motion in rotating cavity via Atangana-Baleanu and Caputo-Fabrizio fractal-fractional differentiations, Europ. Phys. J. Plus, 135 (2020), 1–16. https://doi.org/10.1140/epjp/s13360-020-00136-x doi: 10.1140/epjp/s13360-020-00136-x
    [11] A. A. Shaikh, S. Qureshi, Comparative analysis of Riemann-Liouville, Caputo-Fabrizio, and Atangana-Baleanu integrals, J. Appl. Math. Comput. Mech., 21 (2022), 91–101. https://doi.org/10.17512/jamcm.2022.1.08 doi: 10.17512/jamcm.2022.1.08
    [12] M. M. AlBaidani, F. Aljuaydi, N. S. Alharthi, A. Khan, A. H. Ganie, Study of fractional forced KdV equation with Caputo-Fabrizio and Atangana-Baleanu–Caputo differential operators, AIP Adv., 14 (2024), 015340. https://doi.org/10.1063/5.0185670 doi: 10.1063/5.0185670
    [13] B. K. Jha, I. O. Oyelade, P. B Malgwi, The Caputo-Fabrizio (CF) and Atangana-Baleanu in Caputo sense (ABC) fractional time‐derivative approach on transient free convection flow between two vertical parallel plates: A semi‐analytical solution, Heat Trans., 51 (2022), 841–865. https://doi.org/10.1002/htj.22332 doi: 10.1002/htj.22332
    [14] S. A. Gulalai, F. A. Rihan, S. Ahmad, F. A. Rihan, A. Ullah, Q. M. Al-Mdallal, et al., Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative, AIMS Mathematics, 7 (2022), 7847–7865. https://doi.org/10.3934/math.2022439 doi: 10.3934/math.2022439
    [15] M. M. Khader, J. E. Macías-Díaz, A. Román-Loera, K. M. Saad, A note on a fractional extension of the Lotka-Volterra model using the Rabotnov exponential kernel, Axioms, 13 (2024), 71. https://doi.org/10.3390/axioms13010071 doi: 10.3390/axioms13010071
    [16] M. M. Khader, J. E. Macías-Díaz, K. M. Saad, W. M. Hamanah, Vieta-Lucas polynomials for the Brusselator system with the Rabotnov fractional-exponential kernel fractional derivative, Symmetry, 15 (2023), 1619. https://doi.org/10.3390/sym15091619 doi: 10.3390/sym15091619
    [17] A. F. Aboubakr, G. M. Ismail, M. M. Khader, M. A. Abdelrahman, A. M. AbdEl-Bar, M. Adel, Derivation of an approximate formula of the Rabotnov fractional-exponential kernel fractional derivative and applied for numerically solving the blood ethanol concentration system, AIMS Mathematics, 8 (2023), 30704–30716. https://doi.org/10.3934/math.20231569 doi: 10.3934/math.20231569
    [18] S. Kumar, B. Ahmad, A new numerical study of space-time fractional advection-reaction-diffusion equation with Rabotnov fractional‐exponential kernel, Num. Meth. Part. Diff. Equ., 38 (2022), 457–469. https://doi.org/10.1002/num.22647 doi: 10.1002/num.22647
    [19] H. Parkus, Thermoelasticity, Springer, 2012.
    [20] W. Nowacki, Dynamic problems of thermoelasticity, Springer, 1975.
    [21] M. A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27 (1956), 240–253. https://doi.org/10.1063/1.1722351 doi: 10.1063/1.1722351
    [22] J. L. Nowinski, Theory of thermoelasticity with applications (Vol. 3), Alphen aan den Rijn: Sijthoff & Noordhoff International Publishers, 1978.
    [23] V. D. Kupradze, Three-dimensional problems of elasticity and thermoelasticity, Elsevier, 2012.
    [24] J. Ignaczak, M. Ostoja-Starzewski, Thermoelasticity with finite wave speeds, OUP Oxford, 2009.
    [25] H. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299–309. https://doi.org/10.1016/0022-5096(67)90024-5 doi: 10.1016/0022-5096(67)90024-5
    [26] A. E. Green, K. A. Lindsay, Thermoelasticity, J. Elas., 2 (1972), 1–7. http://dx.doi.org/10.1007/BF00045689 doi: 10.1007/BF00045689
    [27] A. E. Green, P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elas., 31 (1993), 189–208. http://dx.doi.org/10.1007/BF00044969 doi: 10.1007/BF00044969
    [28] A. E. Green, P. M. Naghdi, On undamped heat waves in an elastic solid, J. Therm. Stress., 15 (1992), 253–264. https://doi.org/10.1080/01495739208946136 doi: 10.1080/01495739208946136
    [29] D. Y. Tzou, Experimental support for the lagging behavior in heat propagation, J. Therm. Heat Trans., 9 (1995), 686–693. https://doi.org/10.2514/3.725 doi: 10.2514/3.725
    [30] D. Y. Tzou, Macro-to microscale heat transfer: The Lagging behavior, Washington, DC: Taylor and Francis, 1996.
    [31] D. Y. Tzou, A unified field approach for heat conduction from macro-to micro-scales, ASME J. Heat Mass Tran., 117 (1995), 8–16. https://doi.org/10.1115/1.2822329 doi: 10.1115/1.2822329
    [32] C. Li, F. Zeng, Numerical methods for fractional calculus (Vol. 24), CRC Press, 2015.
    [33] A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), D4016005. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001091 doi: 10.1061/(ASCE)EM.1943-7889.0001091
    [34] X. X Yu, Y. Zhang, H. Sun, C. Zheng, Time fractional derivative model with Mittag-Leffler function kernel for describing anomalous diffusion: Analytical solution in bounded-domain and model comparison, Chaos Soliton Fract., 115 (2018), 306–312. https://doi.org/10.1016/j.chaos.2018.08.026 doi: 10.1016/j.chaos.2018.08.026
    [35] Y. Rabotnov, Equilibrium of an elastic medium with after-effect, Fract. Calc. Appl. Anal., 17 (2014), 684–696. https://doi.org/10.2478/s13540-014-0193-1 doi: 10.2478/s13540-014-0193-1
    [36] D. Khan, P. Kumam, W. Watthayu, K. Sitthithakerngkiet, M. Y. Almusawa, Application of new general fractional‐order derivative with Rabotnov fractional–exponential kernel to viscous fluid in a porous medium with magnetic field, Math. Meth. Appl. Sci., 46 (2023), 13457–13468. https://doi.org/10.1002/mma.9264 doi: 10.1002/mma.9264
    [37] H. Parkus, Magneto-thermoelasticity (Vol. 118), Vienna-New York: Springer-verlag, 1972.
    [38] M. A. Ezzat, A. S. El-Karamany, A. A. El-Bary, Magneto-thermoelasticity with two fractional order heat transfer, J. Assoc. Arab Univ. Basic Appl. Sci., 19 (2016), 70–79. https://doi.org/10.1016/j.jaubas.2014.06.009 doi: 10.1016/j.jaubas.2014.06.009
    [39] G. Paria, Magneto-elasticity and magneto-thermo-elasticity, Adv. Appl. Mech., 10 (1966), 73–112. https://doi.org/10.1016/S0065-2156(08)70394-6 doi: 10.1016/S0065-2156(08)70394-6
    [40] X. Wang, J. S. Lee, X. Zheng, Magneto-thermo-elastic instability of ferromagnetic plates in thermal and magnetic fields, Int. J. Solids Struct., 40 (2003), 6125–6142. https://doi.org/10.1016/S0020-7683(03)00297-X doi: 10.1016/S0020-7683(03)00297-X
    [41] A. E. Abouelregal, R. Alanazi, H. M. Sedighi, Thermal plane waves in unbounded non-local medium exposed to a moving heat source with a non-singular kernel and higher order time derivatives, Eng. Anal. Bound. Elem., 140 (2022), 464–475. https://doi.org/10.1016/j.enganabound.2022.04.032 doi: 10.1016/j.enganabound.2022.04.032
    [42] A. M. Cohen, Numerical methods for Laplace transform inversion (Vol. 5), Springer, 2007.
    [43] O. Taiwo, J. Schultz, V. Krebs, A comparison of two methods for the numerical inversion of Laplace transforms, Comput. Chem. Eng., 19 (1995), 303–308. https://doi.org/10.1016/0098-1354(94)00055-S doi: 10.1016/0098-1354(94)00055-S
    [44] G. Honig, U. Hirdes, A method for the numerical inversion of Laplace transforms, J. Comput. Appl. Math., 10 (1984), 113–132. https://doi.org/10.1016/0377-0427(84)90075-X doi: 10.1016/0377-0427(84)90075-X
    [45] A. Soleiman, A. E. Abouelregal, K. M. Khalil, M. E. Nasr, Generalized thermoviscoelastic novel model with different fractional derivatives and multi-phase-lags, Eur. Phys. J. Plus, 135 (2020), 851. https://doi.org/10.1140/epjp/s13360-020-00842-6 doi: 10.1140/epjp/s13360-020-00842-6
    [46] A. E. Abouelregal, M. Alesemi, Vibrational analysis of viscous thin beams stressed by laser mechanical load using a heat transfer model with a fractional Atangana-Baleanu operator, Case Stud. Therm. Eng., 34 (2022), 102028. https://doi.org/10.1016/j.csite.2022.102028 doi: 10.1016/j.csite.2022.102028
    [47] A. U. Rehman, F. Jarad, M. B. Riaz, A fractional study of MHD Casson fluid motion with thermal radiative flux and heat injection/suction mechanism under ramped wall condition: Application of Rabotnov exponential kernel, Acta Mech. Autom., 18 (2024), 84–92. https://doi.org/10.2478/ama-2024-0011 doi: 10.2478/ama-2024-0011
    [48] Y. Z. Povstenko, Fractional heat conduction equation and associated thermal stress, J. Therm. Stress., 28 (2004), 83–102. https://doi.org/10.1080/014957390523741 doi: 10.1080/014957390523741
    [49] A. U. Rehman, M. B. Riaz, A. Atangana, Time fractional analysis of Casson fluid with Rabotnov exponential memory based on the generalized Fourier and Fick's law, Sci. Afr., 17 (2022), e01385. https://doi.org/10.1016/j.sciaf.2022.e01385 doi: 10.1016/j.sciaf.2022.e01385
    [50] M. Yavuz, N.Sene, Fundamental calculus of the fractional derivative defined with Rabotnov exponential kernel and application to nonlinear dispersive wave model, J. Ocean Eng. Sci., 6 (2021), 196–205. https://doi.org/10.1016/j.joes.2020.10.004 doi: 10.1016/j.joes.2020.10.004
    [51] D. Mortari, Representation of fractional operators using the theory of functional connections, Mathematics, 11 (2023), 4772. https://doi.org/10.3390/math11234772 doi: 10.3390/math11234772
    [52] X. J. Yang, M. Ragulskis, T. Tana, A new general fractional-order derivative with Rabotnov fractional-exponential kernel, Therm. Sci., 23 (2019), 3711–3718. https://doi.org/10.2298/TSCI180825254Y doi: 10.2298/TSCI180825254Y
    [53] S. Kumar, S. Ghosh, B. Samet, E. F. D. Goufo, An analysis for heat equations arises in diffusion process using new Yang‐Abdel‐Aty‐Cattani fractional operator, Math. Meth. Appl. Sci., 43 (2020), 6062–6080. https://doi.org/10.1002/mma.6347 doi: 10.1002/mma.6347
    [54] Q. Khan, A. Suen, H. Khan, P. Kumam, Comparative analysis of fractional dynamical systems with various operators, AIMS Mathematics, 8 (2023), 13943–13983. https://doi.org/10.3934/math.2023714 doi: 10.3934/math.2023714
    [55] M. M. Khader, J. E. Macías-Díaz, A. Román-Loera, K. M. Saad, A note on a fractional extension of the Lotka–Volterra model using the Rabotnov exponential kernel, Axioms, 13 (2024), 71. https://doi.org/10.3390/axioms13010071 doi: 10.3390/axioms13010071
    [56] I. V. Malyk, M. Gorbatenko, A. Chaudhary, S. Sharma, R. S. Dubey, Numerical solution of nonlinear fractional diffusion equation in framework of the Yang-Abdel-Cattani derivative operator, Fractal Fract., 5 (2021), 64. https://doi.org/10.3390/fractalfract5030064 doi: 10.3390/fractalfract5030064
    [57] H. Belghazi, M. El Ganaoui, J. C. Labbe, Analytical solution of unsteady heat conduction in a two-layered material in imperfect contact subjected to a moving heat source, Int. J. Therm. Sci., 49 (2010), 311–318. https://doi.org/10.1016/j.ijthermalsci.2009.06.006 doi: 10.1016/j.ijthermalsci.2009.06.006
    [58] J. Ma, Y. Sun, B. Li, Spectral collocation method for transient thermal analysis of coupled conductive, convective and radiative heat transfer in the moving plate with temperature dependent properties and heat generation, Int. J. Heat Mass Trans., 114 (2017), 469–482. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.082 doi: 10.1016/j.ijheatmasstransfer.2017.06.082
    [59] A. E. Abouelregal, M. Marin, S. M. Abusalim, An investigation into thermal vibrations caused by a moving heat supply on a spinning functionally graded isotropic piezoelectric bounded rod, Mathematics, 11 (2023), 1739. https://doi.org/10.3390/math11071739 doi: 10.3390/math11071739
    [60] A. E. Abouelregal, Generalized thermoelasticity for an isotropic solid sphere indual-phase-lag of heat transfer with surface heat flux, Int. J. Comput. Meth. Eng. Sci. Mech., 12 (2011), 96–105. https://doi.org/10.1080/15502287.2010.548172 doi: 10.1080/15502287.2010.548172
    [61] A. E. Abouelregal, Rotating magneto-thermoelastic rod with finite length due to moving heat sources via Eringen's nonlocal model, J. Comput. Appl. Mech., 50 (2019), 118–126. https://doi.org/10.22059/jcamech.2019.275893.360 doi: 10.22059/jcamech.2019.275893.360
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(196) PDF downloads(34) Cited by(0)

Article outline

Figures and Tables

Figures(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog