In this comprehensive study, we delve deeply into the concept of multivariate total positivity, defining it in accordance with a direction. We rigorously explore numerous salient properties, shedding light on the nuances that characterize this notion. Furthermore, our research extends to establishing distinct forms of dependence among the order statistics of a sample from a distribution function. Our analysis aims to provide a nuanced understanding of the interrelationships within multivariate total positivity and its implications for statistical analysis and probability theory.
Citation: Enrique de Amo, José Juan Quesada-Molina, Manuel Úbeda-Flores. Total positivity and dependence of order statistics[J]. AIMS Mathematics, 2023, 8(12): 30717-30730. doi: 10.3934/math.20231570
In this comprehensive study, we delve deeply into the concept of multivariate total positivity, defining it in accordance with a direction. We rigorously explore numerous salient properties, shedding light on the nuances that characterize this notion. Furthermore, our research extends to establishing distinct forms of dependence among the order statistics of a sample from a distribution function. Our analysis aims to provide a nuanced understanding of the interrelationships within multivariate total positivity and its implications for statistical analysis and probability theory.
[1] | K. Jogdeo, Concepts of dependence, in Encyclopedia of Statistical Sciences, vol. 1, (eds. S. Kotz and N.L. Johnson) New York: Wiley, 1982,324–334. |
[2] | P. Čížek, R. Weron, W. Härdle, Statistical Tools for Finance and Insurance, Berlin: Springer, 2005. http://dx.doi.org/10.1007/978-3-642-18062-0 |
[3] | R. E. Barlow, F. Proschan, Statistical Theory of Reliability and Life Testing: Probability Models, Silver Spring, MD: To Begin With, 1981. |
[4] | H. Joe, Multivariate Models and Dependence Concepts, London: Chapman & Hall, 1997. http://dx.doi.org/10.1201/9780367803896 |
[5] | S. Karlin, Total Positivity, Stanford, CA: Stanford University Press, 1968. |
[6] | M. L. T. Lee, Dependence by total positivity, Ann. Probab., 13 (1985), 572–582. http://dx.doi.org/10.1214/aop/1176993010 doi: 10.1214/aop/1176993010 |
[7] | E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist., 37 (1966), 1137–1153. |
[8] | M. Shaked, A family of concepts of dependence for bivariate distributions, J. Amer. Statist. Assoc., 72 (1977), 642–650. http://dx.doi.org/10.1080/01621459.1977.10480628 doi: 10.1080/01621459.1977.10480628 |
[9] | Y. L. Tong, Probability Inequalities in Multivariate Distributions, New York: Academic Press, 1980. |
[10] | S. Karlin, Y. Rinott, M-Matrices as covariance matrices of multinormal distributions, Linear Algebra Appl., 52 (1983), 419–438. http://dx.doi.org/10.1016/0024-3795(83)80027-5 doi: 10.1016/0024-3795(83)80027-5 |
[11] | M. Slawski, M. Hein, Estimation of positive definite M-matrices and structure learning for attractive Gaussian Markov random field, Linear Algebra Appl., 473 (2015), 145–179. http://dx.doi.org/10.1016/j.laa.2014.04.020 doi: 10.1016/j.laa.2014.04.020 |
[12] | H. A. David, H. N. Nagaraja, Order Statistics, 3 Eds. Hoboken, NJ: John Wiley & Sons, Inc., 2003. http://dx.doi.org/10.1002/0471722162 |
[13] | S. Karlin, Y. Rinott, Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions, J. Multivariate Anal., 10 (1980), 467–498. http://dx.doi.org/10.1016/0047-259X(80)90065-2 doi: 10.1016/0047-259X(80)90065-2 |
[14] | A. M. Marshall, I. Olkin, Multivariate distributions generated from mixtures of convolution and product families, in Topics in Statistical Dependence, (eds. H.W. Block, A.R. Sampson and T.H. Savits) Institute of Mathematical Statistics, Lecture Notes - Monograph Series, vol. 16, 1990,371–393. |
[15] | S. Karlin, Y. Rinott, Total positivity properties of absolute value multinormal variables with applications to confidence interval estimates and related probabilistic inequalities, Ann. Stat., 9 (1981), 1035–1049. |
[16] | J. G. Propp, D. B. Wilson, Exact sampling with coupled Markov chains and applications to statistical mechanics, Random Struct. Algor., 9 (1996), 223–252. http://dx.doi.org/10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO;2-O doi: 10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO;2-O |
[17] | J. J. Quesada-Molina, M. Úbeda-Flores, Directional dependence of random vectors, Inf. Sci., 215 (2012), 67–74. http://dx.doi.org/10.1016/j.ins.2012.05.019 doi: 10.1016/j.ins.2012.05.019 |
[18] | B. C. Arnold, N. Balakrishnan, H. N. Nagaraja, A first Course in Order Statistics, Philadelphia: SIAM, 2008. http://dx.doi.org/10.1137/1.9780898719062.fm |
[19] | A. Colangelo, A. Müller, M. Scarsini, Positive dependence and weak convergence, J. Appl. Prob., 43 (2006), 48–59. http://dx.doi.org/10.1239/jap/1143936242 doi: 10.1239/jap/1143936242 |
[20] | G. Nappo, F. Spizzichino, Relations between ageing and dependence for exchangeable lifetimes with an extension for the IFRA/DFRA property, Depend. Model., 8 (2020), 1–33. http://dx.doi.org/10.1515/demo-2020-0001 doi: 10.1515/demo-2020-0001 |
[21] | Z. Wei, T. Wang, W. Panichkitkosolkul, Dependence and association concepts through copulas, in Modeling Dependence in Econometrics, (eds. V. N. Huynh, V. Kreinovich and S. Sriboonchitta) Advances in Intelligent Systems and Computing, vol. 251, 2014,113–126. http://dx.doi.org/10.1007/978-3-319-03395-2_7 |