Research article

A third-order numerical method for solving fractional ordinary differential equations

  • Received: 19 March 2024 Revised: 10 June 2024 Accepted: 14 June 2024 Published: 01 July 2024
  • In this paper, we developed a novel numerical method for solving general nonlinear fractional ordinary differential equations (FODEs). First, we transformed the nonlinear FODEs into the equivalent Volterra integral equations. We then developed a time-stepping algorithm for the numerical solution of the Volterra integral equations based on the third-order Taylor expansion for approximating the integrands in the Volterra integral equations on a chosen mesh with the mesh parameter $ h $. This approximation led to implicit nonlinear algebraic equations in the unknowns at each given mesh point, and an iterative algorithm based on Newton's method was developed to solve the resulting implicit equations. A convergence analysis of this numerical scheme showed that the error between the exact solution and numerical solution at each mesh point is $ \mathcal{O}(h^{3}) $, independent of the fractional order. Finally, four numerical examples were solved to verify the theoretical results and demonstrate the effectiveness of the proposed method.

    Citation: Xiaopeng Yi, Chongyang Liu, Huey Tyng Cheong, Kok Lay Teo, Song Wang. A third-order numerical method for solving fractional ordinary differential equations[J]. AIMS Mathematics, 2024, 9(8): 21125-21143. doi: 10.3934/math.20241026

    Related Papers:

  • In this paper, we developed a novel numerical method for solving general nonlinear fractional ordinary differential equations (FODEs). First, we transformed the nonlinear FODEs into the equivalent Volterra integral equations. We then developed a time-stepping algorithm for the numerical solution of the Volterra integral equations based on the third-order Taylor expansion for approximating the integrands in the Volterra integral equations on a chosen mesh with the mesh parameter $ h $. This approximation led to implicit nonlinear algebraic equations in the unknowns at each given mesh point, and an iterative algorithm based on Newton's method was developed to solve the resulting implicit equations. A convergence analysis of this numerical scheme showed that the error between the exact solution and numerical solution at each mesh point is $ \mathcal{O}(h^{3}) $, independent of the fractional order. Finally, four numerical examples were solved to verify the theoretical results and demonstrate the effectiveness of the proposed method.



    加载中


    [1] K. Diethelm, The analysis of fractional differential equations, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [2] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [3] H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
    [4] C. Liu, X. Yi, Y. Feng, Modelling and parameter identification for a two-stage fractional dynamical system in microbial batch process, Nonlinear Anal. Model. Control, 27 (2022), 350–367. https://doi.org/10.15388/namc.2022.27.26234 doi: 10.15388/namc.2022.27.26234
    [5] Z. M. Odibat, Computational algorithms for computing the fractional derivatives of functions, Math. Comput. Simulation, 79 (2009), 2013–2020. https://doi.org/10.1016/j.matcom.2008.08.003 doi: 10.1016/j.matcom.2008.08.003
    [6] C. Li, F. Zeng, Finite difference methods for fractional differential equations, Int. J. Bifurcat. Chaos, 22 (2012), 1230014. https://doi.org/10.1142/S0218127412300145 doi: 10.1142/S0218127412300145
    [7] G. H. Gao, Z. Z. Sun, H. W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259 (2014), 33–50. https://doi.org/10.1016/j.jcp.2013.11.017 doi: 10.1016/j.jcp.2013.11.017
    [8] Y. Yan, K. Pal, N. J. Ford, Higher order numerical methods for solving fractional differential equations, Bit Numer. Math., 54 (2014), 555–584. https://doi.org/10.1007/s10543-013-0443-3 doi: 10.1007/s10543-013-0443-3
    [9] X. Zhang, J. Cao, A high order numerical method for solving Caputo nonlinear fractional ordinary differential equations, AIMS Math., 6 (2021), 13187–13209. https://doi.org/10.3934/math.2021762 doi: 10.3934/math.2021762
    [10] K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3–22. https://doi.org/10.1023/A:1016592219341 doi: 10.1023/A:1016592219341
    [11] K. Diethelm, N. J. Ford, A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31–52. https://doi.org/10.1023/B:NUMA.0000027736.85078.be doi: 10.1023/B:NUMA.0000027736.85078.be
    [12] W. Deng, C. Li, Numerical schemes for fractional ordinary differential equations, In: P. Miidla, Numerical modelling, InTech, Rijeka, 2012, 355–374. https://doi.org/10.5772/34965
    [13] W. Li, S. Wang, V. Rehbock, A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations, Numer. Algebra Control Optim., 7 (2017), 273–287. https://doi.org/10.3934/naco.2017018 doi: 10.3934/naco.2017018
    [14] H. Kim, K. H. Kim, S. Lee, B. Jang, New explicit and accelerated techniques for solving fractional order differential equations, Appl. Math. Comput., 379 (2020), 125228. https://doi.org/10.1016/j.amc.2020.125228 doi: 10.1016/j.amc.2020.125228
    [15] E. E. Tyrtyshnikov, A brief introduction to numerical analysis, Boston: Springer, 1997. https://doi.org/10.1007/978-0-8176-8136-4
    [16] A. Laforgia, P. Natalini, Exponential, gamma and polygamma functions: simple proofs of classical and new inequalities, J. Math. Anal. Appl., 407 (2013), 495–504. https://doi.org/10.1016/j.jmaa.2013.05.045 doi: 10.1016/j.jmaa.2013.05.045
    [17] R. Rannacher, Finite element solution of diffusion problems with irregular data, Numer. Math., 43 (1984), 309–327. https://doi.org/10.1007/BF01390130 doi: 10.1007/BF01390130
    [18] K. Zhang, X. Yang, S. Wang, K. L. Teo, Numerical performance of penalty method for American option pricing, Optim. Methods Softw., 25 (2010), 737–752. https://doi.org/10.1080/10556780903051930 doi: 10.1080/10556780903051930
    [19] T. Yamamoto, A method for finding sharp error bounds for Newton's method under the Kantorovich assumptions, Numer. Math., 49 (1986), 203–220. https://doi.org/10.1007/BF01389624 doi: 10.1007/BF01389624
    [20] S. Wang, W. Li, C. Liu, On necessary optimality conditions and exact penalization for a constrained fractional optimal control problem, Optim. Control Appl. Methods, 43 (2022), 1096–1108. https://doi.org/10.1002/oca.2877 doi: 10.1002/oca.2877
    [21] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, United States: U.S. Department of Commerce, National Bureau of Standards, 1964. Available from: https://archive.org/details/handbookofmathem1964abra.
    [22] R. Garrappa, Numerical solution of fractional differential equations: a survey and a software tutorial, Mathematics, 6 (2018), 16. https://doi.org/10.3390/math6020016 doi: 10.3390/math6020016
    [23] A. Atangana, S. İ. Araz, New numerical scheme with Newton polynomial: theory, methods, and applications, London: Elsevier, 2021. https://doi.org/10.1016/C2020-0-02711-8
    [24] O. Postavaru, An efficient numerical method based on Fibonacci polynomials to solve fractional differential equations, Math. Comput. Simulation, 212 (2023), 406–422. https://doi.org/10.1016/j.matcom.2023.04.028 doi: 10.1016/j.matcom.2023.04.028
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(845) PDF downloads(72) Cited by(3)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog