Research article Special Issues

Exploration of solitons and analytical solutions by sub-ODE and variational integrators to Klein-Gordon model

  • Received: 29 February 2024 Revised: 01 June 2024 Accepted: 05 June 2024 Published: 01 July 2024
  • MSC : 35A09, 35A24, 35C08

  • In this paper, we use the sub-ODE method to analyze soliton solutions for the renowned nonlinear Klein-Gordon model (NLKGM). This method provides a variety of soliton solutions, including three positive solitons, three Jacobian elliptic function solutions, bright solitons, dark solitons, periodic solitons, rational solitons and hyperbolic function solutions. Applications for these solitons can be found in optical communication, fiber optic sensors, plasma physics, Bose-Einstein condensation and other areas. We also study some numerical solutions by using forward, backward, and central difference techniques. Moreover, we discuss variational integrators (VIs) using the projection technique for NLKGM. We develop a numerical solution for NLKGM using the discrete Euler lagrange equation, the Lagrangian and the Euler lagrange equation. At the end, in various dimensions, covering 3D, 2D, and contour, we will also plot several graphs for the obtained NLKGM solutions. A contour plot is a type of graphic representation that displays a three-dimensional surface on a two-dimensional plane by using contour lines. Each contour line in the plotted function represents one of the function's constant values, mapping the function's value across the plane. This model has been studied across multiple soliton solutions using various methods in the open literature, but this model for VIs and finite deference scheme (FDS) is the first time it has been studied. Within the various numerical techniques accessible for solving Hamiltonian systems, variational integrators distinguish themselves because of their symplectic quality. Here are some of the symplectic properties: symplectic orthogonality, energy conservation, area preservation, and structure preservation.

    Citation: Syed T. R. Rizvi, Sana Ghafoor, Aly R. Seadawy, Ahmed H. Arnous, Hakim AL Garalleh, Nehad Ali Shah. Exploration of solitons and analytical solutions by sub-ODE and variational integrators to Klein-Gordon model[J]. AIMS Mathematics, 2024, 9(8): 21144-21176. doi: 10.3934/math.20241027

    Related Papers:

  • In this paper, we use the sub-ODE method to analyze soliton solutions for the renowned nonlinear Klein-Gordon model (NLKGM). This method provides a variety of soliton solutions, including three positive solitons, three Jacobian elliptic function solutions, bright solitons, dark solitons, periodic solitons, rational solitons and hyperbolic function solutions. Applications for these solitons can be found in optical communication, fiber optic sensors, plasma physics, Bose-Einstein condensation and other areas. We also study some numerical solutions by using forward, backward, and central difference techniques. Moreover, we discuss variational integrators (VIs) using the projection technique for NLKGM. We develop a numerical solution for NLKGM using the discrete Euler lagrange equation, the Lagrangian and the Euler lagrange equation. At the end, in various dimensions, covering 3D, 2D, and contour, we will also plot several graphs for the obtained NLKGM solutions. A contour plot is a type of graphic representation that displays a three-dimensional surface on a two-dimensional plane by using contour lines. Each contour line in the plotted function represents one of the function's constant values, mapping the function's value across the plane. This model has been studied across multiple soliton solutions using various methods in the open literature, but this model for VIs and finite deference scheme (FDS) is the first time it has been studied. Within the various numerical techniques accessible for solving Hamiltonian systems, variational integrators distinguish themselves because of their symplectic quality. Here are some of the symplectic properties: symplectic orthogonality, energy conservation, area preservation, and structure preservation.


    加载中


    [1] N. J. Zabusky, M. D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett, 15 (1965), 240–243. https://doi.org/10.1103/physrevlett.15.240 doi: 10.1103/physrevlett.15.240
    [2] M. T. Darvishi, M. Najafi, L. Akinyemi, H. Rezazadeh, Gaussons of some new nonlinear logarithmic equations, J. Nonlinear Opt. Phys. Mater., 3 (2023), 2350013. https://doi.org/10.1142/s0218863523500133 doi: 10.1142/s0218863523500133
    [3] L. Akinyemi, S. Manukure, A. Houwe, S. Abbagari, A study of (2+1)-dimensional variable coefficients equation: Its oceanic solitons and localized wave solutions, Phys. Fluids, 36 (2024), 013120. https://doi.org/10.1063/5.0180078 doi: 10.1063/5.0180078
    [4] L. Akinyemi, M. Şenol, U. Akpan, K. Oluwasegun, The optical soliton solutions of generalized coupled nonlinear Schrödinger-Korteweg-de Vries equations, Opt. Quan. Electron., 53 (2021), 394. https://doi.org/10.1007/s11082-021-03030-7 doi: 10.1007/s11082-021-03030-7
    [5] M. Senol, E. A. Az-Zo'bi, L. Akinyemi, A. O. Alleddawi, Novel soliton solutions of the generalized (3+1)-dimensional conformable KP and KP–BBM equations, Comput. Sci. Eng., 1 (2021), 1–29. https://doi.org/10.22124/cse.2021.19356.1003 doi: 10.22124/cse.2021.19356.1003
    [6] A. Abdeljabba, H. O. Roshid, A. Aldurayhim, Bright, Dark, and Rogue Wave Soliton Solutions of the Quadratic Nonlinear Klein-Gordon Equation, Symmetry, 14 (2022), 1223. https://doi.org/10.3390/sym14061223 doi: 10.3390/sym14061223
    [7] U. Younas, M. Younis, A. R. Seadawy, S. T. R. Rizvi, S. Althobaiti, S. Sayed, Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative, Results Phys., 20 (2021), 103766. http://doi.org/10.1016/j.rinp.2020.103766 doi: 10.1016/j.rinp.2020.103766
    [8] D. D. Santo, T. Kinoshita, M. Reissig, Klein-Gordon type equations with a singular time-dependent potential, Rend. Istit. Mat. Univ. Trieste, XXXIX (2007), 141–175.
    [9] Y. V. Bebikhov, I. A. Shepelev, S. V. Dmitriev, A review of specially discretized Klein-Gordon models, Saratov Fall Meeting 2019: Computations and Data Analysis: From Nanoscale Tools to Brain Functions, 1145910 (2020), 217–224. https://doi.org/10.1117/12.2565763 doi: 10.1117/12.2565763
    [10] F. Hirosawa, M. Reissig, From wave to Klein-Gordon type decay rates, In: Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations, Basel: Birkhäuser, 2003. https://doi.org/10.1007/978-3-0348-8073-2_2
    [11] C. Böhme, M. Reissig, Energy bounds for Klein-Gordon equations with time-dependent potential, Ann. Univ. Ferrara, 59 (2013), 31–55. https://doi.org/10.1007/s11565-012-0162-8 doi: 10.1007/s11565-012-0162-8
    [12] E. M. E. Zayed, M. E. M. Alngar, A. Biswas, H. Triki, Y. Yıldırım, A. S. Alshomrani, Chirped and chirp-free optical solitons in fiber Bragg gratings with dispersive reflectivity having quadratic-cubic nonlinearity by sub-ODE approach, Optik, 203 (2020), 163993. https://doi.org/10.1016/j.ijleo.2019.163993 doi: 10.1016/j.ijleo.2019.163993
    [13] J. C. Butcher, Numerical methods for ordinary differential equations, 2 Eds., Chichester: John Wiley and Sons, 2008. https://doi.org/10.1002/9781119121534
    [14] B. Leimkuhler, S. Reich, Simulating Hamiltonian dynamics, Cambridge University Press, Cambridge, (2004). https://doi.org/10.1017/CBO9780511614118
    [15] M. Kraus, Projected variational integrators for degenerate Lagrangian systems, 2017. https://doi.org/10.48550/arXiv.1708.07356
    [16] E. Hairer, C. Lubich, G. Wanner. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, Springer Berlin, Heidelberg, 31 2nd edition (2006). https://doi.org/10.1007/3-540-30666-8
    [17] S. Reich, C. Cotter, Variational integrators and adaptive time stepping for the numerical simulation of wave energy propagation, J. Comput. Phys., 256 (2014), 460–480.
    [18] A. J. Lew, Discrete variational Hamiltonian mechanics, Rep. Math. Phys., 52 (2003), 147–158.
    [19] J. C. Butcher, General linear methods, Acta Numer., 15 (2006), 157–256.
    [20] F. Shehzad, Y. Habib, Discrete Gradient Methods for Solving SIRI Epidemic Model Numerically While Preserving First Integrals, Arabian J. Sci. Eng., 46 (2021), 663–668.
    [21] J. C. Butcher, Y. Habib, A. T. Hill, T. J. Norton, The control of parasitism in G-symplectic methods, SIAM J. Numer. Anal, 52 (2014), 2440–2465.
    [22] J. E. Marsden, G W. Patrick, The structure and stability of periodic orbits for Hamiltonian systems, Rep. Prog. Phys., 56 (1994), 439.
    [23] M. Kraus, Variational integrators in plasma physics, 2013. https://doi.org/10.48550/arXiv.1307.5665
    [24] S. Lall, M. West, Discrete variational Hamiltonian mechanics, J. Phys. A: Math. General, 39 (2006), 5509.
    [25] N. Raza, S. Arshed, A. R. Butt, D. Baleanu, New and more solitary wave solutions for the Klein-Gordon-Schrödinger model arising in nucleon-meson interaction, Sec. Stat. Comput. Phys., 9 (2021), 637964. https://doi.org/10.3389/fphy.2021.637964 doi: 10.3389/fphy.2021.637964
    [26] M. Iqbal, D. Lu, A. R. Seadawy, G. Mustafa, Z. Zhang, M. Ashraf, A. Ghaffar, Dynamical analysis of soliton structures for the nonlinear third-order Klein-Fock-Gordon equation under explicit approach, Opt. Quant. Electron., 56 (2024), 651. https://doi.org/10.1007/s11082-023-05435-y doi: 10.1007/s11082-023-05435-y
    [27] H. U. Rehman, I. Iqbal, S. S. Aiadi, N. Mlaiki, M. S. Saleem, Soliton solutions of Klein-Fock-Gordon equation using sardar subequation method, Mathematics, 10 (2022), 3377. https://doi.org/10.3390/math10183377 doi: 10.3390/math10183377
    [28] Y. Li, J. Lührmann, Soliton dynamics for the 1D quadratic Klein-Gordon equation with symmetry, J. Differ. Eq., 344 (2023), 172–202. https://doi.org/10.1016/j.jde.2022.10.030 doi: 10.1016/j.jde.2022.10.030
    [29] R. Sassaman, A. Biswas, Soliton perturbation theory for phi-four model and nonlinear Klein-Gordon equations, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 3239–3249. https://doi.org/10.1016/j.jfranklin.2010.04.012 doi: 10.1016/j.jfranklin.2010.04.012
    [30] M. M. A. Khater, A. A. Mousa, M. A. El-Shorbagy, R. A. M. Attia, Abundant novel wave solutions of nonlinear Klein-Gordon-Zakharov (KGZ) model, Eur. Phys. J. Plus, 136 (2021), 604. https://doi.org/10.1140/epjp/s13360-021-01385-0 doi: 10.1140/epjp/s13360-021-01385-0
    [31] A. Houwe, H. Rezazadeh, A. Bekir, S. Y. Doka, Traveling-wave solutions of the Klein-Gordon equations with M-fractional derivative, Pramana, 96 (2022), 26. https://doi.org/10.1007/s12043-021-02254-2 doi: 10.1007/s12043-021-02254-2
    [32] M. M. Roshid, M. F. Karim, A. K. Azad, M. M. Rahman, T. Sultana, New solitonic and rogue wave solutions of a Klein-Gordon equation with quadratic nonlinearity, Partial Differ. Eq. Appl. Math., 3 (2021), 100036. https://doi.org/10.1016/j.padiff.2021.100036 doi: 10.1016/j.padiff.2021.100036
    [33] R. Sassaman, A. Heidari, A. Biswas, Topological and non-topological solitons of nonlinear Klein-Gordon equations by He's semi-inverse variational principle, J. Franklin Inst., 347 (2010), 1148–1157. https://doi.org/10.1016/j.jfranklin.2010.04.012 doi: 10.1016/j.jfranklin.2010.04.012
    [34] D. Saadatmand, K. Javidan, Collective-coordinate analysis of inhomogeneous nonlinear Klein-Gordon Field Theory, Braz. J. Phys., 43 (2013), 48–56. https://doi.org/10.1007/s13538-012-0113-y doi: 10.1007/s13538-012-0113-y
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(771) PDF downloads(49) Cited by(1)

Article outline

Figures and Tables

Figures(23)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog