The article aimed to develop an accurate approximation of the fractional derivative with a non-singular kernel (the Rabotnov fractional-exponential formula), and show how to use it to solve numerically the blood ethanol concentration system. This model can be represented by a system of fractional differential equations. First, we created a formula for the fractional derivative of a polynomial function $ t^{p} $ using the Rabotnov exponential kernel. We used the shifted Vieta-Lucas polynomials as basis functions on the spectral collocation method in this work. By solving the specified model, this technique generates a system of algebraic equations. We evaluated the absolute and relative errors to estimate the accuracy and efficiency of the given procedure. The results point to the technique's potential as a tool for numerically treating these models.
Citation: Ahmed F. S. Aboubakr, Gamal M. Ismail, Mohamed M. Khader, Mahmoud A. E. Abdelrahman, Ahmed M. T. AbdEl-Bar, Mohamed Adel. Derivation of an approximate formula of the Rabotnov fractional-exponential kernel fractional derivative and applied for numerically solving the blood ethanol concentration system[J]. AIMS Mathematics, 2023, 8(12): 30704-30716. doi: 10.3934/math.20231569
The article aimed to develop an accurate approximation of the fractional derivative with a non-singular kernel (the Rabotnov fractional-exponential formula), and show how to use it to solve numerically the blood ethanol concentration system. This model can be represented by a system of fractional differential equations. First, we created a formula for the fractional derivative of a polynomial function $ t^{p} $ using the Rabotnov exponential kernel. We used the shifted Vieta-Lucas polynomials as basis functions on the spectral collocation method in this work. By solving the specified model, this technique generates a system of algebraic equations. We evaluated the absolute and relative errors to estimate the accuracy and efficiency of the given procedure. The results point to the technique's potential as a tool for numerically treating these models.
[1] | A. A. Kilbas, O. I. Marichev, S. G. Samko, Fractional integrals and derivatives: Theory and applications, Switzerland: Gordon and Breach, 1993. |
[2] | M. M. Khader, K. M. Saad, A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method, Chaos Solitons Fract., 110 (2018), 169–177. https://doi.org/10.1016/j.chaos.2018.03.018 doi: 10.1016/j.chaos.2018.03.018 |
[3] | M. M. Khader, K. M. Saad, On the numerical evaluation for studying the fractional KdV, KdV-Burger's and Burger's equations, Eur. Phys. J. Plus, 133 (2018), 1–13. https://doi.org/10.1140/epjp/i2018-12191-x doi: 10.1140/epjp/i2018-12191-x |
[4] | K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order, Electron. Trans. Numer. Anal., 5 (1997), 1–6. |
[5] | Q. Xi, Y. Y. Li, J. Zhou, B. W. Li, J. Liu, Role of radiation in heat transfer from nanoparticles to gas media in photothermal measurements, Int. J. Modern Phys. C, 30 (2019), 1950024. https://doi.org/10.1142/S0129183119500244 doi: 10.1142/S0129183119500244 |
[6] | M. M. Khader, M. Adel, Modeling and numerical simulation for covering the fractional COVID-19 model using spectral collocation-optimization algorithms, Fractal Fract., 6 (2022), 1–19. https://doi.org/10.3390/fractalfract6070363 doi: 10.3390/fractalfract6070363 |
[7] | M. M. Khader, The numerical solution for BVP of the liquid film flow over an unsteady stretching sheet with thermal radiation and magnetic field using the finite element method, Int. J. Modern Phys. C, 30 (2019), 1950080. https://doi.org/10.1142/S0129183119500803 doi: 10.1142/S0129183119500803 |
[8] | I. Podlubny, Fractional differential Eequations, New York: Academic Press, 1999. |
[9] | M. A. Khan, S. Ullah, K. O. Okosun, K. Shah, A fractional order pine wilt disease model with Caputo-Fabrizio derivative, Adv. Differ. Equ., 2018 (2018), 1–18. https://doi.org/10.1186/s13662-018-1868-4 doi: 10.1186/s13662-018-1868-4 |
[10] | M. Adel, H. M. Srivastava, M. M. Khader, Implementation of an accurate method for the analysis and simulation of electrical R-L circuits, Math. Methods Appl. Sci., 46 (2023), 8362–8371. http://dx.doi.org/10.1002/mma.8062 doi: 10.1002/mma.8062 |
[11] | M. Toufik, A. Atangana, New numerical approximation of fractional derivative with the non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 1–14. https://doi.org/10.1140/epjp/i2017-11717-0 doi: 10.1140/epjp/i2017-11717-0 |
[12] | V. F. Morales-Delgado, J. F. Gomez-Aguilar, K. Saad, R. F. E. Jimenez, Application of the Caputo-Fabrizio and Atangana-Baleanu fractional derivatives to the mathematical model of cancer chemotherapy effect, Math. Methods Appl. Sci., 42 (2019), 1167–1193. http://dx.doi.org/10.1002/mma.5421 doi: 10.1002/mma.5421 |
[13] | N. H. Sweilam, S. M. Al-Mekhlafi, T. Assiri, A. Atangana, Optimal control for cancer treatment mathematical model using Atangana-Baleanu-Caputo fractional derivative, Adv. Differ. Equ., 2020 (2020), 1–21. https://doi.org/10.1186/s13662-020-02793-9 doi: 10.1186/s13662-020-02793-9 |
[14] | M. Adel, N. H. Sweilam, M. M. Khader, S. M. Ahmed, H. Ahmad, T. Botmart, Numerical simulation using the non-standard weighted average FDM for 2Dim variable-order Cable equation, Results Phys., 39 (2022), 105682. https://doi.org/10.1016/j.rinp.2022.105682 doi: 10.1016/j.rinp.2022.105682 |
[15] | Y. Ibrahim, M. Khader, A. Megahed, F. A. El-Salam, M. Adel, An efficient numerical simulation for the fractional COVID-19 model by using the GRK4M together with the fractional FDM, Fractal Fract., 6 (2022), 1–14. https://doi.org/10.3390/fractalfract6060304 doi: 10.3390/fractalfract6060304 |
[16] | N. H. Sweilam, M. M. Khader, M. Adel, On the fundamental equations for modeling neuronal dynamics, J. Adv. Res., 5 (2014), 253–259. |
[17] | W. Gao, B. Ghanbari, H. M. Baskonus, New numerical simulations for some real-world problems with Atangana-Baleanu fractional derivative, Chaos Solitons Fract., 128 (2019), 34–43. https://doi.org/10.1016/j.chaos.2019.07.037 doi: 10.1016/j.chaos.2019.07.037 |
[18] | D. Kumar, J. Singh, D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Math. Methods Appl. Sci., 43 (2020), 443–457. https://doi.org/10.1002/mma.5903 doi: 10.1002/mma.5903 |
[19] | X. H. Yang, L. J. Wu, H. X. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192 |
[20] | H. X. Zhang, Y. Liu, X. H. Yang, An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space, J. Appl. Math. Comput., 69 (2023), 651–674. https://doi.org/10.1007/s12190-022-01760-9 doi: 10.1007/s12190-022-01760-9 |
[21] | M. M. Khader, K. M. Saad, A numerical study by using the Chebyshev collocation method for a problem of biological invasion: Fractional Fisher equation, Int. J. Biomath., 11 (2018), 1850099. https://doi.org/10.1142/S1793524518500997 doi: 10.1142/S1793524518500997 |
[22] | N. H. Sweilam, M. M. Khader, Approximate solutions to the nonlinear vibrations of multiwalled carbon nanotubes using Adomian decomposition method, Appl. Math. Comput., 217 (2010), 495–505. https://doi.org/10.1016/j.amc.2010.05.082 doi: 10.1016/j.amc.2010.05.082 |
[23] | N. H. Sweilam, R. F. Al-Bar, Variational iteration method for coupled nonlinear Schrödinger equations, Comput. Math. Appl., 54 (2007), 993–999. https://doi.org/10.1016/j.camwa.2006.12.068 doi: 10.1016/j.camwa.2006.12.068 |
[24] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 736–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[25] | V. E. Tarasov, No nonlocality. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 157–163. https://doi.org/10.1016/j.cnsns.2018.02.019 doi: 10.1016/j.cnsns.2018.02.019 |
[26] | S. Kumar, J. F. Gomez-Aguilar, J. E. Lavin-Delgado, D. Baleanu, Derivation of operational matrix of Rabotnov fractional-exponential kernel and its application to fractional Lienard equation, Alex. Eng. J., 59 (2020), 2991–2997. https://doi.org/10.1016/j.aej.2020.04.036 doi: 10.1016/j.aej.2020.04.036 |
[27] | A. F. Horadam, Vieta polynomials, Armidale, Australia: The University of New England, 2000. |
[28] | P. Agarwal, A. A. El-Sayed, Vieta-Lucas polynomials for solving a fractional-order mathematical physics model, Adv. Differ. Equ., 2020 (2020), 1–18. https://doi.org/10.1186/s13662-020-03085-y doi: 10.1186/s13662-020-03085-y |
[29] | M. Z. Youssef, M. M. Khader, Ibrahim Al-Dayel, W. E. Ahmed, Solving fractional generalized Fisher-Kolmogorov-Petrovsky-Piskunov's equation using compact-finite different method together with spectral collocation algorithms, J. Math., 2022 (2022), 1–9. https://doi.org/10.1155/2022/1901131 doi: 10.1155/2022/1901131 |
[30] | C. Ludwin, Blood alcohol content, Undergrad. J. Math. Model., 3 (2011), 1–9. http://dx.doi.org/10.5038/2326-3652.3.2.1 doi: 10.5038/2326-3652.3.2.1 |
[31] | S. Qureshi, A. Yusuf, A. A. Shaikh, M. Inc, D. Baleanu, Fractional modeling of blood ethanol concentration system with real data application, Chaos, 29 (2019), 013143. https://doi.org/10.1063/1.5082907 doi: 10.1063/1.5082907 |
[32] | C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17 (1986), 704–719. https://doi.org/10.1137/0517050 doi: 10.1137/0517050 |
[33] | M. M. Khader, K. M. Saad, Numerical treatment for studying the blood ethanol concentration systems with different forms of fractional derivatives, Int. J. Modern Phys. C, 31 (2020), 2050044. https://doi.org/10.1142/S0129183120500448 doi: 10.1142/S0129183120500448 |