The notion of left almost semihyperrings (briefly, $ LA $-semihyperrings), as a generalization of left almost semirings (briefly, $ LA $-semirings), was introduced by Nawaz, Rehman and Gulistan in 2018. The purpose of this article is to study the classes of weakly regular $ LA $-semihyperrings and regular $ LA $-semihyperrings. Then, characterizations of weakly regular $ LA $-semihyperrings and regular $ LA $-semihyperrings in terms of their hyperideals have been obtained.
Citation: Warud Nakkhasen. Left almost semihyperrings characterized by their hyperideals[J]. AIMS Mathematics, 2021, 6(12): 13222-13234. doi: 10.3934/math.2021764
The notion of left almost semihyperrings (briefly, $ LA $-semihyperrings), as a generalization of left almost semirings (briefly, $ LA $-semirings), was introduced by Nawaz, Rehman and Gulistan in 2018. The purpose of this article is to study the classes of weakly regular $ LA $-semihyperrings and regular $ LA $-semihyperrings. Then, characterizations of weakly regular $ LA $-semihyperrings and regular $ LA $-semihyperrings in terms of their hyperideals have been obtained.
[1] | M. Y. Abbasi, S. A. Khan, A. F. Talee, A. Khan, Soft interior-hyperideals in left regular $LA$-semihypergroups, Kragujev. J. Math., 44 (2020), 217–236. doi: 10.46793/KgJMat2002.217A |
[2] | S. Abdullah, S. Aslam, N. U. Amin, $LA$-semigroups characterized by the properties of interval valued $(\alpha, \beta)$-fuzzy ideals, J. Appl. Math. Inform., 32 (2014), 405–426. doi: 10.14317/jami.2014.405 |
[3] | N. Abughazalah, N. Yaqoob, A. Bashir, Cayley graphs over $LA$-groups and $LA$-polygroups, Math. Probl. Eng., 2021 (2021), 1–9. |
[4] | I. Ahmad, S. Rahman, M. Iqbal, Amanullah, A note on left abelian distributive $LA$-semigroups, Punjab Univ. J. Math., 52 (2020), 47–63. |
[5] | M. A. Ansari, Roughness in generalized $(m, n)$ bi-ideals in ordered $LA$-semigroups, Int. J. Math. Comput. Sci., 14 (2019), 371–386. |
[6] | M. Azhar, M. Gulistan, N. Yaqoob, S. Kadry, On fuzzy ordered $LA$-semihypergroups, Int. J. Anal. Appl., 16 (2018), 276–289. |
[7] | A. Basar, A note on $(m, n)$-$\Gamma$-ideals of ordered $LA$-$\Gamma$-semigroups, Konuralp J. Math., 7 (2019), 107–111. |
[8] | S. I. Batool, I. Younas, M. Khan, N. Yaqoob, A new technique for the construction of confusion component based on inverse $LA$-semigroups and its application in stenography, Multimed. Tools Appl., 80 (2021), 28857–28877. doi: 10.1007/s11042-021-11090-w |
[9] | P. Corsini, Prolegomena of hypergroup theory, USA: Aviani Editore, 1993. |
[10] | P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Dordrecht: Kluwer Academic Publishers, 2003. |
[11] | B. Davvaz, V. Leoreanu-Fotea, Hyperring theorey and applications, USA: International Academic Press, 2007. |
[12] | D. M. Devi, G. S. Latha, $LA$-semirings satisfying the identity $a.b = a+b+1$, Int. J. Innovative Sci., Eng. Tech., 2 (2015), 378–389. |
[13] | D. M. Devi, G. S. Latha, $LA$-semirings in which $(S, .)$ is anti-inverse semigroup, Int. J. Eng. Tech., 2 (2016), 124–127. |
[14] | A. Elmoasy, On rough fuzzy prime ideals in left almost semigroups, Int. J. Anal. Appl., 19 (2021), 455–464. |
[15] | T. Gaketem, Bipolar $(\lambda, \delta)$-fuzzy ideals in $LA$-semigroups, Appl. Sci., 23 (2021), 49–55. |
[16] | M. Gulistan, M. Khan, N. Yaqoob, M. Shahzad, Structural properties of cubic sets in regular $LA$-semihypergroups, Fuzzy Inf. Eng., 9 (2017), 93–116. doi: 10.1016/j.fiae.2017.03.005 |
[17] | M. Gulistan, N. Yaqoob, S. Kadry, M. Azhar, On generalized fuzzy sets in ordered $LA$-semihypergroups, Proc. Est. Acad. Sci., 68 (2019), 43–54. doi: 10.3176/proc.2019.1.06 |
[18] | K. Hila, J. Dine, On hyperideals in left almost semihypergroups, ISRN Algebra, 2011 (2011), 1–8. |
[19] | W. Jantanan, R. Chinram, P. Petchkaew, On $(m, n)$-quasi-gamma-ideals in ordered $LA$-gamma-semigroups, J. Math. Comput. Sci., 11 (2021), 3377–3390. |
[20] | M. Khan, T. Asif, Characterizations of intra-regular left almost semigroups by their fuzzy ideals, J. Math. Res., 2 (2010), 87–96. |
[21] | A. Khan, M. Farooq, M. Izhar, B. Davvaz, Fuzzy hyperideals of left almost semihypergroups, Int. J. Anal. Appl., 15 (2017), 155–171. |
[22] | M. Khan, Y. B. Jun, F. Yousafzai, Fuzzy ideals in right regular $LA$-semigroups, Hacet. J. Math. Stat., 44 (2015), 569–586. |
[23] | W. A. Khan, A. Taouti, A. Salami, Z. Hussain, On gamma $LA$-rings and gamma $LA$-semirings, Eur. J. Pure Appl. Math., 14 (2021), 989–1001. doi: 10.29020/nybg.ejpam.v14i3.4034 |
[24] | W. Khan, F. Yousafzai, M. Khan, On generalized ideals of left almost semigroups, Eur. J. Pure Appl. Math., 9 (2016), 277–291. |
[25] | M. A. Kazim, M. Neseeruddin, On almost semigroups, Alig. Bull. Math., 2 (1972), 1–7. |
[26] | F. Marty, Sur une generalization de la notion de group, 8th Congress Mathematics Scandinaves, Stockholm, 1934. |
[27] | Q. Mushtaq, S. M. Yousuf, On $LA$-semigroups, Alig. Bull. Math., 8 (1978), 65–70. |
[28] | W. Nakkhasen, On $Q$-fuzzy hyperideals of semihyperrings, Int. J. Math. Comput. Sci., 14 (2019), 535–546. |
[29] | W. Nakkhasen, B. Pibaljommee, Intra-regular semihyperrings, J. Discrete Math. Sci. Cryptogr., 22 (2019), 1019–1034. |
[30] | S. Nawaz, I. Rehman, M. Gulistan, On left almost semihyperrings, Int. J. Anal. Appl., 16 (2018), 528–541. |
[31] | B. Pibaljommee, W. Nakkhasen, Connections of ($m, n$)-bi-quasi hyperideals in semihyperrings, Thai J. Math., 2020, 39–48. |
[32] | P. V. Proti$\acute{\text{c}}$, N. Stevanovi$\acute{\text{c}}$, AG-test and some general properties of Abel-Grassmann's groupoids, Pure Math. Appl., 6 (1995), 371–383. |
[33] | K. Rahman, F. Husain, S. Abdullah, M. Khan, Left almost semirings, Int. J. Comput. Sci. Inf. Secur., 14 (2016), 201–216. |
[34] | I. Rahman, N. Hidayat, A. R. Alhofari, Fuzzy left almost semihyperrings, Adv. Soc, Educ. Humanities Res., 550 (2020), 412–417. |
[35] | I. Rehman, N. Yaqoob, S. Nawaz, Hyperideals and hypersystems in $LA$-hyperrings, Songklanakarin J. Sci. Tech., 39 (2017), 651–657. |
[36] | A. S. Sezer, Certain characterizations of $LA$-semigroups by soft sets, J. Intell. Fuzzy Syst., 24 (2014), 1035–1046. |
[37] | T. Shah, I. Rehman, On $LA$-rings of finitely nonzero functions, Int. J. Contemp. Math. Sci., 5 (2010), 209–222. |
[38] | T. Vougiouklis, On some representation of hypergroups, Ann. Sci. Univ. Clermont-Ferrand II Math., 95 (1990), 21–29. |
[39] | T. Vougiouklis, Hyperstructures and their representations, USA: Hadronic Press, Inc., 1994. |
[40] | N. Yaqoob, Approximations in left almost polygroups, J. Intell. Fuzzy Syst., 36 (2019), 517–526. doi: 10.3233/JIFS-18776 |
[41] | N. Yaqoob, P. Corsini, F. Yousafzai, On intra-regular left almost semihypergroups with pure left identity, J. Math., 2013 (2013), 1–10. |
[42] | N. Yaqoob, I. Cristea, M. Gulistan, S. Nawaz, Left almost polygroups, Ital. J. Pure Appl. Math., 39 (2018), 465–474. |
[43] | N. Yaqoob, M. Gulistan, Partially ordered left almost semihypergroups, J. Egypt. Math. Soc., 23 (2015), 231–235. doi: 10.1016/j.joems.2014.05.012 |
[44] | P. Yiarayong, On generalizations of fuzzy quasi-prime ideals in $LA$-semigroups, Soft Comput., 24 (2020), 2125–2137. doi: 10.1007/s00500-019-04043-x |
[45] | P. Yiarayong, On generalizations of quasi-prime ideals of an ordered left almost semigroups, Afrika Mathematika, 32 (2021), 969–982. doi: 10.1007/s13370-021-00873-x |
[46] | F. Yousafzai, A. Iampam, J. Tang, Study on smallest (fuzzy) ideals of $LA$-semigroups, Thai J. Math., 16 (2018), 549–561. |
[47] | I. Younas, Q. Mushtaq, A. Rafiq, Presentation of inverse $LA$-semigroups, Maejo Int. J. Sci. Tech., 14 (2020), 242–251. |