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1. Introduction

Numerous authors have remained interested in fractional calculus throughout the past three
decades [1]. To addresFresea s the demand for models of real-world problems in numerous domains,
researchers have identified the importance of discrete fractional derivatives with unique, singular, or
non-singular, distinct kernels [2, 3]. Due to the lack of an exact solution in the majority of fractional
differential equations (FDEs), numerical and approximation techniques must be used [4–7]. Also, for
more details, you can read [8–10].

As generalizations of the classical ones, a wide range of fractional operators have been developed
recently. The typical derivative’s power kernel, as shown by Caputo and Riemann-Liouville, a novel
class of fractional derivatives is produced when the exponential and Mittag-Leffler kernels are used
to replace this kernel. Atangana-Baleanu, and Caputo-Fabrizio, respectively, are the names of the
derivatives with Mittag-Leffler and exponential kernels. Numerous fields, such as chaos theory [11],
medical sciences [12–16] and groundwater flow [17], make extensive use of these non-singular
derivatives [18].

It is difficult to create a higher-order convergent method to solve numerically the multidimensional
FDEs. Due to such reasons, some numerical methods are frequently applied to achieve this objective.
Among them, is the space-time spectral order sinc-collocation method, which is used for solving the
fourth-order nonlocal heat model arising in viscoelasticity [19]. Also, the numerical solution of the
three-dimensional nonlocal evolution equation with a weakly singular kernel is considered where
the first-order fractional convolution quadrature scheme and backward Euler alternating direction
implicit (ADI) method, are proposed to approximate and discretize the Riemann-Liouville fractional
integral term and temporal derivative, respectively. To obtain a fully discrete method, the standard
central finite difference scheme is used to discretize the second-order spatial derivative. By using
the ADI scheme for the three-dimensional problem, the overall computational cost is reduced
significantly [20].

Here in this paper, a broad approximation analytical method for locating the approximate solution
of the differential equations is the spectral collocation technique (SCM). The well-known polynomials
on [−2, 2], known as Vieta-Lucas polynomials, have various applications. They are commonly utilized
because they have high function approximation qualities. SCM provides certain benefits for dealing
with FDEs because any of the numerical programs can readily produce the Vieta-Lucas coefficients for
the solution. This makes the procedure quicker than the alternatives. Additionally, this approach is a
numerical strategy for solving many problems in both finite and infinite domains [21–23].

This effort will estimate the fractional operator using the Rabotnov fractional-exponential (RFE)
kernel. The fractional order derivative of a polynomial function tp is first estimated using the RFE
kernel. Based on this approximation and the properties of the Vieta-Lucas polynomials (VLPs),
we offer a numerical simulation for the suggested model. By using the polynomial’s fractional
derivative, we can demonstrate the accuracy of this new formula. We also investigate the blood ethanol
concentration system (BECS) with the RFE kernel fractional derivative, allowing us to confidently
forecast the outcome of our approach.

The rest of the paper is organized as follows: In Section 2, we present some definitions and concepts
concerning fractional derivatives, the approximation of fractional order derivative of tp, and the shifted
Vieta-Lucas polynomials. Through Section 3, we give the implementation of the proposed method.
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In Section 4, we present a numerical simulation of the proposed model under study. Finally, the
conclusions are in Section 5.

2. Definitions and concepts

2.1. Fractional derivatives

Definition 2.1. Let φ(t) ∈ H1(0, b), then the fractional Caputo derivative CDν of order 0 < ν ≤ 1 is
given by

CDνφ(t) =
1

Γ(1 − ν)

∫ t

0

φ
′

(τ)
(t − τ)ν

dτ, t > 0.

Definition 2.2. The Caputo fractional derivative (left-sided) on interval [0, 1] for a function Θ(t) of
order β is defined by

RFEDβΘ(t) =
∫ t

0
Θ(n)(ξ)Rβ[−Ω(t − ξ)β]dξ, n − 1 < β ≤ n, (2.1)

where Ω ∈ R+ and the Rabotnov fractional exponential function is defined by

Rβ[−Ω(t)β] =
∞∑

k=0

(−Ω)k t(k+1)(β+1)−1

Γ[(k + 1)(β + 1)]
.

Regarding the RFE-operator derivative, further information can be found in [24, 25].

2.2. Approximation of fractional order derivative of tp

In this part, an approximate fractional derivative formula corresponding to the RFE kernel is
computed using a widely accessible numerical integration scheme, such as the Simpson-1

3 rule.

Theorem 2.1. [26] For n − 1 < β < n and g(t) = tp with p ≥ n (n = ⌈β⌉), we have

RFEDβ tp =
hΓ(p + 1)

3Γ(p + 1 − ⌈β⌉)

[
Gβ,p(t, ξ0) +Gβ,p(t, ξN) + 4

N−1∑
k=1, k−odd

Gβ,p(t, ξk) + 2
N−2∑

k=2, k−even

Gβ,p(t, ξk)
]
,

(2.2)

where the domain [0, 1] is divided into N equal segments and the length of each segment is h:

h =
1
N
, Gβ,p(t, ξ) = ξp−⌈β⌉ Rβ[−Ω(t − ξ)β], ξk =

k
N
, k = 0, 1, 2, ...,N.

Remark 2.1. Due to the difficulty of integration (2.1), it was evaluated using Simpson’s 1/3 rule, or any
other numerical method could be used. We did not use the trapezoidal rule, due to the hope of getting
the numerical solutions with small errors, which will not be achieved unless a highly accurate method
of integration is used. Here in our work we will express the solution as a finite series of polynomials,
and as it shows, we can get more accurate values if we increase the order of approximation. This, in
turn, prompts us to use high-precision integration techniques, such as the Simpson rule or others.
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2.3. The shifted VLPs

To achieve our goal, we present in this subsection the fundamental definitions, notations and
characteristics of the shifted VLPs [27]. The majority of our research is concentrated on an orthogonal
polynomials class. The recurrence relations and analytical forms of these polynomials can be used to
construct a new family of orthogonal polynomials called VLPs.

VLPs VLk(z) of degree k ∈ N0 is defined as follows [27]:

VLk(z) = 2 cos(kψ), ψ = arccos(0.5z), ψ ∈ [0, π], |z| ≤ 2.

The VLk(z) satisfies

VLk(z) = zVLk−1(z) − VLk−2(z), k = 2, 3, . . . , VL0(z) = 2, VL1(z) = z.

Using z = 4t − 2, VLPs are used to create a new class of orthogonal polynomials on [0, 1], which
will be designated by VLs

k(t) and so

VLs
k(t) = VLk(4t − 2).

VLs
k(t) has the following recurrence relation:

VLs
k+1(t) = (4t − 2)VLs

k−1(t) − VLs
k−2(t), k = 2, 3, . . . ,

where VLs
0(t) = 2, VLs

1(t) = 4t − 2. Also, we find VLs
k(0) = 2(−1)k and VLs

k(1) = 2, k = 0, 1, 2, ... .
The analytical formula for VLs

k(t) is

VLs
k(t) = 2k

k∑
j=0

(−1) j 4k− jΓ(2k − j)
Γ( j + 1)Γ(2k − 2 j + 1)

tk− j, k = 2, 3, . . . .

The polynomials VLs
i (t) are orthogonal on [0, 1] w.r.t. the weight function 1

√
t−t2

, and so we have

〈
VLs

i (t),VLs
j(t)
〉
=

∫ 1

0

VLs
i (t)VLs

j(t)
√

t − t2
dt =


0, i , j , 0,
4π, i = j = 0,
2π, i = j , 0.

Let v(t) ∈ L2[0, 1], then,

v(t) =
∞∑
j=0

c jVLs
j(t). (2.3)

Using the first m + 1 terms of (2.3), we have

vm(t) =
m∑

j=0

c jVLs
j(t), (2.4)

where c j, j = 0, 1, 2, . . . ,m can be obtained by

c j =
1
δ j

∫ 1

0

vm(t)VLs
j(t)

√
t − t2

dt, δ j =

{
4π, j = 0,
2π, j = 1, 2, . . . ,m.

(2.5)

Lemma 2.1. If v(t) ∈ L2
w̃ [0, 1] w.r.t. the weight function w̃(t) = 1

√
t−t2

, and |v′′(t)| ≤ ε, ε ∈ R, then
the approximation (2.4) converges uniformly to v(t) as m → ∞. Furthermore, we have the following
estimations:
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(1) ∣∣∣c j

∣∣∣ ≤ ε

4 j
(
j2 − 1

) , j > 2.

(2) The error can be estimated by

∥v(t) − vm(t)∥w̃ <
L

12
√

m3
.

(3) If v(m)(t) ∈ C[0, 1], then,

∥v(t) − vm(t)∥ ≤
∆Πm+1

(m + 1)!
√
π, ∆ = max

t∈[0,1]
v(m+1)(t) and Π = max {1 − t0, t0} .

Proof. The details of the proof for these three items in this lemma can be found through Theorems 2–4
in [28]. □

For additional information on the convergence analysis of the approximation (2.4), and the VLPs
see [29].
Theorem 2.2. The β-order of the RFE fractional derivative for vi(t) which is given in Eq (2.4) can be
found by [26]:

RFEDβ vi(t) =
i∑

j=⌈β⌉

χi, j,β

[
Gβ,p(t, ξ0) +Gβ,p(t, ξm) + 4

m−1∑
k=1, k−odd

Gβ,p(t, ξk) + 2
m−2∑

k=2, k−even

Gβ,p(t, ξk)
]
, (2.6)

where

χi, j,β =
hΓ(i − j + 1)

3Γ(i − j + 1 − ⌈β⌉)
×

(−1) j2i 4i− jΓ(2i − j)
Γ( j + 1)Γ(2i − 2 j + 1)

, Gβ,p(t, ξ) = ξp−⌈β⌉ Rβ[−Ω(t − ξ)β]p=i− j.

Proof. Since the fractional operator RFEDβ is linear, so from (2.4), we can obtain the following:

RFEDβ vi(t) =
i∑

j=0

(−1) j2i 4i− jΓ(2i − j)
Γ( j + 1)Γ(2i − 2 j + 1)

RFEDβ ti− j. (2.7)

Now, from Theorem 2.1, we can get the following:

RFEDβ ti− j =
Γ(i − j + 1)

Γ(i − j − ⌈β⌉ + 1)
×

h
3

[
Gβ,p(t, ξ0) +Gβ,p(t, ξN)

+ 4
N−1∑

k=1, k−odd

Gβ,p(t, ξk) + 2
N−2∑

k=2, k−even

Gβ,p(t, ξk)
]
,

(2.8)

where the domain [0, 1] is divided into m equal segments with length h of each segment:

h =
1
N
, Gβ,p(t, ξ) = ξp−⌈β⌉ Rβ[−Ω(t − ξ)β]p=i− j, ξk =

k
N
, k = 0, 1, 2, ...,N.

Connecting (2.7) and (2.8), we get

RFEDβ vi(t) =
i∑

j=⌈β⌉

Γ(i − j + 1)
Γ(i − j + 1 − ⌈β⌉)

×
(−1) j2i 4i− jΓ(2i − j)
Γ( j + 1)Γ(2i − 2 j + 1)

×
h
3

[
Gβ,p(t, ξ0) +Gβ,p(t, ξN)

+ 4
N−1∑

k=1, k−odd

Gβ,p(t, ξk) + 2
N−2∑

k=2, k−even

Gβ,p(t, ξk)
]
.

(2.9)
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The proof is complete because of this finding, which makes it simple to arrive at the necessary
formula (2.6). □

3. Implementation of the proposed method

This section focuses on determining the alcohol concentrations in a person’s blood Ψ(t) and
stomach Φ(t). The primary source of the actual data used in the current research study was an
experimental investigation conducted in [30]. The proposed model is offered and based on the kinetic
reaction of the RFE fractional derivative in the following form:

RFEDθΦ(t) = −λθΦ(t), (3.1)

RFEDνΨ(t) = λνΦ(t) − µνΨ(t), (3.2)

Φ(0) = Φ0, Ψ(0) = 0, (3.3)

where the parameters are defined in [30]. The exact solution of (3.1)–(3.3) is given by [31]:

Φ(t) = Φ0 Eθ(−λθtθ),

Ψ(t) = Φ0 λ
ν
∞∑

r=0

∞∑
q=0

(−λθ)r(−µν)q

Γ(r θ + q ν + ν + 1)
tr θ+q ν+ν.

(3.4)

Now, we use the SCM to numerically solve (3.1)–(3.3). Φ(t) andΨ(t) can be approximated byΦm(t)
and Ψm(t), respectively as follows:

Φm(t) =
m∑

i=0

ρi VLs
i (t), Ψm(t) =

m∑
i=0

σi VLs
i (t). (3.5)

Using (3.1), (3.2), (3.5) and (2.6), then,

m∑
j=⌈θ⌉

ρ j χm, j,θ

[
Gθ,p(t, ξ0) +Gθ,p(t, ξN) + 4

N−1∑
k=1, k−odd

Gθ,p(t, ξk) + 2
N−2∑

k=2, k−even

Gθ,p(t, ξk)
]

= −

λθ m∑
i=0

ρi VLs
i (t)

 ,
(3.6)

m∑
j=⌈ν⌉

σ j χm, j,ν

[
Gν,p(t, ξ0) +Gν,p(t, ξN) + 4

N−1∑
k=1, k−odd

Gν,p(t, ξk) + 2
N−2∑

k=2, k−even

Gν,p(t, ξk)
]

=λν
 m∑

i=0

ρ i VLs
i (t)

 − µν  m∑
i=0

σi VLs
i (t)

 .
(3.7)

The previous equations (3.6) and (3.7) will be collocated at m of nodes tr (roots of VLs
m(t)) as follows:

m∑
j=⌈θ⌉

ρ j χm, j,θ

[
Gθ,p(tr, ξ0) +Gθ,p(tr, ξN) + 4

N−1∑
k=1, k−odd

Gθ,p(tr, ξk) + 2
N−2∑

k=2, k−even

Gθ,p(tr, ξk)
]

= −

λθ m∑
i=0

ρi VLs
i (tr)

 ,
(3.8)
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m∑
j=⌈ν⌉

σ j χm, j,ν

[
Gν,p(tr, ξ0) +Gν,p(tr, ξN) + 4

N−1∑
k=1, k−odd

Gν,p(tr, ξk) + 2
N−2∑

k=2, k−even

Gν,p(tr, ξk)
]

=λν
 m∑

i=0

ρ i VLs
i (tr)

 − µν  m∑
i=0

σi VLs
i (tr)

 .
(3.9)

Also, from Eq (3.5) in (3.3), (3.3) can be written as

m∑
j=0

2(−1) j ρ j = Φ0,

m∑
j=0

2(−1) j σ j = 0. (3.10)

Equations (3.8) and (3.9) with (3.10) give a system of 2(m + 1) equations that will be solved for
ρi, σi, i = 0, 1, ...,m, by using the Newton iteration method [32].

4. Numerical simulation

We are now prepared to numerically solve the investigated model using the suggested technique
by considering (3.1)–(3.3) for some θ, ν,m with λ = 0.02873, µ = 0.08442 and Φ0 = 4, Ψ0 = 0 in
Figures 1–6.

In Figure 1, the numerical solution is compared with the exact solution at θ = 0.95, ν = 0.95 with
m = 4, while in Figure 2, the absolute error with θ = 0.95, ν = 0.95 at m = 8 is given.

In Figure 3, a comparison between the numerical and exact solutions for θ = 0.85, ν = 0.85 with
m = 4, where in Figure 4, the absolute error is presented with θ = 0.85, ν = 0.85 at m = 8.

Figure 5 gives the numerical (a,c) and exact solutions (b,d) for some values of θ and ν at m = 5.
Finally, Figure 6 gives the numerical (a,c) and exact solutions (b,d) for some λ and µ at m = 5 and

initial conditions Φ0 = 4, Ψ0 = 0.
We can say that the behavior of the solution is dependent on θ, ν, λ and µ, demonstrating the viability

of the proposed numerical approach in the context of fractional derivatives.

Figure 1. Comparison between the approximate and exact solutions with θ = ν = 0.95 and
m = 4.

AIMS Mathematics Volume 8, Issue 12, 30704–30716.



30711

Figure 2. The absolute error with θ = 0.95, ν = 0.95 and m = 8.

Figure 3. Comparison between the approximate and exact solutions with θ = ν = 0.85 and
m = 4.

Figure 4. The absolute error with θ = 0.85, ν = 0.85 and m = 8.
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Figure 5. Behavior of the numerical solution with distinct values of θ and ν at m = 5.

Figure 6. Behavior of the numerical solution with distinct values λ and µ at m = 5,Φ0 = 4.
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The impact of the order of the fractional derivative can be shown through the given Figures 1–6,
especially Figure 5, where we computed the numerical solution with various values of the fractional
derivative, which is closely consistent with the natural behavior of solutions to reduce the alcohol
concentrations (AC) in a person’s blood and increase AC in a person’s stomach.

To confirm our numerical solutions at (θ = 0.9, ν = 0.9 and Φ0 = 10, Ψ0 = 0), in Table 1, the
relative error (RE) for the proposed approach and the Chebyshev SCM for the same model utilizing
the non-singular kernel of the Atangana-Baleanu-Caputo fractional derivative is also contrasted [33].

Table 1. Comparison of the relative error for solutions.

RE of method [33] RE of present method
t Φ(t) Ψ(t) Φ(t) Ψ(t)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2.1597E-04
6.8523E-05
5.8520E-05
3.1321E-05
3.8520E-04
7.9521E-05
1.8521E-05
8.6541E-05
0.7536E-05
1.8520E-05
3.9510E-06

3.4561E-06
3.0258E-06
2.6524E-05
3.9800E-06
2.0123E-06
0.0147E-06
2.9632E-05
2.0123E-05
1.1502E-06
0.3214E-05
3.8521E-05

5.7410E-07
1.0213E-07
2.6541E-06
5.3214E-07
3.6325E-07
3.3210E-07
0.9541E-06
4.3214E-06
3.0214E-07
2.1234E-06
2.9514E-07

2.3210E-08
3.1234E-08
5.9632E-07
8.9565E-08
5.1230E-07
3.6963E-09
1.3214E-07
3.0125E-07
3.1102E-07
2.5241E-07
3.3214E-07

5. Conclusions

The indicated RFE kernel problem was quantitatively addressed using the existing approximation
technique. Using the provided numerical solutions, we demonstrated that this method can be utilized to
solve the given model satisfactorily and that there is excellent agreement with the existing results. We
may additionally control and minimize the relative errors by increasing terms from the series solution.
By contrasting the provided approximate and exact solutions, the quality of the proposed approach
was shown. We may conclude that the operator without singularity was more suitable for numerical
simulations of the model under discussion in this research when compared to previously published
work, employing a different numerical strategy and a different fractional derivative. We intend to
deal with this model in the future, but on a larger scale by generalizing this research to include
a modified proposed method, a high-dimensional problem with real models or additional types of
fractional derivatives. The numerical simulation work was completed using the Mathematica computer
program.
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