In this paper, we examine a connotation between certain subclasses of harmonic univalent functions by applying certain convolution operator regarding Mittag-Leffler function. To be more precise, we confer such influences with Janowski-type harmonic univalent functions in the open unit disc $ \mathbb{D}. $
Citation: Murugusundaramoorthy Gangadharan, Vijaya Kaliyappan, Hijaz Ahmad, K. H. Mahmoud, E. M. Khalil. Mapping properties of Janowski-type harmonic functions involving Mittag-Leffler function[J]. AIMS Mathematics, 2021, 6(12): 13235-13246. doi: 10.3934/math.2021765
In this paper, we examine a connotation between certain subclasses of harmonic univalent functions by applying certain convolution operator regarding Mittag-Leffler function. To be more precise, we confer such influences with Janowski-type harmonic univalent functions in the open unit disc $ \mathbb{D}. $
[1] | J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Series A. I. Math., 9 (1984), 3–25. |
[2] | P. Duren, Harmonic mappings in the plane, Cambridge: Cambridge University Press, 2004. |
[3] | O. P. Ahuja, Planar harmonic univalent and related mappings, J. Inequal. Pure Appl. Math., 6 (2005), 1–18. |
[4] | O. P. Ahuja, J. M. Jahangiri, Noshiro-type harmonic univalent functions, Sci. Math. Jpn., 6 (2002), 253–259. |
[5] | J. Diok, On Janowski harmonic functions, J. Appl. Anal., 21 (2015), 99–107. |
[6] | J. Diok, Classes of harmonic functions associated with Ruscheweyh derivatives, RACSAM, 113 (2019), 1315–1329. doi: 10.1007/s13398-018-0542-8 |
[7] | W. Janowski, Some extremal problems for certain families of analytic functions-I, Ann. Polon. Math., 28 (1973), 297–326. doi: 10.4064/ap-28-3-297-326 |
[8] | J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Ann. Univ. Mariae Curie-Skłodowska Sect. A., 52 (1998), 57–66. |
[9] | J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl., 235 (1999), 470–477. doi: 10.1006/jmaa.1999.6377 |
[10] | G. M. Mittag-Leffler, Sur la nouvelle fonction $\mathbf{E}(x)$, C. R. Acad. Sci. Paris, 137 (1903), 554–558. |
[11] | A. Wiman, Über die Nullstellun der Funcktionen $\mathbf{E} (x)$, Acta Math., 29 (1905), 217–134. doi: 10.1007/BF02403204 |
[12] | A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 30 (2016), 2075–2081. doi: 10.2298/FIL1607075A |
[13] | D. Bansal, J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic, 61 (2016), 338–350. doi: 10.1080/17476933.2015.1079628 |
[14] | S. K. Sahoo, H. Ahmad, M. Tariq, B. Kodamasingh, H. Aydi, M. De la Sen, Hermite-Hadamard type inequalities involving k-fractional operator for (h, m)-convex functions, Symmetry, 13 (2021), 1686. doi: 10.3390/sym13091686 |
[15] | V. Kiryakova, Generalized fractional calculus and applications, Harlow: Longman Scientific & Technical; co-published in New York: John Wiley & Sons, Inc., 1994. |
[16] | O. P. Ahuja, Planar harmonic convolution operators generated by hypergeometric functions, Integr. Transf. Spec. F., 18 (2007), 165–177. doi: 10.1080/10652460701210227 |
[17] | N. E. Cho, S. Y. Woo, S. Owa, Uniform convexity properties for hypergeometric functions, Fract. Calc. Appl. Anal., 5 (2002), 303–313. |
[18] | B. A. Frasin, T. Al-Hawary, F. Yousef, Necessary and sufficient conditions for hypergeometric functions to be in a subclass of analytic functions, Afr. Mat., 30 (2019), 223–230. doi: 10.1007/s13370-018-0638-5 |
[19] | H. Silverman, Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl., 172 (1993), 574–581. doi: 10.1006/jmaa.1993.1044 |
[20] | H. M. Srivastava, G. Murugusundaramoorthy, S. Sivasubramanian, Hypergeometric functions in the parabolic starlike and uniformly convex domains, Integr. Transf. Spec. F., 18 (2007), 511–520. doi: 10.1080/10652460701391324 |
[21] | A. Swaminathan, Certain sufficient conditions on Gaussian hypergeometric functions, J. Ineq. Pure Appl. Math., 5 (2004), 1–10. |
[22] | T. Bulboacǎ, G. Murugusundaramoorthy, Univalent functions with positive coefficients involving Pascal distribution series, Commun. Korean Math. Soc., 35 (2020), 867–877. |
[23] | G. Murugusundaramoorthy, Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat., 28 (2017), 1357–1366. doi: 10.1007/s13370-017-0520-x |
[24] | S. Porwal, M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat., 27 (2016), 1021–1027. doi: 10.1007/s13370-016-0398-z |
[25] | S. K. Sahoo, M. Tariq, H. Ahmad, J. Nasir, H. Aydi, A. Mukheimer, New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications, Symmetry, 13 (2021), 1429. doi: 10.3390/sym13081429 |
[26] | S. Porwal, K. K. Dixit, An application of hypergeometric functions on harmonic univalent functions, Bull. Math. Anal. Appl., 2 (2010), 97–105. |
[27] | M. Tariq, H. Ahmad, S. K. Sahoo, The Hermite-Hadamard type inequality and its estimations via generalized convex functions of Raina type, Math. Mod. Num. Sim. Appl. 1 (2021), 32–43. |
[28] | S. Miller, P. T. Mocanu, Univalence of Gaussian and confluent hypergeometric functions, P. Am. Math. Soc., 110 (1990), 333–342. doi: 10.1090/S0002-9939-1990-1017006-8 |
[29] | S. Porwal, K. Vijaya, M. Kasthuri, Connections between various subclasses of planar harmonic mappings involving generalized Bessel functions, LE Matematiche– Fasc. I, 71 (2016), 99–114. |
[30] | K. Vijaya, H. Dutta, G. Murugusundaramoorthy, Inclusion relation between subclasses of harmonic functions associated with Mittag-Leffier functions, MESA, 11 (2020), 959–968. |