Research article Special Issues

The least squares Bisymmetric solution of quaternion matrix equation $ AXB = C $

  • Received: 07 May 2021 Accepted: 03 September 2021 Published: 15 September 2021
  • MSC : 15A33, 65F05

  • In this paper, the idea of partitioning is used to solve quaternion least squares problem, we divide the quaternion Bisymmetric matrix into four blocks and study the relationship between the block matrices. Applying this relation, the real representation of quaternion, and M-P inverse, we obtain the least squares Bisymmetric solution of quaternion matrix equation $ AXB = C $ and its compatable conditions. Finally, we verify the effectiveness of the method through numerical examples.

    Citation: Dong Wang, Ying Li, Wenxv Ding. The least squares Bisymmetric solution of quaternion matrix equation $ AXB = C $[J]. AIMS Mathematics, 2021, 6(12): 13247-13257. doi: 10.3934/math.2021766

    Related Papers:

  • In this paper, the idea of partitioning is used to solve quaternion least squares problem, we divide the quaternion Bisymmetric matrix into four blocks and study the relationship between the block matrices. Applying this relation, the real representation of quaternion, and M-P inverse, we obtain the least squares Bisymmetric solution of quaternion matrix equation $ AXB = C $ and its compatable conditions. Finally, we verify the effectiveness of the method through numerical examples.



    加载中


    [1] S. L. Adler, Scattering and decay theory for quaternionic quantum mechanics, and the structure of induced T nonconservation, Phys. Rev. D, 37 (1988), 3654–3662.
    [2] N. L. Bihan, S. J. Sangwine, Color image decomposition using quaternion singular value decomposition, In: International conference on visual information engineering (VIE 2003), 2003,113–116.
    [3] F. Caccavale, C. Natale, B. Siciliano, L. Villani, Six-Dof impedance control based on angle/axis representations, IEEE T. Robotic. Autom., 15 (1999), 289–300. doi: 10.1109/70.760350
    [4] D. R. Farenick, B. A. F. Pidkowich, The spectral theorem in quaternions, Linear Algebra Appl., 371 (2003), 75–102. doi: 10.1016/S0024-3795(03)00420-8
    [5] P. Ji, H. T. Wu, A closed-form forward kinematics solution for the 6-6P Stewart platform, IEEE T. Robotic. Autom., 17 (2001), 522–526. doi: 10.1109/70.954766
    [6] T. S. Jiang, Y. H. Liu, M. S. Wei, Quaternion generalized singular value decomposition and its applications, Appl. Math. J. Chin. Univ., 21 (2006), 113–118. doi: 10.1007/s11766-996-0030-3
    [7] I. Kyrchei, Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations, Linear Algebra Appl., 438 (2013), 136–152. doi: 10.1016/j.laa.2012.07.049
    [8] I. Kyrchei, Determinantal representations of general and (skew-)Hermitian solutions to the generalized Sylvester-type quaternion matrixequation, Abstr. Appl. Anal., 2019 (2019), 5926832.
    [9] Z. Al-Zhour, Some new linear representations of matrix quaternions with some applications, J. King Saud Univ. Sci., 31 (2019), 42–47. doi: 10.1016/j.jksus.2017.05.017
    [10] A. Kilicman, Z. Al-Zhour, On Convergents Infinite Products and Some Generalized Inverses of Matrix Sequences, Abstr. Appl. Anal., 2011 (2011), 536935.
    [11] T. Jiang, L. Chen, Algebraic algorithms for least squares problem in quaternionic quantum theory, Comput. Phys. Commun., 176 (2007), 481–485. doi: 10.1016/j.cpc.2006.12.005
    [12] Y. H. Liu, On the best approximation problem of quaternion matrices, J. Math. Study, 37 (2004), 129–134.
    [13] L. P. Huang, The matrix equation $AXB- GXD = E$ over the quaternion field, Linear Algebra Appl., 234 (1996), 197–208. doi: 10.1016/0024-3795(94)00103-0
    [14] S. F. Yuan, A. P. Liao, Least squares solution of the quaternion matrix equation with the least norm, Linear Multilinear A., 59 (2011), 985–998. doi: 10.1080/03081087.2010.509928
    [15] G. R. Wang, S. Z. Qiao, Solving constrained matrix equations and Cramer rule, Appl. Math. Comput., 159 (2004) 333–340.
    [16] Q. W. Wang, A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl., 384 (2004), 43–54. doi: 10.1016/j.laa.2003.12.039
    [17] Q. W. Wang, Bisymmetric and centrosymmetric solutions to system of real quaternion matrix equation, Comput. Math. Appl., 49 (2005), 641–650. doi: 10.1016/j.camwa.2005.01.014
    [18] Q. W. Wang, S. W. Yu, C. Y. Lin, Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations with applications, Appl. Math. Comput., 195 (2007), 733–744.
    [19] Q. W. Wang, H. X. Chang, Q. Ning, The common solution to six quaternion matrix equations with applications, Appl. Math. Comput., 198 (2007), 209–226.
    [20] Q. W. Wang, H. X. Chang, C. Y. Lin, P-(skew)symmetric common solutions to a pair of quaternion matrix equations, Appl. Math. Comput., 195 (2008), 721–732.
    [21] Q. W. Wang, F. Zhang, The reflexive re-nonnegative definite solution to a quaternion matrix equation, Electron. J. Linear Algebra, 17 (2008), 88–101.
    [22] G. J. Song, Q. W. Wang, H. X. Chang, Cramer rule for the unique solution of restricted matrix equations over the quaternion skew field, Comput. Math. Appl., 61 (2011), 1576–1589. doi: 10.1016/j.camwa.2011.01.026
    [23] G. J. Song, Q. W. Wang, Condensed Cramer rule for some restricted quaternion linear equations, Appl. Math. Comput., 218 (2011), 3110–3121.
    [24] W. S. Cao, Solvability of a quaternion matrix equation, Appl. Math. J. Chin. Univ., 17 (2002), 490–498. doi: 10.1007/s11766-996-0015-2
    [25] I. I. Kyrchei, Cramer's rule for some quaternion matrix equations, Appl. Math. Comput., 217 (2010), 2024–2030.
    [26] F. X. Zhang, M. S. Wei, Y. Li, J. L. Zhao, An efficient method for least squares problem of the quaternion matrix equation $ X- A \hat{X}B = C$, Linear Multilinear A., 2020 (2020), 1–13.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1926) PDF downloads(104) Cited by(3)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog